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The primary approaches used for orbit determination on the basis of a single pass through a
radar are recursive (Kalman filter) and joint (least squares). If the stochastic characteristics
of the errors are not completely known or the measurement errors are time correlated these
techniques do not provide a guaranteed evaluation of the errors of the generated estimates.
This is a significant limitation. This paper presents a comparative analysis (based on computer
simulation) for the procedures based on the Guarantee method and traditional recurrent and
joint processing techniques.

1. INTRODUCTION

The problem of orbit determination based on one pass through the radar field of view is not a
new one. Extensive research in this area has been carried out in the USA and Russia since late
50ies when these countries started the development of BMD and Early Warning systems. In Russia
these investigations got additional stimulation in early 60ies after the decision to create the Space
Surveillance System whose primary task is the maintenance of the satellite catalog. These problems
were a focus of research interest up to middle 1970’s at which time the appropriate techniques and
software had been implemented for all radars. Then for more than 20 years no new research papers
arrived on this subject. This produced an impression that all the problems of track determination
based on one pass had been solved and there was no area for further research.

In late 1990’s the interest in this problem arose again in relation to the following. The American
specialists estimate the number of orbital objects with size greater than 1-2 cm as 100 000. Collision
of operational spacecraft with any of these objects may have catastrophic results. Thus, for preven-
tion of hazardous approaches and collisions with valuable spacecraft the existing satellite catalog
should be extended at least ten times. This is a very difficult scientific and engineering task. One
of the issues is the development of data fusion procedures and the software capable of maintaining
such a huge catalog close to real time. The number of daily processed measurements (of all types,



radar and optical) for such a system may constitute millions, thus exceeding the existing amount of
measurements more than ten times. Since it is known that when we have ten times more satellites
and measurements the computer effort required for correlation of measurements will be two orders
of magnitude greater. This can create problems for processing data close to real time even for
modern computers. Preliminary ”compression” of data for one pass through the field of view of a
sensor can significantly reduce the requirements to computers. This compression will take place in
case all the single measurements of the sensor are replaced by the orbit determined on their basis.
The single measurement here means the radar parameters (range, azimuth, elevation, and in some
cases range rate) measured by a single pulse.

Two types of techniques have been traditionally used for processing single measurements recurrent
and joint processing. Recurrent procedures convenient for real time processing usually are based on
Kalman’s filtering and its modifications [1]. Less convenient joint processing techniques basically
use least squares [2] or least modules [3] methods. When the errors of single measurements are
time correlated and for all cases when the statistical characteristics of single measurements are
not known completely these techniques do not provide the guaranteed evaluation of the errors of
generated estimates. This limitation can be avoided when we use the method with the guarantee
approach when the guarantee ranges of orbital parameters are obtained on the basis of guarantee
ranges of the parameters of single measurements [4]. The guarantee approach has one more
remarkable feature. With certain limitations on the distribution of the errors of the measurements
and a large enough number of these measurements this approach leads to more accurate estimates
than the traditional techniques mentioned above.

The general procedure based on the guarantee approach for several limitations is a linear pro-
gramming procedure with the amount of computation significantly greater than the least squares
procedure. This resulted in a lack of interest in such procedures in 60-70’s. However, now the
situation is different. The capacity of the computers is many and many times greater. Modern
sensors have small and rather stable errors. At the same time the new task of accurate estimation
of collision risk for important space vehicles requires higher accuracy for the determination of the
position of the space vehicle. Thus, we have reasons to look again at this promising method.

The fundamentals for the algorithm based on the techniques mentioned above has been presented
previously [5]. The subject of this work is the comparative analysis of the accuracy provided by
different methods using mathematical simulation. We assume that the radar measures the local
spherical coordinates of a satellite (range d, azimuth α and elevation angle β) within the zone
limited in range (not more than 3000-7000 km) and elevation angle (not more than 40◦-60◦) with
errors of single measurements of the order of tens of meters in range and several angular minutes
for angular coordinates.

2. TRADITIONAL METHODS

The recurrent algorithm of orbit determination by radar measurements uses the previous estimate
of the orbital parameters ĉk−1 and the calculated correlation matrix of errors Pk−1, referred
to the time tk−1, and the current scalar measurement uk, acquired at the time tk≥tk−1, to
calculate the updated estimate ĉk and calculated correlation matrix of errors Pk:

ĉk = ĉk|k−1 + wkPkhk(uk − hk(ĉk|k−1)) (1)

w̃k = wk/(1 + wkh
′

kPk|k−1hk) Pk = Pk|k−1 − w̃k(Pk|k−1hk)(Pk|k−1hk)
′

where vectors 6×1 and matrices 6×6 are denoted by bold (small and capital respectively)
letters, ′ – transposition sign; uk = u(tk) scalar parameter of the measurement for the time



tk (range, azimuth or elevation angle); ck=c(tk) orbital parameters for the time tk – state
vector (xk, yk, zk, ẋk, ẏk, żk) in local rectangular coordinates x, y, z, related to the spherical
ones d, α, β by relationships x = −d sinα cos β y = d sin β z = d cosα cosβ; hk(ck) and hk

– relationships and the vector 6×1 of their partial derivatives with respect to ck; ck = fk (ck−1)

functional operator of propagating orbital parameters from the time tk−1 to the time tk; Fk (ck−1)

is the matrix operator of propagating the variations δc of orbital parameters c from the time
tk−1 to the time tk; Pk|k−1 – operator of propagating the correlation matrix Pk−1 from the time
tk−1 to the time tk, wk = 1/σ2

uk
– weight characteristic of the measurement uk.

For the propagation of the orbital parameters the differential equations of motion in the local
rectangular coordinate frame x, y, z are solved using numerical Runge-Kutta methods of the 4th
order. Only the second zonal harmonic of the Earth gravitation potential is taken into account.
Propagation of the variations of these parameters is performed under the assumption of a linear in
time change of the coordinates x, y, z. The matrix Fk in this case have dimensions 6×6 with the
following not zero elements: fi,i=1 for i = 1, 2, ..., 6, fi,i+3=τk for i = 1, 2, 3, where τk=tk−tk−1.
Propagation of the correlation matrix Pk−1 is performed by the formula Pk|k−1 = Fk·Pk−1·Fk+Γk,
where in the matrix Γk only the diagonal elements corresponding to the velocity components of
the vector c are not zero [6]. First using (1) we update the previous estimate by uk=dk, then
the obtained estimate is updated by uk=αk and then the obtained estimate is updated by uk=βk.

Regarding the least squares method we search for min
c

Ψ(c) = Ψ(cmin) of the function Ψ(c) of

the shape

Ψ(c) =

n
∑

k=1

(

1

σ2

dk

(dk − dk(c))2 +
1

σ2
αk

(αk − αk(c))2 +
1

σ2

βk

(βk − βk(c))2

)

, (2)

where xk=(dk, αk, βk) – k-th measurement (k = 1, 2, ..., n); tk – time reference of the k-th
measurement; σdk

, σαk
, σβk

– RMS of the errors of dk, αk, βk; hk(c) = (dk(c), αk(c), βk(c)) –
the values of the parameters of the k-th measurement, calculated by the vector c = c (t̄) of the
orbital parameters referred to the time t̄.

The minimum of Ψ(c) is found by iterations and for the initial approximation c0 we take the
estimate of the parameters obtained on the basis of measurements x1, x2, ...,xn by recurrent
procedure. It is not an easy task to find a rather simple and computationally efficient technique
for the minimization of Ψ(c), which will have a guaranteed and quick convergence. However the
limitation for the elevation angle of the radar’s field of view leads to the result that the major
updating effect for the least squares (within the tracking time) is the reduction of the errors of
the velocity components u̇=(ẋ, ẏ, ż) of the state vector c. Coordinate parameters u=(x, y, z)
of the vector c in this case are almost not updated. Thus it is expedient to perform the
minimization of Ψ(c)=Ψ(u, u̇)=ψ(u̇) only with respect to the vector u̇. Taking into account
the limits for the errors of the measurements mentioned in the introduction and the selected initial
approximation the function x(u̇) is close to linear. Thus the iterative process converges very
quickly. In fact for all the cases determining the minimum of u̇min the function ψ(u̇) requires
only one iteration. For the minimum point u̇min of the function ψ(u̇) in the case when it

is reached by one iteration, Newton’s formula is used u̇min=u̇0−
(

∂2ψ

∂u̇2
(c0)

)−1

·∂ψ
∂u̇

(c0), where

the first and the second derivatives of the function ψ(u̇) with respect to parameters ẋ, ẏ, ż are
calculated using a finite differences technique.



3. GUARANTEE APPROACH

The basic assumption of the guarantee approach in the non-linear problems is the low level of the
errors of the measurements and the known upper limits for them. The term guarantee in this case
means that the procedure provides not only the calculated values of the orbital parameters, but the
maximum possible values of their errors as well. The essence of the approach is as follows. Assume
for the times tk (tk≤tk+1; k = 1, 2, ...n) we acquire the measurements uk of certain functions
hk (c) of the m-dimensional vector of parameters c (m<n), and the errors of the measurements
δuk=uk−hk(c) have known upper limits δk,max. The estimate c̄n of the parameters c and
the vector δc̄n,max of the maximum errors of the components of this estimate provided by the
guarantee approach have the following geometrical interpretation. The limits for the errors of the
measurements in the m-dimensional space of parameters c = (c1, c2, ..., cm) determine a domain

Dn =
n
⋂

k=1

{uk−δk,max ≤ hk(c) ≤ uk+δk,max} of possible values of c. We project this domain on the

coordinate axes of the components of the vector c and among the projected points for each axis
we find the most right cn,r and the most left cn,l. They define the boundaries (maximum and
minimum values) for the changes of each of the components of c. The estimate c̄n of the orbital
parameters and the maximum errors δc̄n,max of this estimate are determined as c̄n=0.5·(cn,r+cn,l)

δc̄n,max=0.5·(cn,r−cn,l). If the measured parameters are linearly connected with the determined
parameter c, i.e. hk(c) = h′

k
·c, where the components 6×1 of the vector hk do not depend on

c, this problem for the certain shape of the minimized function can be formulated as a standard
linear programming problem. The solution is known, but the procedure is rather sophisticated and
we will not describe it here.

For the evaluation of the accuracy characteristics of the parameters provided by this method it is
useful to consider a model case: we measure a scalar parameter c, with h = 1 and δk,max = δmax .

In this one-dimensional model Dn=
n
⋂

k=1

{[uk−δmax, uk+δmax ]}=[ max
k
uk−δmax, min

k
uk+δmax ]

c̄n=0.5·(max
k
uk+ min

k
uk) δc̄n,max=δmax−0.5·(max

k
uk−min

k
uk), where [a, b ] - denotes a segment

with the left end a and the right end b. The estimate c̄n has several interesting features,
which to a certain extent are retained in the multi-dimensional case:
1. The estimate c̄n does not depend on δmax, that means that is not critical to the knowledge
of the characteristics of the errors – in this case to the accuracy of the knowledge of δmax.
2. In case we know exactly δmax the value δc̄n,max is a correct upper estimate for the error of
the estimate c̄n, for any correlations of the errors of different measurements. Correctness in
this case means the following. On one side the true errors of the estimate ān for any n can not
exceed δān,max. On the other – the change of δc̄n,max with the increase of n corresponds to
the change of the correlation characteristics of the errors of the measurements. If the correlation
interval of the errors is limited the value δc̄n,max with the increase of n can be reduced infinitely.
If this is not the case, i.e. the measurements includes certain systematic error, the value δc̄n,max

for any n will have the lower limit of this error.
3. For the uncorrelated errors of the measurements the estimate c̄n regarding the accuracy is not
lower and sometimes can be a significantly more accurate (!) of the estimate ĉn=(u1+...+un/n of
the least squares. Thus, for example, for the frequently practical case of uniform distribution of
the measurements within the interval (−δmax, δmax) the estimates ĉn and c̄n are non-biased,
and the RMS of their errors are equal σc̄n≃1.4·δmax/n and σĉn

≃0.58·δmax/
√
n [7]. We can see

that the estimate ān is ≈0.4
√
n times more accurate. These features provides the advantages

for the guarantee approach with respect to the least squares technique and makes this approach
attractive for solving practical problems of radar operation. Especially this refers to rather precise



and stable radars where the abnormal measurements (in case they appear) are identified during
the preliminary processing and do not enter the orbit determination algorithm.

Let us consider the problem in more detail. Assume the radar for the times tk (k = 1, 2, ..., n)
measure the range d, azimuth α and elevation angle β in the local spherical coordinate frame,
and the errors of the measurements do not exceed respectively the values δd,max, δα,max, δβ,max.
The task is to determine for the time t̄=0.5·(t1+tn) the six-dimensional vector of orbital parameters
c = (d, α, β, ḋ, α̇, β̇) in this coordinate frame and its maximum errors. The following procedure
is suggested. Divide all the measurements into n/2 groups. The first group includes the
measurements performed at t1 and t0.5n, the second – the measurements performed at t2 and
t0.5n+1, etc. For each k-th group (k = 1, 2, .., 0.5·n) by two position vectors uk = (dk, αk, βk)
and u0.5n+k = (d0.5n+k, α0.5n+k, β0.5n+k) in the local spherical coordinate frame we determine

the six-dimensional vector of orbital parameters čk = (ď, α̌, β̌, ˇ̇d, ˇ̇α, ˇ̇β)k in the same coordinate
frame for the time t̄. Instead of the laborious operation of determination of the domain Dn

and its projections on the coordinate axes of the phase vector we suggest to project on these
axes the domain Dk, corresponding to the k-th group, and further for each axis look for the
intersections of these projections in k. The domain Dk is approximated by the six-dimensional
parallelepiped with the center in the point čk and 64 vertexes determined by the formula
čk ± δd,max·j1± δα,max·j2± δβ,max·j3± δd,max·j4 ± δα,max·j5± δβ,max·j6, where j1, j2, j3, j4, j5, j6
– the lines of the matrix of partial derivatives of the functional transformation ck=fk(uk, u0.5n+k)

in point čk. The boundary projections ck,l and ck,r of these 64 points of the six-dimensional phase
space for each of its axes determine the boundaries of the vector interval (ck,l, ck,r) of possible
values of all the six orbital parameters constructed using the k-th group of measurements. Having

found the common part (cl, cr) =
n
⋂

k=1

(ck,l, ck,r) of these intervals for all groups of measurements,

we find the estimate of orbital parameters and its maximum errors.

4. RESULTS OF MODELING

The modeling was performed with the following initial conditions:

1. coordinates of the radar (latitude, longitude, altitude): λ = 0, ϕ = 0.7, h = 0;

2. errors of the measurements: RMS of the uncorrelated errors of the measurements of parameters
σd = 0.05km, σα = 0.001, σβ = 0.001; there are no correlated and abnormal errors;
distribution of the errors is either uniform or normal;

3. radar field of view regarding the elevation angle is limited by minimum of 5◦ and maximum of
60◦.

4. satellite trajectories. Two orbits were selected both with an inclination of 1 radian, one with
average altitude 800 km, the second one – 1500 km. For each orbit two trajectories within the
field of view were selected. The first one - with ”assault” aspect angle (|β̇|≫|α̇|), the second
one - with ”transiting” one (|α̇|≫|β̇|).

5. distribution of the times of measurements. We consider that the first measurement is aquired
when the satellite enters the sector (for the considered trajectories this happens for the minimum
elevation angle). Further the measurements are performed with a 5 sec. interval until the satellite
leaves the sector (regarding elevation angle).

6. the number of realizations for modeling – nr = 100.

7. comparison of the empirical (averaged over realizations) and theoretical (obtained from the
Fisher’s information matrix) errors of orbit determination by Kalman’s filtering and least squares



respectively, is performed by each 10-th measurement, i.e. for the 50, 100, 150 etc. seconds of
tracking.

The table 1 present the results of comparing the empirical errors of the estimates of parameters
d, α, β, ḋ, α̇, β̇, obtained by Kalman’s filtering (KF) and least squares method (LSM) between
themselves and with theoretical values of these errors (ξ is the ratio of the RMS of the errors
provided by KF (LSM) and theoretical RMS). The reference time for the compared values – the
middle of the tracking interval t̄. The estimate of the orbital parameters calculated by LSM is
obtained just for the time t̄, and the estimate by KF, is interpolated from tn to t̄. Analysis
of the results of modeling leads to the following conclusions:

1. Up to 50 s tracking interval the errors of determination of velocity components by KF and LSM
are close (the difference does not exceed 20%) and the empirical values are close to theoretical.
When the tracking time increases for all the parameters, except for the radial velocity, the
situation is virtually the same. For the radial velocity the LSM provides a more accurate
estimate than the KF By the end of the tracking interval (450-750 s for the orbit of the first
type) the difference in the accuracy of the estimates by LSM and KF reaches 2-3 times. The
source of the effect is the non-linear character of the considered problem.

2. Parameters of the position vector are updated only by KF. Comparing with the theoretical
errors of these parameters shows that for the angular components of the position vector the
correspondence is satisfactory (the difference does not exceed 15% for the whole tracking uin-
terval). Regarding the range the situastion is different. For the tracking time more than 300 s,
the theoretical errors are essentially lower, and by the end of the tracking the difference reaches
2.7 times. The source of the effect is again the non-linearity of the problem.

In the table 2 we compare the empirical RMS of the errors of the estimates of parameters
d, α, β, ḋ, α̇, β̇, for the guarantee approach (GA) and the LSM. The time reference for the
compared values – the middle of tracking interval t̄. The comparing is performed for the max-
imum tracking interval (maximum number of measurements) for the uniform distribution of the
errors of the measurements. The results of comparing GA and LSM presented in the table 11
are somewhat unexpected. For the simplest model example (the scalar measured parameter with
no variations within the time interval and uniform distribution of the errors), mentioned in the
description of the guarantee approach, the estimate provided by the GA for the number of mea-
surements n≥10 is about 0.4

√
n times more accurate that the LSM estimate. Thus there was

a hope that the GA will have advantages with respect to LSM for our six-dimensional nonlinear
problem as well. However, this hope was not justified. The gains were insignificant and for some
parameters the LSM estimate is essentially more accurate.

Surely, the effects valid for the one-dimensional problem may not take place for the multi-
dimensional nonlinear case. However, this can be hardly predicted. The most likely situation is
that the effects exist for the considered problem, but due to some reasons they were not revealed.
We assume the following three reasons:

1. Not equal accuracy of the measured parameters. The error of the range in linear measure is
about 2 orders of magnitude smaller than the errors of the angles. This significantly not equal
accuracy of different measurements is a feature that distinguishes our problem from the model
example where all the measurements have equal accuracy and may become a source of some
additional effects. To avoid this, the errors of the range were increased to the level of angular
errors. For these conditions we repeated the comparing of GA and LSM. The results are



presented in Table 2. We can see that the ratios σga/σlsm for different parameters became
more even and the accuracy of GA and LSM estimates became closer. However, no principal
change is in place – the LSM estimate remains more (up to 2 times) accurate than the GA
one for the majority of the orbital parameters. Thus the unequality of the accuracy of the
measurements of different parameters is not the basic reason for the situation.

2. Non-linearity of the problem. The relationship between the measured and determined param-
eters is non-linear. Thus the domain Dk is not a six-dimensional parallelepiped and such a
replacement leads to some errors. However, these errors can be neglected when the errors of the
measurements are small. For evaluation of this effect we improved the angular errors to the
quality of the errors of the range and again compared the methods. The results are presented
in Table 2. Comparison with case, when the errors of the range were increased to the level
of angular errors, shows that the figures in both tables are very close, with the errors of the
measurements reduced (in the average) by an order of magnitude, however. Thus the lineariza-
tio n errors are probably small and can not be considered the reason for the unexpectedly low
efficiency of the suggested guarantee approach algorithm.

3. The simplifying assumptions accepted in the suggested algorithm. That is the principal rea-
son. The accepted simplifying assumptions lead to the observed effect. The basic one is the
replacement of the real domain D by the intersection of six-dimensional parallelepipeds Dk,
projected to the coordinate axes. If we try to avoid this simplification we will be driven to the
linear programming problem where we have to minimize a certain criterion function of estimated
parameters with non-equality shape constraints for certain linear functions of these parameters.
For solving this task usually a set of well known methods are used. It looks expedient to con-
sider the possibility of using these methods for the considered problem. Now we do not see any
unsurmountable difficulties for doing this. However, this is beyond the scope of this work and
may become a subject for further research.
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APPENDIX: TABLES

Table 1 Normalized characteristics of the errors ξ
for parameters d, α, β, ḋ, α̇, β̇ for different number of measurements n

trajectory 1al, normal distribution of the errors

n ξd ξα ξβ ξḋ ξα̇ ξβ̇
KF LSM KF LSM KF LSM KF LSM KF LSM KF LSM

10 1.03 1.03 1.01 1.01 0.88 0.88 1.03 0.86 1.11 1.08 0.96 0.94
20 1.00 1.00 1.03 1.03 1.00 1.00 1.21 0.93 0.95 0.93 1.10 1.07
30 0.94 0.94 1.04 1.04 1.01 1.01 1.20 0.94 0.95 0.96 1.18 1.06
40 0.81 0.81 1.04 1.04 1.03 1.03 1.31 1.03 1.01 1.01 1.08 1.00
50 0.87 0.87 1.05 1.05 1.01 1.01 1.29 0.99 1.05 1.05 1.15 1.08
60 0.94 0.94 1.03 1.03 1.11 1.11 1.27 0.92 0.99 0.98 1.04 1.00

trajectory 1al, uniform distribution of the errors

n ξd ξα ξβ ξḋ ξα̇ ξβ̇
KF LSM KF LSM KF LSM KF LSM KF LSM KF LSM

10 1.05 1.05 0.99 0.99 0.97 0.97 1.09 0.98 1.05 1.04 1.01 0.97
20 1.02 1.02 1.01 1.01 0.93 0.93 1.36 1.05 1.02 1.01 0.94 0.94
30 1.03 1.03 1.04 1.04 0.92 0.92 1.28 1.02 0.93 0.87 1.03 0.98
40 1.01 1.01 1.01 1.01 1.00 1.00 1.31 1.05 1.06 1.02 1.01 1.00
50 1.02 1.02 0.98 0.98 1.01 1.01 1.41 1.09 0.96 0.94 1.01 0.96
60 1.08 1.08 0.98 0.98 0.96 0.96 1.36 1.02 0.96 0.97 1.06 1.03

trajectory 1ac, normal distribution of the errors

n ξd ξα ξβ ξḋ ξα̇ ξβ̇
KF LSM KF LSM KF LSM KF LSM KF LSM KF LSM

10 0.95 0.95 0.94 0.94 1.14 1.14 1.12 0.93 0.89 0.89 0.91 0.92
20 0.95 0.95 1.03 1.03 1.06 1.06 1.07 0.99 1.00 0.86 1.06 1.01
30 0.93 0.93 0.97 0.97 1.06 1.06 1.03 0.95 1.12 1.03 1.07 1.07
40 1.00 1.00 1.00 1.00 1.01 1.01 0.99 0.96 1.01 0.96 1.07 1.07
50 1.02 1.02 1.02 1.02 1.05 1.05 1.02 1.01 1.00 0.96 1.03 1.03
60 1.08 1.08 1.06 1.06 1.04 1.04 1.02 0.98 0.96 0.95 1.05 1.05

trajectory 1ac, uniform distribution of the errors

n ξd ξα ξβ ξḋ ξα̇ ξβ̇
KF LSM KF LSM KF LSM KF LSM KF LSM KF LSM

10 1.05 1.05 1.23 1.23 1.04 1.04 1.18 1.02 1.05 0.96 0.96 0.93
20 1.04 1.04 1.17 1.17 1.07 1.07 1.22 1.07 1.14 1.08 1.01 1.00
30 1.06 1.06 1.06 1.06 1.04 1.04 1.18 1.04 1.17 1.09 1.02 1.01
40 1.12 1.12 1.01 1.01 1.00 1.00 1.08 1.01 1.18 1.14 1.05 1.05
50 1.05 1.05 1.03 1.03 1.02 1.02 0.95 0.85 1.02 1.00 1.03 1.02
60 1.04 1.04 1.04 1.04 1.01 1.01 0.93 0.89 1.15 1.13 1.03 1.02



trajectory 2al, normal distribution of the errors

n ξd ξα ξβ ξḋ ξα̇ ξβ̇
KF LSM KF LSM KF LSM KF LSM KF LSM KF LSM

10 1.05 1.05 1.01 1.01 1.02 1.02 1.13 1.02 1.06 1.02 1.15 1.13
20 1.01 1.01 1.06 1.06 1.05 1.05 1.25 0.91 1.02 0.98 1.17 1.05
30 1.05 1.05 1.05 1.05 0.94 0.94 1.29 0.90 1.00 0.97 1.14 1.02
40 1.13 1.13 1.07 1.07 0.85 0.85 1.52 0.92 0.93 0.89 1.17 1.70
50 1.08 1.08 1.06 1.06 0.88 0.88 1.67 1.00 1.00 1.00 1.03 0.99
60 1.13 1.13 1.03 1.03 0.92 0.92 1.81 0.97 0.93 0.94 1.16 1.05
70 1.26 1.26 1.03 1.03 0.90 0.90 2.10 1.01 1.03 1.02 1.30 1.19
80 1.41 1.41 1.03 1.03 0.94 0.94 2.33 1.05 0.98 0.98 1.17 1.13
90 1.43 1.43 1.02 1.02 1.01 1.01 2.53 1.00 1.07 1.06 1.38 1.11
100 1.53 1.53 1.03 1.03 1.02 1.02 2.66 0.98 0.91 0.91 1.45 1.25

trajectory 2al, uniform distribution of the errors

n ξd ξα ξβ ξḋ ξα̇ ξβ̇
KF LSM KF LSM KF LSM KF LSM KF LSM KF LSM

10 1.13 1.13 0.93 0.93 1.04 1.04 1.25 0.98 0.97 0.94 1.10 1.08
20 0.97 0.97 0.84 0.84 1.04 1.04 1.26 0.96 1.03 1.01 1.11 0.98
30 0.90 0.90 0.94 0.94 1.00 1.00 1.56 1.04 1.06 1.03 1.15 0.91
40 1.04 1.04 0.90 0.90 1.02 1.02 1.53 1.04 0.92 0.93 1.32 1.06
50 1.18 1.18 0.94 0.94 1.02 1.02 1.71 1.09 0.86 0.83 1.24 1.09
60 1.27 1.27 0.91 0.91 0.96 0.96 1.74 1.02 0.97 0.94 1.21 1.13
70 1.28 1.28 0.91 0.91 0.97 0.97 1.83 0.94 1.00 0.98 1.33 1.28
80 1.31 1.31 0.93 0.93 1.01 1.01 2.05 1.03 0.84 0.83 1.24 1.17
90 1.33 1.33 0.94 0.94 1.00 1.00 2.14 1.03 0.90 0.89 1.30 1.27
100 1.32 1.32 0.95 0.95 0.96 0.96 2.16 1.04 0.95 0.94 1.13 1.11

trajectory 2ac, normal distribution of the errors

n ξd ξα ξβ ξḋ ξα̇ ξβ̇
KF LSM KF LSM KF LSM KF LSM KF LSM KF LSM

10 1.06 1.06 1.00 1.00 0.93 0.93 1.05 0.83 1.12 1.07 1.15 1.08
20 1.02 1.02 0.91 0.91 1.09 1.09 1.12 0.90 0.98 0.99 0.98 0.98
30 1.07 1.07 0.96 0.96 1.08 1.08 1.16 0.93 0.96 0.90 0.84 0.82
40 1.11 1.11 1.08 1.08 0.99 0.99 1.21 1.00 1.06 1.01 0.98 0.94
50 1.09 1.09 1.04 1.04 0.98 0.98 1.16 1.02 1.03 0.99 0.91 0.87
60 0.94 0.94 1.05 1.05 0.90 0.90 1.21 1.02 1.01 0.99 0.99 0.96
70 0.96 0.96 1.04 1.04 0.93 0.93 1.26 1.08 1.11 1.10 1.05 1.03
80 1.00 1.00 1.07 1.07 0.93 0.93 1.24 1.00 1.07 1.06 1.06 1.02
90 1.08 1.08 1.01 1.01 0.90 0.90 1.25 0.98 1.01 1.00 1.05 1.00
100 1.32 1.32 1.03 1.03 0.93 0.93 1.24 0.97 0.94 0.97 1.00 0.96
110 1.50 1.50 0.99 0.99 0.88 0.88 1.36 0.98 0.94 1.00 1.00 0.91
120 1.65 1.65 0.96 0.96 0.92 0.92 1.51 1.04 0.97 1.07 1.12 1.02
130 1.82 1.82 0.95 0.95 0.96 0.96 1.77 1.04 1.01 1.04 1.17 1.01
140 2.31 2.31 0.97 0.97 0.92 0.92 1.99 1.07 1.05 1.16 1.16 1.00
150 2.73 2.73 0.96 0.96 0.92 0.92 2.23 1.01 1.08 1.25 1.15 0.96



trajectory 2ac, uniform distribution of the errors

n ξd ξα ξβ ξḋ ξα̇ ξβ̇
KF LSM KF LSM KF LSM KF LSM KF LSM KF LSM

10 1.00 1.00 0.96 0.96 0.99 0.99 1.10 1.01 1.14 1.04 1.04 1.04
20 0.96 0.96 0.93 0.93 0.96 0.96 1.18 0.99 1.04 0.96 1.00 0.98
30 0.96 0.96 0.91 0.91 0.91 0.91 1.14 0.99 1.00 0.99 1.00 0.99
40 0.97 0.97 0.96 0.96 0.96 0.96 1.09 0.89 1.02 1.00 0.96 0.95
50 1.00 1.00 0.90 0.90 0.94 0.94 1.03 0.90 1.09 1.10 1.02 1.03
60 0.97 0.97 0.88 0.88 0.96 0.96 1.00 0.87 1.01 1.01 1.00 0.99
70 0.95 0.95 0.86 0.86 0.94 0.94 1.09 0.96 0.92 0.92 0.93 0.93
80 1.07 1.07 0.84 0.84 0.93 0.93 1.15 0.93 0.96 0.93 0.94 0.93
90 1.21 1.21 0.82 0.82 0.91 0.91 1.22 0.88 0.99 1.01 0.99 0.99
100 1.29 1.29 0.85 0.85 0.91 0.91 1.31 0.90 1.12 1.06 1.03 1.01
110 1.51 1.51 0.80 0.80 0.92 0.92 1.35 0.94 1.08 1.09 1.04 1.03
120 1.64 1.64 0.83 0.83 0.89 0.89 1.50 0.96 0.99 1.04 1.05 1.04
130 1.87 1.87 0.86 0.86 0.86 0.86 1.59 0.95 0.94 1.06 1.08 1.00
140 2.42 2.42 0.85 0.85 0.88 0.88 1.86 0.91 0.92 1.07 1.04 0.92
150 2.53 2.53 0.84 0.84 0.90 0.90 1.95 0.86 1.00 1.09 1.06 0.88

Table 2 The ratio σga/σlsm of the RMS of the errors for parameters
d, α, β, ḋ, α̇, β̇ provided by GA and LSM for all selected trajectories

(naximum number of measurements, uniform distribution of the errors)

σd = 0.05 km, σα = σβ = 0.001

d α β ḋ α̇ β̇

1al 3.55 0.78 1.03 3.80 1.37 4.66
1ac 3.42 0.90 0.99 4.40 1.05 2.10
2al 3.05 1.00 0.93 5.60 1.62 1.16
2ac 2.80 1.15 1.24 5.50 0.89 3.24

σd = 3.0 km, σα = σβ = 0.001

d α β ḋ α̇ β̇

1al 1.21 0.95 1.37 1.60 2.00 1.97
1ac 1.17 1.22 0.99 1.72 1.70 1.36
2al 1.23 0.97 1.27 2.17 1.61 1.86
2ac 1.49 1.72 1.35 2.21 2.18 1.55

σd = 0.2 km, σα = σβ = 0.0001

d α β ḋ α̇ β̇

1al 1.35 0.88 1.30 1.62 1.87 1.80
1ac 1.28 1.10 1.00 1.80 1.57 1.38
2al 1.38 0.98 1.13 2.23 1.65 1.72
2ac 1.60 1.58 1.32 2.45 2.10 1.57


