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ABSTRACT

The state propagation accuracy resulting from differentads of gravitational force models and orbital perturdnai

is investigated for a pair of CubeSats flying in formationdwIEarth orbit (LEO). Accurate on-board state propagation
is necessary to autonomously plan maneuvers and perforrmpty operations and docking safely. The primary
perturbations affecting both absolute and relative orligaamics in LEO are expected to be and drag. However,

the effect of drag on the relative dynamics is highly depahda differences in the ballistic coefficients of the two
spacecraft, differences which can be large since the CibaBanon-symmetric in terms of cross-sectional area for
different attitudes. Propagation accuracy is investididdeth in terms of the absolute (chief) state and the relative
(deputy relative to chief) state. Different perturbingeets are normalized and compared on an order of magnitude
basis over a wide range of altitudes and inclinations in L&} in detail for a 425 km Sun-synchronous orbit.

1. INTRODUCTION

The Proximity Operations Nano-Satellite Flight Demortstra (PONSFD) program will demonstrate rendezvous
proximity operations (RPO), formation flying, and dockinghna pair of 3U CubeSats. The program is sponsored by
NASA Ames via the Office of the Chief Technologist (OCT) in popt of its Small Spacecraft Technology Program
(SSTP). The goal of the mission is to demonstrate complex RfOdocking operations with a pair of low-cost 3U
CubeSat satellites using passive navigation sensorst anebipected to fly in low Earth orbit (LEO) with an altitude
of 400 km—700 km. The ability to accurately perform statepagation on-board is necessary to plan maneuvers
and long-term spacecraft trajectories without incurringecessary fuel cost and to perform proximity operatiomnk an
docking of the two spacecraft safely. This paper deals wighproblem of performing precision on-board navigation
and maneuver planning with limited computer processinggupwhile placing emphasis on spacecraft autonomy.
This problem actually has two aspects, the choice of forcdehand the method of numerical integration, but the
present paper will focus on the first one.

The question of which force model components will dominata given orbit regime has been an important consider-
ation for astrodynamicists since the beginning of the spaee In 1959, Brouwer] introduced the notion of mean
orbital elements and solved the problem of motion about datelspheroid using Hamiltonian mechanics and the
method of averaging for the first five zonal harmonics of theheaAs improved models of the geopotential became
available and other perturbations gained importance, \Beotheory formed the basis for a number of semianalytical
ephemeris theories which used mean elements but incoepldnagher-order gravity terms and some additional pertur-
bations. In 1996, Barke@] studied the effects of truncating different geopotentialdels to estimate an error budget
for a variety of orbit categories for the Space Defense Qera Center (SPADOC) space surveillance mission. This
study evaluated propagation error in terms of orbit deteation (OD) and final predicted position compared to actual
observations, and it suggested that the truncation of zermak had more of an impact on accuracy than the truncation
of the tesseral and sectorial terms. In 2003, Regiffecdmpared the contributions of individual forces to orhbat d
termination accuracy, including central body, higheresrgeopotential, atmospheric drag, lunar and solar thaaib
perturbations (TBP), solar radiation pressure (SRP)ddgdirth tide, and others.

A more comprehensive analysis was performed by Vallaan 2005, which examined the variation of position
accuracy over time, rather than only final position accurémya number of force model contributions. This study
found that in lower LEO (the expected orbit regime for PON$Hi2 primary orbital perturbation is, in general, the
Earth oblateness, aof,, perturbation, followed by atmospheric drag and higheleorgeopotential terms. Beyond
geopotential degree and order of abaftx 12, it becomes harder to draw general conclusions since higtaer
gravity terms, TBP, and SRP can all have similar effects mpagation accuracy, depending on the specific orbit
considered. In addition, the accuracy is very sensitiveadeling errors, especially parameters affecting atmasphe



drag. This analysis also confirmed the importance of thedrigihder zonal terms in the geopotential by examining
sensitivities for both square and non-square gravity madeications. As was noted by Barked][ larger square
gravity field sizes do not always imply a more accurate sofytdue to the fact that the neglected higher-order terms
do not always have smaller magnitudes than the includedriovgker terms (examples for additional satellites can be
found in [B]). Unfortunately, a general conclusion as to the “best¥gyamodel truncation is not possible because, as
with the smaller perturbations, the accuracy depends osgéeific orbit considered.

The effects of atmospheric drag are extremely challengimedict accurately because of difficulties in determining
atmospheric density, modeling interactions between timesphere and the satellite surface, and uncertain knowledg
of a satellite’s attitude. The first two of these issues wavestigated in detail by Vallado and Finklemaj, [who

demonstrated just how much of an impact drag modeling ckaaga have on propagation accuracy. In fact, modeling
errors in this area can have a much greater effect than matmg gimaller orbital perturbations described above, and
this will be an important consideration when selecting aéanodel for use in the PONSFD guidance and navigation
system. For spacecraft formations, where relative dynaaint not absolute dynamics are of primary importance,
drag effects become highly dependent on differences indhistic coefficients of the spacecraft in the formation.

The subject of force modeling for high-precision navigatid satellite formations has been addressed in the litexatu
mainly by numerical analysis because of the difficulty invdray general conclusions when accuracy is primarily de-
pendent on specific orbit parameters and mission charsiitsriCarpenter and Alfriendpresented some guidelines
on relative navigation accuracy required for performingimavers and demonstrated that differential semimajor axis
uncertainty is usually the most important error in formatitying, but this analysis did not account for non-two-body
perturbations. Sabol et aBJ[investigated the effects of different perturbations oogargation accuracy and formation
stability using mean elements and semianalytical teclesigwnuk and Golebiewsk8][did a similar analysis using
numerical integration, but they neglected the effects ofasipheric drag, which is of primary importance in lower
LEO. Romanelli et al.10] compared the maximum differential disturbing accelerdi due ta/>—Js, atmospheric
drag, and SRP for spacecraft flying in close formations frdgOLto geostationary Earth orbit (GEO) to determine
what magnitude of control force would be required for forimatkeeping. Hugheslfl] performed a perturbation
sensitivity analysis for the MMS mission, which is a highitatle, high-eccentricity formation flying mission. Rosco
et al. [L2] looked in-depth at the effects of the lunar perturbatiorileat mission and compared them to the effects of
Jo, but as PONSFD will fly in a very different orbit regime theuks are not directly applicable. In LEO, D’Amico
et al. [L3] investigated force model selection for the navigationteysof the PRISMA mission, which used differ-
ential carrier-phase GPS for precision relative navigatidowever, we expect our conclusions to be different since
PONSFD uses direct relative measurements.

This paper investigates the accuracy of performing lomgrttate propagation using different choices of gravitetio
force models and orbital perturbations for a range of ollituae and inclination possibilities in lower LEO. Profzag
tion accuracy is investigated both in terms of the absolthé() state and the relative (deputy relative to chieflesta
Propagation accuracy is affected by a number of orbit ancefanodel parameters which makes performing such a
study with uncertain orbit knowledge a challenging prospeowever, much intuition can be gained by breaking the
study down in terms of each of these parameters to see that effeach one individually. Different perturbing effects
are normalized and compared on an order of magnitude basisaovide range of altitudes and inclinations in LEO,
and in detail for a 425 km Sun-synchronous orbit, which isdineent baseline for PONSFD. The results of this study
will be used to select a propagation method for the on-boavitation system for the mission.

2. DYNAMIC MODEL

The motion of a satellite in Earth orbit is governed by thetoedifferential equation,

-

R= -

R+ fpert (1)
whereR is its position with respect to the center of the Earthis the magnitude of that positiop,is the geocentric
gravitational constant, ) indicates differentiation with respect to an inertial refece frame, ané,e represents any
perturbations to the two-body motion. As is common in astnagnics, in this paper forces are written as per unit
mass (accelerations). The two-body part of the motion casobeed in a straightforward manner, but we cannot, in
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Fig. 1. Local-vertical-local-horizontal reference frame

general, find analytical solutions for motion due to arbitrperturbation forces. In this analysis we will focus on
perturbations due to the asphericity of the Earth, atma$phleag, lunar and solar TBP, and SRP.

Since this paper deals with a pair of spacecraft flying in fation, we need some additional definitions. One of the
spacecraft is designated the “chief” and its motion defihes“absolute” or reference trajectory of the formation.
The second spacecraft is designated the “deputy” and weiblests motion relative to the chief as the “relative”
trajectory. The relative motion is expressed in the lo@tigal-local-horizontal (LVLH) reference frame, as de#ed

in Figure1. The location of the chief defines the origin of this frame &nds in the direction of its orbit radiugs

is in the direction of its angular momentum, ahgl completes the right-hand coordinate system. In this paper,
perturbed absolute trajectories of each spacecraft argrated separately and the relative motion is calculatedcit
time step in the instantaneous LVLH reference frame.

2.1 Non-Spherical Earth Gravity

The most important perturbation in Earth orbit is the effefcthe asphericity of the central body. This force is deter-
mined through a potential functidii. There are several ways to express the potential, but we #umgefinition p]
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where theJ;, are the zonal harmonic§y, ; are the tesseral harmonics, ; are the sectorial harmonicB, is the mean
equatorial radius of the Eartl#, are the Legendre polynomials), ; are the associated Legendre functionss the
satellite’s geocentric latitude, ands the satellite’s geocentric longitude. This form incladlee two-body part of the
potential as the first term. A detailed discussion of the toenimgravity terms can be found iB][ It is important to
note that this series is infinite and not monotonically dasirg, so it is not strictly valid to truncate this series and
expect a certain accuracy. Nevertheless, due to compughfiwocessing limitations it is common practice to do so,
but care must be taken to ensure that dominant terms araedtarhe most influential term in this series, by several
orders of magnitude, is th& zonal harmonic, which is related to the equatorial bulgéefiarth. In this paper, when
we refer to ann x n gravity field, we mean that is truncated atn andj is truncated at, wheren < m.

2.2 Atmospheric Drag

The next most important perturbation in LEO is the effecttai@spheric drag. The basic equation for dragis [

lcpA
fdrag: _5 &

pVrelVrel (3)
m

wherecp is the satellite’s drag coefficient is its exposed cross-sectional areajs its massyp is the atmospheric
density, andV ¢ is the velocity of the satellite relative to the atmosphéxs mentioned previously, although E®) (



is simple, the parameters governing the magnitude of thg fdrae are extremely challenging to predict accurately.
These issues are discussed in detail@h [For two spacecraft flying in close formation, we can asstina the
atmospheric density affecting them and their velocitidsties to the atmosphere are approximately the same. There-
fore, the most important consideration in formation flyisghe difference in their ballistic coefficiept defined as
m/cpA, which, for identical, non-symmetrical spacecraft, is mhadetermined by their relative attitude.

2.3 Third-Body Perturbations

Assuming that the mass of the satellite is small relativénéodelestial bodies, the disturbing force in Earth orbit due
to the gravitational acceleration of a third body 1g]

frpp = Gmy <d1§dt - Tl?rt> (4)
whereG is the universal gravitational constant, is the mass of the third bodg, is the position of the third body
relative to the satellite, and is the position of the third body relative to the Earth. Thegmitude of this perturbation

is proportional to the mass of the third body and inverselypprtional to the square of the distance between the
satellite and the third body, so it is typically more impattéor satellites in higher altitude orbits. In this papee w
consider the third-body effects of the Sun and the Moon.

2.4 Solar Radiation Pressure

Solar radiation pressure is expected to be the smallerrpeattan considered in this paper, since it mainly effects
high-altitude and high area-to-mass ratio satellites. fohee due to SRP iH|
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PO g, (5)
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wherep, is the solar pressure per unit area, is the satellite’s coefficient of reflectivityl, is the exposed area to
the Sun, andl; is the position of the Sun relative to the satellite. As witmaspheric drag, for a pair of identical
spacecraft flying in formation, the relative effect of thesrfurbation will depend on differences in their exposeésre

3. ORDER OF MAGNITUDE COMPARISON

In this section, we compare the effects of those force moaempeters expected to be of primary interest on an order
of magnitude basis. Results were obtained for a 10 day tirae &p both absolute and relative states over altitudes
ranging from 400 km—700 km and inclinations ranging fré®i—140°. In all cases, a small eccentricity of 0.005 was
used, since the PONSFD orbit is expected to be near-ciranarit was assumed that right ascension of ascending
node, argument of perigee, and initial mean anomaly wouldhaee a significant impact on the results, provided the
simulations were performed over a sufficiently long timeigetto average out any Earth-orientation or third-body-
geometry specific effects. All simulations were performsthg Analytical Graphics, Inc. Systems Tool Kit (STK)
with RK78 integration, and the “truth” model included@ x 70 geopotential with atmospheric drag, lunar and solar
TBP, SRP, and solid Earth tides. For atmospheric drag caatipat the Jacchia-Roberts atmospheric density model
was used with predicteH » values obtained from the March 2013 NASA Marshall SpacehElgenter Future Solar
Activity Estimates 14] for January 2015. The nominal cross-sectional area usethéospacecraft was. 1024 m?,
which corresponds to the maximum drag configuration.

Absolute and relative ephemerides were computed and ceaparthe full truth model using different degree and
order gravity models (2-bodyj,-only, and square fields up 89 x 30) for 5 different combinations of drag, TBP,
and SRP. In each of the cases with drag, two configurations we@rsidered: one with the spacecraft flying parallel
to each other (null differential drag), and one with an att# difference of approximatels° to give the deputy a
cross-sectional area 6f06 m? compared to the chief8.1024 m? (moderate differential drag). This configuration
was deemed to be a more realistic possibility than a “waaset orientation in which the satellites fly in exactly
orthogonal attitudes. In all cases, the spacecraft begar2thkm leader-follower configuration, which was perturbed
slightly with a differential semimajor axis error of 2 m andall errors in each of the remaining differential elements.



Note that the propagation in this section is performed omeexremely long time span—10 days is approximately
150 orbits at these altitudes, which is far longer than weld/ever expect to propagate on-board these spacecraft. We
do this to allow the perturbation effects to grow very largenighlight the differences in their orders of magnitude.
However, as evaluating actual position and velocity erragnitudes in such a case would be highly misleading, we
will normalize the propagation results as follows.

3.1 Normalization of Results

Most of the previous force modeling studies focused on fowsierror, but, for formation flying in particular, it is
important to consider velocity errors as well because oif thignificant impact on maneuver targeting. However,
over long time spans the perturbations considered in thgempeause significant changes in the orientation of the orbit
plane, and the (vector) velocity error tends to mirror theifp@n error because of the large differences in direction
between the propagated velocity vector and the true vgleeittor. The orientation of a satellite’s orbit is defined by
the angles (right ascension of the ascending nodd)nclination), andv (argument of perigee). Position magnitude
and speed, on the other hand, are defined the elemefstsmimajor axis)e (eccentricity), andf (true anomaly)
through the orbit and vis-viva equations. Note that ernots,ic and f have very little influence in near-circular orbits.
When differences in orientation are large, vector errorsositippn and velocity are both dominated by error$lini,
andw, and the effects of errors in the other elements are not gt herefore, we consider errors in speed, which
are primarily related to errors in semimajor axis for neiactdar orbits, instead of velocity in order to capture #es
different aspects of the propagation accuracy. Relatilecity errors are directly related to differential semioragxis
uncertainty, which, as noted by Carpenter and AlfrieAdif usually the most important error in formation flying.

In order to combine these errors into a single parameterdorparison over numerous cases, position errors are
divided by the Earth’s equatorial radidg and speed errors are divided by ./100, whereV, . = /u/R. is the
circular orbit speed at the equator, and added togethertodaormalized error,

|R7L - Rtruth| + ||VL‘ - |Vtruth||
R, Ve,e/100

whereR,; andV, are the absolute position and velocity in thiecase an® i andVuih are the position and velocity
from the truth model. This normalization was chosen to gimereximately equal magnitude influence to position and
speed errors over the entire range of results. The relasdts are also normalized, but this time LVLH speed errors
are divided byV. . in order to give them approximately the same magnitude asivelposition errors:

(6)

€abs =
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r; andv; are the relative position and (LVLH) velocity in thith case anda, andvy are the relative position and
velocity from the truth model.

()

Crel =

Finally, to obtain a single value for comparison, we takeltrgest value ot4ps Or e throughout the 10 day time
span. We call this value the maximum normalized error angl tihé basis for the comparisons shown in subsequent
sections. Note that in the following plots, “Gravity ordig@reen” refers to a square gravity field of order and degree
n x n, except that “0” implies Keplerian, two-body gravity and iinplies perturbed two-body gravity withi; only.

3.2 Third-Body Perturbations and Solar Radiation Pressure

Before examining the full range of results for differenitalies and inclinations, the effects of lunar and soladthir
body perturbations and solar radiation pressure are agdbaparately, since they are expected to be small in this orb
regime. Figure®(a)and(b) show representative results of absolute and relative gadjmn accuracy for the cases
with SRP, TBP, and drag (with moderate differential drag)all of the simulations, the error in cases with TBP and
SRP is almost indistinguishable from the geopotentiajroesults. Clearly, compared to drag and geopotential &ffec
TBP and SRP are quite small and likely do not need to be comsider our application. In general, the magnitude
of TBP effects were found to be slightly greater than SRPnsadalitional case was considered which included both
TBP and drag (shown in the same figures), but the conclusiea dot change. Therefore, in the following sections,
results will only be shown for cases with and without drag, TBP or SRP.
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Fig. 2. Typical effects of TBP and SRP compared to drag.

3.3 Full Results

Figure 3 shows the full results of the force model order of magnitudmgarison for absolute propagation over
different orbit altitudes and inclinations. In this plogsults are grouped by orbit altitude and whether or not dsag i
included in the force model. Thin lines show the resultsiidividual inclinations at each altitude and thick lineswho
the results averaged over all inclinations. Several gécerglusions can be drawn from this plot:

=

. As expected/; is the largest perturbation in all cases.

. Atmospheric drag is the second-largest perturbatiorisasodmparable td; at lower altitudes.

. Going from onlyJ; to a2 x 2 gravity field does not tend to improve the propagation aayufand in many
cases actually reduced the accuracy), due to the trunaattibigher-order zonal terms which are on the same
order of magnitude as the included second-degree terms.

. When drag is not included in the force model, there is litiprovement in accuracy for gravity models larger
than3 x 3, since the neglected atmospheric drag effects are dominant

N
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Fig. 3. Full force model order of magnitude comparison for alsolute propagation. Thick lines
show the averaged results for each altitude (in different clors), over all inclinations, thin lines
are the results for specific inclinations, and circles/sati lines and squares/dashed lines indicate
propagation without and with drag, respectively.
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Fig. 4. Full force model order of magnitude comparison for rdative propagation. Thick lines
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propagation without and with drag, respectively.

5. When drag is included in the force model, there is a genarptdvement in accuracy for gravity fields of
order/degree higher thanx 2, but the improvement is not monotonic and there is no cleesttgravity model
truncation. This agrees with the observations of Barketl. ¢2hand Vallado #].

In addition, there is a clear correlation between altitudé propagation accuracy when drag is not modeled. This
is to be expected, since the magnitude of the atmosphernicfdree is proportional to atmospheric density, which is
higher at lower altitudes. There is also a strong relatignbltween orbit inclination and propagation accuracyhwit
near-polar orbits exhibiting better accuracy than nearasarial ones. As with the influence of orbit altitude, trgs i
due to the influence of the flattening of the Earth on the appalétude of the spacecraft and the greater thickness of
the atmosphere near the equator compared to the poles, foettiah affect the magnitude of the drag force.

Figures4(a)and(b) show the full results of the force model order of magnitudeparison for relative propagation
for the null and moderate differential drag cases, respagtiAs expected, when the spacecraft have the same cross-
sectional area, differential drag has very little impaat.addition, higher-order geopotential terms have verielitt
impact, on average, in this case. In the moderate diffeakditag case, there is virtually no improvement in accuracy
with higher-order geopotential terms, or evén since differential drag effects over such a long time ke very
large. When drag is included in the model, there is a genegalawement in accuracy with higher order/degree gravity
fields, especially at lower altitudes, which shows a clearatation between geopotential and drag effects in this.cas
These results indicate that if differential drag is kept tmiaimum we could employ a relatively low-order gravity
field and not suffer much loss of propagation accuracy, fromlative motion perspective. However, if differential
drag is significant, it will be important to use a somewhahkigorder gravity field. The actual choice of gravity field
must be investigated further and tailored to the specifibflaybit and mission profile.

4. DETAILED COMPARISON FOR PONSFD ORBIT

The previous section compared order of magnitude for diffeforce modeling errors by propagating for an extremely
long time span. In this section, we examine a more realibtit gtill stressing) 1 day propagation case, a duration we
could reasonably expect to perform on-board. For this amglywe restrict our attention to a 425 km Sun-synchronous
orbit, with an inclination 0f97.04°, which is currently being used as the baseline orbit forgtesif the PONSFD
mission. At this altitude, 1 day corresponds to about 15tgrkind the same perturbed 20 km leader-follower initial
conditions are used. In this case, the chief has an attitodetd5° off of the velocity, giving it a cross-sectional area
of 0.07 m?, and the deputy has an attitude absift off of the velocity, giving it a cross-sectional arealofi6 m?.



The results of the previous section suggest that modeliag idrkey to accurately propagating the absolute state and
is also important for relative propagation if differentiag is not zero. However, this assumes that we have per-
fect knowledge of atmospheric density (including solar ¥uoth chief and deputy attitude, and the drag coefficient
of the spacecraft (and also assumes that our drag modellisti|a In particular, having perfect knowledge of the
deputy attitude will be challenging given the limitatiorfoar on-board sensors and desire not to rely on inter-gatell
communications for relaying telemetry. Therefore, in gastion we examine the effects of these assumptions by con-
sidering four perturbation model cases: (i) No drag; (iifMdrag and perfect atmosphere and attitude knowledgp; (iii
With drag and perfect attitude knowledge, but incorrectaspihere model; and (iv) With drag and perfect atmosphere
knowledge, but incorrect attitude estimatestof for the chief (.067 m? area) and 0° for the deputy (.1 m? area).

In the last case, the chief attitude knowledge is made muttbriiban the deputy attitude knowledge because that will
likely be a realistic operational case for on-board protiaga

Figures5(a) and(b) show the normalized results for the cases described aboeb$olute and relative propagation,
respectively. In the case of the 1 day time span with smaltesscsectional area, drag effects have not built up as much
as in the case of the 10 day time span, so we can now see ndgicegdsovements in absolute accuracy as gravity
degree/order is increased, even in the case where drag motgled. As before, however, there is no significant
increase in relative accuracy with higher-order gravityewhirag is not modeled. In fact, even when drag is modeled
(correctly or incorrectly), there is no great differenceaturacy for different geopotential orders, except thadets

of order and degree frol x 3 to 9 x 9 perform worse than others when drag is modeled correctlye Nwwever,
that these differences are very small when compared to faetefof errors in the drag model and would be “in the
noise” for our application.

When drag is modeled using the different atmosphere modale is no longer as great an improvement in either
absolute or relative accuracy, even though the attitudaasvk perfectly. For the incorrect attitude case, the alisolu

accuracy is almost unchanged, except for very high-ordaritgrmodels, which is to be expected since the chief’s
attitude knowledge error is very small. The relative accyra significantly diminished when the deputy’s attitude
knowledge error is large, and in this case is worse than g draot modeled at all.

These results clearly demonstrate that if drag is to be dezlun the force model it is essential to use an accurate
atmospheric density model and ensure that accurate atiitformation for both spacecraft will be available, as prev
ously discussed by Vallado and Finklem#&h [For formation flying with identical spacecraft, it is aladvantageous

to adopt a nominal formation configuration in which the spaat fly in parallel to minimize the effects of differential
drag on both navigation and formation stability. For PONSHiis is implied in the mission Concept of Operations,
since during proximity operations the spacecraft are te &axrh other to orient their relative navigation sensorghvhi
will give them approximately the same cross-sectional.area
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4.1 Square vs. Non-Square Gravity Field

Since both Barkerd] and Vallado #] suggested that truncation of the zonal terms in the geopiathas more of

an impact on propagation accuracy than truncation of theetasand sectorial terms, we now investigate the effects
of using a non-square geopotential on the results of the 14y km Sun-synchronous simulation (with perfect
drag modeling). Figure8(a) and (b) show the absolute and relative propagation results, réspbg for different
combinations of non-square gravity fields. In each set afltesthe tesseral/sectorial degree cannot be greater than
the zonal harmonic order, hence the non-square gravitjtseunot go all the way up to degree 30. For example, the
“8th Order Zonal” result only goes up to &nx 8 gravity field, where it intersects with the “Square Potdhtiasult.

From the absolute propagation results, it is clear thatriimecaition of the zonal terms is indeed more important than
the truncation of the tesseral and sectorial terms, pdatigufor tesseral/sectorial degree less than 9 and grézaer

14. However, it appears that the 15th and 16th degree té/sgetarial terms are also quite important, for very high
accuracy applications. There is more variation in the ingdgiropagation results, since the magnitude of the ersors i
so much smaller, but the same general conclusion holdsttbatdnal terms are of primary importance, particularly
the 12th order term in this case. (More specifically, one eftdrms between 9th and 12th order, since only the 12th
order term is shown here.)

_ﬁbsolute Propagation Accuracy, Non—-Square Potential _4Re|ative Propagation Accuracy, Non—-Square Potential
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Fig. 6. Comparison of propagation accuracy for non-square gopotential fields.

5. CONCLUSION

In the 400 km—700 km LEO regime with inclinations froft°—140°, the most important forces affecting propagation
accuracy were found to be thig Earth oblateness and atmospheric drag, followed by higtter @eopotential terms,
from an overall order of magnitude perspective. Forces werapared over a very long time span in terms of a
combination of position and speed (not velocity) errorstioth absolute and relative results. The impact of drag
on relative accuracy is insignificant when the spacecrafe lithe same cross-sectional area and differential drag is
negligible. In general, when differential drag is smalle ttelative propagation accuracy is very good and there is
little improvement with higher-order gravity models. Fdysalute propagation, when drag is not included in the
force model, there is little increase in accuracy for gsawitodels larger thas x 3. For both absolute and relative
propagation, when drag is included, there is a general ingonent in accuracy for gravity fields of order/degree higher
than2 x 2, but the improvement is not monotonic and there is no cleasttgravity model truncation. Altitude and
inclination influence the results because of their impactiay: they determine how dense of an atmosphere the
spacecraft will travel through, which determines the magta of the drag force. Drag effects are greater at lower
altitudes and near-equatorial inclinations than at higti#tudes and near-polar inclinations. Lunar and soladthi
body perturbations and solar radiation pressure did nat haignificant effect on propagation accuracy in this regime
compared to Earth gravity and drag.



A more detailed, 1 day propagation was analyzed for a 425 kmsgachronous orbit (the current baseline for
PONSFD) with mild differential drag and errors in both atilesric density modeling and attitude knowledge. These
errors have a significant impact on absolute and relativpagation and demonstrate that if drag modeling is to be
beneficial at all it is essential to characterize these parars accurately. It was also shown that truncation of tinakzo
terms in the geopotential has more of an impact on propagatiouracy than truncation of the tesseral and sectorial
terms for both the absolute and relative results. Howeter16th and 16th degree tesseral/sectorial terms are quite
important for very high accuracy applications in this partar orbit. Therefore, in evaluating a trade-off between
gravity model complexity and computational processinguiemments, it would be wise to increase the order of the
zonal terms and retain lower degree tesseral/sectoriabteather than restricting attention to a square geopalenti
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