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ABSTRACT

The state propagation accuracy resulting from different choices of gravitational force models and orbital perturbations
is investigated for a pair of CubeSats flying in formation in low Earth orbit (LEO). Accurate on-board state propagation
is necessary to autonomously plan maneuvers and perform proximity operations and docking safely. The primary
perturbations affecting both absolute and relative orbital dynamics in LEO are expected to beJ2 and drag. However,
the effect of drag on the relative dynamics is highly dependent on differences in the ballistic coefficients of the two
spacecraft, differences which can be large since the CubeSats are non-symmetric in terms of cross-sectional area for
different attitudes. Propagation accuracy is investigated both in terms of the absolute (chief) state and the relative
(deputy relative to chief) state. Different perturbing effects are normalized and compared on an order of magnitude
basis over a wide range of altitudes and inclinations in LEO,and in detail for a 425 km Sun-synchronous orbit.

1. INTRODUCTION

The Proximity Operations Nano-Satellite Flight Demonstration (PONSFD) program will demonstrate rendezvous
proximity operations (RPO), formation flying, and docking with a pair of 3U CubeSats. The program is sponsored by
NASA Ames via the Office of the Chief Technologist (OCT) in support of its Small Spacecraft Technology Program
(SSTP). The goal of the mission is to demonstrate complex RPOand docking operations with a pair of low-cost 3U
CubeSat satellites using passive navigation sensors, and it is expected to fly in low Earth orbit (LEO) with an altitude
of 400 km–700 km. The ability to accurately perform state propagation on-board is necessary to plan maneuvers
and long-term spacecraft trajectories without incurring unnecessary fuel cost and to perform proximity operations and
docking of the two spacecraft safely. This paper deals with the problem of performing precision on-board navigation
and maneuver planning with limited computer processing power, while placing emphasis on spacecraft autonomy.
This problem actually has two aspects, the choice of force model and the method of numerical integration, but the
present paper will focus on the first one.

The question of which force model components will dominate in a given orbit regime has been an important consider-
ation for astrodynamicists since the beginning of the spaceage. In 1959, Brouwer [1] introduced the notion of mean
orbital elements and solved the problem of motion about an oblate spheroid using Hamiltonian mechanics and the
method of averaging for the first five zonal harmonics of the Earth. As improved models of the geopotential became
available and other perturbations gained importance, Brouwer theory formed the basis for a number of semianalytical
ephemeris theories which used mean elements but incorporated higher-order gravity terms and some additional pertur-
bations. In 1996, Barker [2] studied the effects of truncating different geopotentialmodels to estimate an error budget
for a variety of orbit categories for the Space Defense Operations Center (SPADOC) space surveillance mission. This
study evaluated propagation error in terms of orbit determination (OD) and final predicted position compared to actual
observations, and it suggested that the truncation of zonalterms had more of an impact on accuracy than the truncation
of the tesseral and sectorial terms. In 2003, Register [3] compared the contributions of individual forces to orbit de-
termination accuracy, including central body, higher-order geopotential, atmospheric drag, lunar and solar third-body
perturbations (TBP), solar radiation pressure (SRP), solid Earth tide, and others.

A more comprehensive analysis was performed by Vallado [4] in 2005, which examined the variation of position
accuracy over time, rather than only final position accuracy, for a number of force model contributions. This study
found that in lower LEO (the expected orbit regime for PONSFD) the primary orbital perturbation is, in general, the
Earth oblateness, orJ2, perturbation, followed by atmospheric drag and higher-order geopotential terms. Beyond
geopotential degree and order of about12 × 12, it becomes harder to draw general conclusions since higher-order
gravity terms, TBP, and SRP can all have similar effects on propagation accuracy, depending on the specific orbit
considered. In addition, the accuracy is very sensitive to modeling errors, especially parameters affecting atmospheric



drag. This analysis also confirmed the importance of the higher-order zonal terms in the geopotential by examining
sensitivities for both square and non-square gravity modeltruncations. As was noted by Barker [2], larger square
gravity field sizes do not always imply a more accurate solution, due to the fact that the neglected higher-order terms
do not always have smaller magnitudes than the included lower-order terms (examples for additional satellites can be
found in [5]). Unfortunately, a general conclusion as to the “best” gravity model truncation is not possible because, as
with the smaller perturbations, the accuracy depends on thespecific orbit considered.

The effects of atmospheric drag are extremely challenging to predict accurately because of difficulties in determining
atmospheric density, modeling interactions between the atmosphere and the satellite surface, and uncertain knowledge
of a satellite’s attitude. The first two of these issues were investigated in detail by Vallado and Finkleman [6], who
demonstrated just how much of an impact drag modeling choices can have on propagation accuracy. In fact, modeling
errors in this area can have a much greater effect than many ofthe smaller orbital perturbations described above, and
this will be an important consideration when selecting a force model for use in the PONSFD guidance and navigation
system. For spacecraft formations, where relative dynamics and not absolute dynamics are of primary importance,
drag effects become highly dependent on differences in the ballistic coefficients of the spacecraft in the formation.

The subject of force modeling for high-precision navigation of satellite formations has been addressed in the literature
mainly by numerical analysis because of the difficulty in drawing general conclusions when accuracy is primarily de-
pendent on specific orbit parameters and mission characteristics. Carpenter and Alfriend [7] presented some guidelines
on relative navigation accuracy required for performing maneuvers and demonstrated that differential semimajor axis
uncertainty is usually the most important error in formation flying, but this analysis did not account for non-two-body
perturbations. Sabol et al. [8] investigated the effects of different perturbations on propagation accuracy and formation
stability using mean elements and semianalytical techniques. Wnuk and Golebiewska [9] did a similar analysis using
numerical integration, but they neglected the effects of atmospheric drag, which is of primary importance in lower
LEO. Romanelli et al. [10] compared the maximum differential disturbing accelerations due toJ2–J6, atmospheric
drag, and SRP for spacecraft flying in close formations from LEO to geostationary Earth orbit (GEO) to determine
what magnitude of control force would be required for formation-keeping. Hughes [11] performed a perturbation
sensitivity analysis for the MMS mission, which is a high-altitude, high-eccentricity formation flying mission. Roscoe
et al. [12] looked in-depth at the effects of the lunar perturbation onthat mission and compared them to the effects of
J2, but as PONSFD will fly in a very different orbit regime the results are not directly applicable. In LEO, D’Amico
et al. [13] investigated force model selection for the navigation system of the PRISMA mission, which used differ-
ential carrier-phase GPS for precision relative navigation. However, we expect our conclusions to be different since
PONSFD uses direct relative measurements.

This paper investigates the accuracy of performing long-term state propagation using different choices of gravitational
force models and orbital perturbations for a range of orbit altitude and inclination possibilities in lower LEO. Propaga-
tion accuracy is investigated both in terms of the absolute (chief) state and the relative (deputy relative to chief) state.
Propagation accuracy is affected by a number of orbit and force model parameters which makes performing such a
study with uncertain orbit knowledge a challenging prospect. However, much intuition can be gained by breaking the
study down in terms of each of these parameters to see the effect of each one individually. Different perturbing effects
are normalized and compared on an order of magnitude basis over a wide range of altitudes and inclinations in LEO,
and in detail for a 425 km Sun-synchronous orbit, which is thecurrent baseline for PONSFD. The results of this study
will be used to select a propagation method for the on-board navigation system for the mission.

2. DYNAMIC MODEL

The motion of a satellite in Earth orbit is governed by the vector differential equation,

R̈ = −
µ

R3
R+ fpert (1)

whereR is its position with respect to the center of the Earth,R is the magnitude of that position,µ is the geocentric
gravitational constant,̇( ) indicates differentiation with respect to an inertial reference frame, andfpert represents any
perturbations to the two-body motion. As is common in astrodynamics, in this paper forces are written as per unit
mass (accelerations). The two-body part of the motion can besolved in a straightforward manner, but we cannot, in



ĥ1
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î2

î1
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Fig. 1. Local-vertical–local-horizontal reference frame.

general, find analytical solutions for motion due to arbitrary perturbation forces. In this analysis we will focus on
perturbations due to the asphericity of the Earth, atmospheric drag, lunar and solar TBP, and SRP.

Since this paper deals with a pair of spacecraft flying in formation, we need some additional definitions. One of the
spacecraft is designated the “chief” and its motion defines the “absolute” or reference trajectory of the formation.
The second spacecraft is designated the “deputy” and we describe its motion relative to the chief as the “relative”
trajectory. The relative motion is expressed in the local-vertical–local-horizontal (LVLH) reference frame, as depicted
in Figure1. The location of the chief defines the origin of this frame andĥ1 is in the direction of its orbit radius,̂h3

is in the direction of its angular momentum, andĥ2 completes the right-hand coordinate system. In this paper,the
perturbed absolute trajectories of each spacecraft are integrated separately and the relative motion is calculated ateach
time step in the instantaneous LVLH reference frame.

2.1 Non-Spherical Earth Gravity

The most important perturbation in Earth orbit is the effectof the asphericity of the central body. This force is deter-
mined through a potential functionU . There are several ways to express the potential, but we adopt the definition [5]

U = −
µ

R
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where theJk are the zonal harmonics,Ck,j are the tesseral harmonics,Sk,j are the sectorial harmonics,Re is the mean
equatorial radius of the Earth,Pk are the Legendre polynomials,Pk,j are the associated Legendre functions,φ is the
satellite’s geocentric latitude, andλ is the satellite’s geocentric longitude. This form includes the two-body part of the
potential as the first term. A detailed discussion of the harmonic gravity terms can be found in [5]. It is important to
note that this series is infinite and not monotonically decreasing, so it is not strictly valid to truncate this series and
expect a certain accuracy. Nevertheless, due to computational processing limitations it is common practice to do so,
but care must be taken to ensure that dominant terms are retained. The most influential term in this series, by several
orders of magnitude, is theJ2 zonal harmonic, which is related to the equatorial bulge of the Earth. In this paper, when
we refer to anm× n gravity field, we mean thatk is truncated atm andj is truncated atn, wheren ≤ m.

2.2 Atmospheric Drag

The next most important perturbation in LEO is the effect of atmospheric drag. The basic equation for drag is [5]

fdrag= −
1

2

cDA

m
ρVrelVrel (3)

wherecD is the satellite’s drag coefficient,A is its exposed cross-sectional area,m is its mass,ρ is the atmospheric
density, andVrel is the velocity of the satellite relative to the atmosphere.As mentioned previously, although Eq. (3)



is simple, the parameters governing the magnitude of the drag force are extremely challenging to predict accurately.
These issues are discussed in detail in [6]. For two spacecraft flying in close formation, we can assumethat the
atmospheric density affecting them and their velocities relative to the atmosphere are approximately the same. There-
fore, the most important consideration in formation flying is the difference in their ballistic coefficientβ, defined as
m/cDA, which, for identical, non-symmetrical spacecraft, is mainly determined by their relative attitude.

2.3 Third-Body Perturbations

Assuming that the mass of the satellite is small relative to the celestial bodies, the disturbing force in Earth orbit due
to the gravitational acceleration of a third body is [12]

fTBP = Gmt

(

1

d3t
dt −

1

r3t
rt

)

(4)

whereG is the universal gravitational constant,mt is the mass of the third body,dt is the position of the third body
relative to the satellite, andrt is the position of the third body relative to the Earth. The magnitude of this perturbation
is proportional to the mass of the third body and inversely proportional to the square of the distance between the
satellite and the third body, so it is typically more important for satellites in higher altitude orbits. In this paper, we
consider the third-body effects of the Sun and the Moon.

2.4 Solar Radiation Pressure

Solar radiation pressure is expected to be the smaller perturbation considered in this paper, since it mainly effects
high-altitude and high area-to-mass ratio satellites. Theforce due to SRP is [5]

fSRP = −
pscRAs

m

1

ds
ds (5)

whereps is the solar pressure per unit area,cR is the satellite’s coefficient of reflectivity,As is the exposed area to
the Sun, andds is the position of the Sun relative to the satellite. As with atmospheric drag, for a pair of identical
spacecraft flying in formation, the relative effect of this perturbation will depend on differences in their exposed areas.

3. ORDER OF MAGNITUDE COMPARISON

In this section, we compare the effects of those force model parameters expected to be of primary interest on an order
of magnitude basis. Results were obtained for a 10 day time span for both absolute and relative states over altitudes
ranging from 400 km–700 km and inclinations ranging from40◦–140◦. In all cases, a small eccentricity of 0.005 was
used, since the PONSFD orbit is expected to be near-circular, and it was assumed that right ascension of ascending
node, argument of perigee, and initial mean anomaly would not have a significant impact on the results, provided the
simulations were performed over a sufficiently long time period to average out any Earth-orientation or third-body-
geometry specific effects. All simulations were performed using Analytical Graphics, Inc. Systems Tool Kit (STK)
with RK78 integration, and the “truth” model included a70× 70 geopotential with atmospheric drag, lunar and solar
TBP, SRP, and solid Earth tides. For atmospheric drag computation, the Jacchia-Roberts atmospheric density model
was used with predictedF10.7 values obtained from the March 2013 NASA Marshall Space Flight Center Future Solar
Activity Estimates [14] for January 2015. The nominal cross-sectional area used for the spacecraft was0.1024 m2,
which corresponds to the maximum drag configuration.

Absolute and relative ephemerides were computed and compared to the full truth model using different degree and
order gravity models (2-body,J2-only, and square fields up to30 × 30) for 5 different combinations of drag, TBP,
and SRP. In each of the cases with drag, two configurations were considered: one with the spacecraft flying parallel
to each other (null differential drag), and one with an attitude difference of approximately45◦ to give the deputy a
cross-sectional area of0.06 m2 compared to the chief’s0.1024 m2 (moderate differential drag). This configuration
was deemed to be a more realistic possibility than a “worst-case” orientation in which the satellites fly in exactly
orthogonal attitudes. In all cases, the spacecraft began ina 20 km leader-follower configuration, which was perturbed
slightly with a differential semimajor axis error of 2 m and small errors in each of the remaining differential elements.



Note that the propagation in this section is performed over an extremely long time span—10 days is approximately
150 orbits at these altitudes, which is far longer than we would ever expect to propagate on-board these spacecraft. We
do this to allow the perturbation effects to grow very large to highlight the differences in their orders of magnitude.
However, as evaluating actual position and velocity error magnitudes in such a case would be highly misleading, we
will normalize the propagation results as follows.

3.1 Normalization of Results

Most of the previous force modeling studies focused on position error, but, for formation flying in particular, it is
important to consider velocity errors as well because of their significant impact on maneuver targeting. However,
over long time spans the perturbations considered in this paper cause significant changes in the orientation of the orbit
plane, and the (vector) velocity error tends to mirror the position error because of the large differences in direction
between the propagated velocity vector and the true velocity vector. The orientation of a satellite’s orbit is defined by
the anglesΩ (right ascension of the ascending node),i (inclination), andω (argument of perigee). Position magnitude
and speed, on the other hand, are defined the elementsa (semimajor axis),e (eccentricity), andf (true anomaly)
through the orbit and vis-viva equations. Note that errors inω, e andf have very little influence in near-circular orbits.
When differences in orientation are large, vector errors in position and velocity are both dominated by errors inΩ, i,
andω, and the effects of errors in the other elements are not captured. Therefore, we consider errors in speed, which
are primarily related to errors in semimajor axis for near-circular orbits, instead of velocity in order to capture these
different aspects of the propagation accuracy. Relative velocity errors are directly related to differential semimajor axis
uncertainty, which, as noted by Carpenter and Alfriend [7], is usually the most important error in formation flying.

In order to combine these errors into a single parameter for comparison over numerous cases, position errors are
divided by the Earth’s equatorial radiusRe and speed errors are divided byVe,c/100, whereVe,c =

√

µ/Re is the
circular orbit speed at the equator, and added together to form a normalized error,

eabs=
|Ri −Rtruth|

Re

+

∣

∣|Vi| − |Vtruth|
∣

∣

Ve,c/100
(6)

whereRi andVi are the absolute position and velocity in theith case andRtruth andVtruth are the position and velocity
from the truth model. This normalization was chosen to give approximately equal magnitude influence to position and
speed errors over the entire range of results. The relative results are also normalized, but this time LVLH speed errors
are divided byVe,c in order to give them approximately the same magnitude as relative position errors:

erel =
|ri − rtruth|

Re

+

∣

∣|vi| − |vtruth|
∣

∣

Ve,c

(7)

ri andvi are the relative position and (LVLH) velocity in theith case andrtruth andvtruth are the relative position and
velocity from the truth model.

Finally, to obtain a single value for comparison, we take thelargest value ofeabs or erel throughout the 10 day time
span. We call this value the maximum normalized error and it is the basis for the comparisons shown in subsequent
sections. Note that in the following plots, “Gravity order/degreen” refers to a square gravity field of order and degree
n× n, except that “0” implies Keplerian, two-body gravity and “1” implies perturbed two-body gravity withJ2 only.

3.2 Third-Body Perturbations and Solar Radiation Pressure

Before examining the full range of results for different altitudes and inclinations, the effects of lunar and solar third-
body perturbations and solar radiation pressure are analyzed separately, since they are expected to be small in this orbit
regime. Figures2(a) and(b) show representative results of absolute and relative propagation accuracy for the cases
with SRP, TBP, and drag (with moderate differential drag). In all of the simulations, the error in cases with TBP and
SRP is almost indistinguishable from the geopotential-only results. Clearly, compared to drag and geopotential effects,
TBP and SRP are quite small and likely do not need to be considered for our application. In general, the magnitude
of TBP effects were found to be slightly greater than SRP, so an additional case was considered which included both
TBP and drag (shown in the same figures), but the conclusion does not change. Therefore, in the following sections,
results will only be shown for cases with and without drag, not TBP or SRP.
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Fig. 2. Typical effects of TBP and SRP compared to drag.

3.3 Full Results

Figure 3 shows the full results of the force model order of magnitude comparison for absolute propagation over
different orbit altitudes and inclinations. In this plot, results are grouped by orbit altitude and whether or not drag is
included in the force model. Thin lines show the results for individual inclinations at each altitude and thick lines show
the results averaged over all inclinations. Several general conclusions can be drawn from this plot:

1. As expected,J2 is the largest perturbation in all cases.
2. Atmospheric drag is the second-largest perturbation andis comparable toJ2 at lower altitudes.
3. Going from onlyJ2 to a2 × 2 gravity field does not tend to improve the propagation accuracy (and in many

cases actually reduced the accuracy), due to the truncationof higher-order zonal terms which are on the same
order of magnitude as the included second-degree terms.

4. When drag is not included in the force model, there is littleimprovement in accuracy for gravity models larger
than3× 3, since the neglected atmospheric drag effects are dominant.
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Fig. 3. Full force model order of magnitude comparison for absolute propagation. Thick lines
show the averaged results for each altitude (in different colors), over all inclinations, thin lines
are the results for specific inclinations, and circles/solid lines and squares/dashed lines indicate
propagation without and with drag, respectively.
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Fig. 4. Full force model order of magnitude comparison for relative propagation. Thick lines
show the averaged results for each altitude (in different colors), over all inclinations, thin lines
are the results for specific inclinations, and circles/solid lines and squares/dashed lines indicate
propagation without and with drag, respectively.

5. When drag is included in the force model, there is a general improvement in accuracy for gravity fields of
order/degree higher than2× 2, but the improvement is not monotonic and there is no clear “best” gravity model
truncation. This agrees with the observations of Barker et al. [2] and Vallado [4].

In addition, there is a clear correlation between altitude and propagation accuracy when drag is not modeled. This
is to be expected, since the magnitude of the atmospheric drag force is proportional to atmospheric density, which is
higher at lower altitudes. There is also a strong relationship between orbit inclination and propagation accuracy, with
near-polar orbits exhibiting better accuracy than near-equatorial ones. As with the influence of orbit altitude, this is
due to the influence of the flattening of the Earth on the apparent altitude of the spacecraft and the greater thickness of
the atmosphere near the equator compared to the poles, both of which affect the magnitude of the drag force.

Figures4(a)and(b) show the full results of the force model order of magnitude comparison for relative propagation
for the null and moderate differential drag cases, respectively. As expected, when the spacecraft have the same cross-
sectional area, differential drag has very little impact. In addition, higher-order geopotential terms have very little
impact, on average, in this case. In the moderate differential drag case, there is virtually no improvement in accuracy
with higher-order geopotential terms, or evenJ2, since differential drag effects over such a long time period are very
large. When drag is included in the model, there is a general improvement in accuracy with higher order/degree gravity
fields, especially at lower altitudes, which shows a clear correlation between geopotential and drag effects in this case.
These results indicate that if differential drag is kept to aminimum we could employ a relatively low-order gravity
field and not suffer much loss of propagation accuracy, from arelative motion perspective. However, if differential
drag is significant, it will be important to use a somewhat higher-order gravity field. The actual choice of gravity field
must be investigated further and tailored to the specific flight orbit and mission profile.

4. DETAILED COMPARISON FOR PONSFD ORBIT

The previous section compared order of magnitude for different force modeling errors by propagating for an extremely
long time span. In this section, we examine a more realistic (but still stressing) 1 day propagation case, a duration we
could reasonably expect to perform on-board. For this analysis, we restrict our attention to a 425 km Sun-synchronous
orbit, with an inclination of97.04◦, which is currently being used as the baseline orbit for design of the PONSFD
mission. At this altitude, 1 day corresponds to about 15 orbits, and the same perturbed 20 km leader-follower initial
conditions are used. In this case, the chief has an attitude about45◦ off of the velocity, giving it a cross-sectional area
of 0.07 m2, and the deputy has an attitude about55◦ off of the velocity, giving it a cross-sectional area of0.06 m2.



The results of the previous section suggest that modeling drag is key to accurately propagating the absolute state and
is also important for relative propagation if differentialdrag is not zero. However, this assumes that we have per-
fect knowledge of atmospheric density (including solar flux), both chief and deputy attitude, and the drag coefficient
of the spacecraft (and also assumes that our drag model is realistic). In particular, having perfect knowledge of the
deputy attitude will be challenging given the limitations of our on-board sensors and desire not to rely on inter-satellite
communications for relaying telemetry. Therefore, in thissection we examine the effects of these assumptions by con-
sidering four perturbation model cases: (i) No drag; (ii) With drag and perfect atmosphere and attitude knowledge; (iii)
With drag and perfect attitude knowledge, but incorrect atmosphere model; and (iv) With drag and perfect atmosphere
knowledge, but incorrect attitude estimates of47◦ for the chief (0.067 m2 area) and10◦ for the deputy (0.1 m2 area).
In the last case, the chief attitude knowledge is made much better than the deputy attitude knowledge because that will
likely be a realistic operational case for on-board propagation.

Figures5(a)and(b) show the normalized results for the cases described above for absolute and relative propagation,
respectively. In the case of the 1 day time span with smaller cross-sectional area, drag effects have not built up as much
as in the case of the 10 day time span, so we can now see noticeable improvements in absolute accuracy as gravity
degree/order is increased, even in the case where drag is notmodeled. As before, however, there is no significant
increase in relative accuracy with higher-order gravity when drag is not modeled. In fact, even when drag is modeled
(correctly or incorrectly), there is no great difference inaccuracy for different geopotential orders, except that models
of order and degree from3 × 3 to 9 × 9 perform worse than others when drag is modeled correctly. Note, however,
that these differences are very small when compared to the effects of errors in the drag model and would be “in the
noise” for our application.

When drag is modeled using the different atmosphere model, there is no longer as great an improvement in either
absolute or relative accuracy, even though the attitude is known perfectly. For the incorrect attitude case, the absolute
accuracy is almost unchanged, except for very high-order gravity models, which is to be expected since the chief’s
attitude knowledge error is very small. The relative accuracy is significantly diminished when the deputy’s attitude
knowledge error is large, and in this case is worse than if drag is not modeled at all.

These results clearly demonstrate that if drag is to be included in the force model it is essential to use an accurate
atmospheric density model and ensure that accurate attitude information for both spacecraft will be available, as previ-
ously discussed by Vallado and Finkleman [6]. For formation flying with identical spacecraft, it is alsoadvantageous
to adopt a nominal formation configuration in which the spacecraft fly in parallel to minimize the effects of differential
drag on both navigation and formation stability. For PONSFD, this is implied in the mission Concept of Operations,
since during proximity operations the spacecraft are to face each other to orient their relative navigation sensors which
will give them approximately the same cross-sectional area.
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Fig. 5. Comparison of accuracy for realistic on-board propagation case.



4.1 Square vs. Non-Square Gravity Field

Since both Barker [2] and Vallado [4] suggested that truncation of the zonal terms in the geopotential has more of
an impact on propagation accuracy than truncation of the tesseral and sectorial terms, we now investigate the effects
of using a non-square geopotential on the results of the 1 day, 425 km Sun-synchronous simulation (with perfect
drag modeling). Figures6(a) and(b) show the absolute and relative propagation results, respectively, for different
combinations of non-square gravity fields. In each set of results, the tesseral/sectorial degree cannot be greater than
the zonal harmonic order, hence the non-square gravity results do not go all the way up to degree 30. For example, the
“8th Order Zonal” result only goes up to an8× 8 gravity field, where it intersects with the “Square Potential” result.

From the absolute propagation results, it is clear that the truncation of the zonal terms is indeed more important than
the truncation of the tesseral and sectorial terms, particularly for tesseral/sectorial degree less than 9 and greaterthan
14. However, it appears that the 15th and 16th degree tesseral/sectorial terms are also quite important, for very high
accuracy applications. There is more variation in the relative propagation results, since the magnitude of the errors is
so much smaller, but the same general conclusion holds that the zonal terms are of primary importance, particularly
the 12th order term in this case. (More specifically, one of the terms between 9th and 12th order, since only the 12th
order term is shown here.)
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(b) Relative propagation.

Fig. 6. Comparison of propagation accuracy for non-square geopotential fields.

5. CONCLUSION

In the 400 km–700 km LEO regime with inclinations from40◦–140◦, the most important forces affecting propagation
accuracy were found to be theJ2 Earth oblateness and atmospheric drag, followed by higher order geopotential terms,
from an overall order of magnitude perspective. Forces werecompared over a very long time span in terms of a
combination of position and speed (not velocity) errors forboth absolute and relative results. The impact of drag
on relative accuracy is insignificant when the spacecraft have the same cross-sectional area and differential drag is
negligible. In general, when differential drag is small, the relative propagation accuracy is very good and there is
little improvement with higher-order gravity models. For absolute propagation, when drag is not included in the
force model, there is little increase in accuracy for gravity models larger than3 × 3. For both absolute and relative
propagation, when drag is included, there is a general improvement in accuracy for gravity fields of order/degree higher
than2 × 2, but the improvement is not monotonic and there is no clear “best” gravity model truncation. Altitude and
inclination influence the results because of their impact ondrag: they determine how dense of an atmosphere the
spacecraft will travel through, which determines the magnitude of the drag force. Drag effects are greater at lower
altitudes and near-equatorial inclinations than at higheraltitudes and near-polar inclinations. Lunar and solar third-
body perturbations and solar radiation pressure did not have a significant effect on propagation accuracy in this regime,
compared to Earth gravity and drag.



A more detailed, 1 day propagation was analyzed for a 425 km Sun-synchronous orbit (the current baseline for
PONSFD) with mild differential drag and errors in both atmospheric density modeling and attitude knowledge. These
errors have a significant impact on absolute and relative propagation and demonstrate that if drag modeling is to be
beneficial at all it is essential to characterize these parameters accurately. It was also shown that truncation of the zonal
terms in the geopotential has more of an impact on propagation accuracy than truncation of the tesseral and sectorial
terms for both the absolute and relative results. However, the 15th and 16th degree tesseral/sectorial terms are quite
important for very high accuracy applications in this particular orbit. Therefore, in evaluating a trade-off between
gravity model complexity and computational processing requirements, it would be wise to increase the order of the
zonal terms and retain lower degree tesseral/sectorial terms rather than restricting attention to a square geopotential.
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