






calculate the cost function in Eq. 2. Our candidate optimization algorithms are then employed to iterate on the 
opacity and brightness variables, as well as the PSF and satellite pose variables, to bring the data model and the data 
into agreement. In this way, we use all the data to derive a single 3D object estimate in a self-consistent manner. 

An illustration of 3D estimation using a stereoscopic code is shown in Fig. 2. Here, two uncompensated five-frame 
image sequences of the Hubble Space Telescope (HST) recorded by the AEOS 3.6 m telescope have been restored 
using DORA. The data frames present HST at pose angles separated by about 7¡. For the parts of the object that can 
be seen in both frames this is sufficient to establish a 3D model comprising brightness and normal vectors at each 
voxel. The lower panels of Fig. 2 show a sequence of images of HST synthesized from the 3D model at 1¡ 
increments.  

This result was obtained using a serial processing sequence of object restoration followed by standard stereoscopic 
3D estimation. In the DORA-3D implementation, these steps will be carried out jointly, using all the available data 
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Fig. 2. (Top) Raw data frames of HST from the AEOS telescope. (Middle) Restored objects. (Bottom) 
Progression of views derived from a 3D model constructed from the restored images. 
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frames rather than just two. The model in Fig. 2 is limited because not all parts of HST are observable in the two 
data frames; synthesized images would become increasingly inaccurate as the point of view departed from the range 
of pose angles spanned by the data. This will generally be true as well of more realistic data sets with many 
thousands of frames. However, a partial model developed with one data set may serve to initialize the restoration of 
another, and in turn be refined and expanded to cover additional parts of the satellite. 

Because of the limited data, the voxels of the 3D model computed from HST had the same spatial extent as the 
pixels in the images. Joint 3D estimation however will need to be computed on a denser grid to support higher 
resolution enabled by subsampling of object structure by the movement of pixel boundaries across many frames. 

4. KEY CHALLENGES 

The approach presents a major technical challenge overall, in the first instance because we are looking to 
characterize objects that are essentially invisible in the raw data. There are also several hurdles to be overcome 
because of the sheer number of variables that must be estimated: we will require on the order of 60 s of data 
recorded at roughly 1000 frames per second. Each data frame may be expected to be ~256×256 pixels, and a PSF of 
this size must be estimated for each frame. The object will initially be estimated in a 256×256×256 cube. By 
comparison, the remaining variables (pose estimation) are negligibly few, but overall, this leads to roughly 1010 
variables. 

An estimation problem on this scale requires a very efficient implementation of the solver, and quite possibly novel 
methods to scan and/or constrain the search space to identify the region containing the global minimum of the 
objective function. An additional challenge is posed by the discontinuous derivatives of Eq. 2 that will arise because 
of self-shadowing by re-entrant components of the satellite. This may require a partial computation of the Hessian 
matrix to identify areas of the data where this is happening, and careful treatment of those regions by the solver. 

5. VALUE TO SSA 

By adopting the approach proposed in this paper, SSA telescopes will be able to collect data continuously during the 
day, which for LEO objects is now possible only during ~1.5 hour periods near dawn and dusk. While pointing 
directly at the sun will still need to be avoided, a roughly 5× improvement in overall data collection availability for 
such objects will be realized. In addition, SSA observations will be enabled for an important class of sun-
synchronous orbits which only appear over a given site during the day and are presently very hard to image at all. 
Furthermore, spatio-spectral characterization will be possible for satellites that are presently well below the 
brightness limit even for detection during the day. Independent of the telescope and waveband, characterization will 
be achieved on satellites 3-4 stellar magnitudes fainter for a typical LEO object than is currently possible. 

The utility of our proposed approach, however, goes well beyond making high-resolution snapshots for evaluation 
by human analysts. The 3D model itself, derived initially from a single pass over a single sensor, represents our state 
of knowledge of that particular satellite. The model can then serve as the starting point in the restoration of data 
from successive passes, even if the viewing geometry is quite different, and on every pass, the model can be refined. 
In fact, it will be important to build the model on a voxel grid rather finer than the pixel scale of the imaging camera 
because dithering of small features across pixel boundaries in multiple data sets will allow interpolation on spatial 
scales smaller than the Nyquist limit of the camera. Furthermore, once the model has reached a reasonable degree of 
fidelity, change detection on further passes becomes feasible, for instance to assess satellite health or activity: the 
movement of solar panels, articulations, or antennae. 

Looking further, with the 3D framework in place, the model may be extended to include other variables associated 
with each voxel, for example spectral signatures, material composition, polarization, or radar cross-section when 
such data are available. Similarly, the same model may be used as the basis for the restoration of data sets from 
widely disparate telescopes and sensor modalities; data fusion in this sense is a natural feature of the approach. In 
this way, for example, a model developed with data from a 1 m telescope could be used to directly constrain the 
restoration and interpretation of data from a 3.5 m telescope, effectively acting as prior information. Furthermore, 
although we anticipate that the method will find its greatest value in addressing the extreme faintness limit in the 
EO/IR bands, we note that the mathematical approach is by no means confined to that regime. More traditional 
observations where wave-front sensing relies on the object itself, such as those now made at the AEOS 3.6 m and 
the SOR 3.5 m telescopes, will be perfectly suited to analysis in the same way. 
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6. CONCLUDING REMARKS 

Adopting a common sensor-agnostic multi-dimensional object model across data modalities and sensor locations 
will potentially increase the efficiency of a wide range of existing surveillance assets presently supporting the space 
object catalog. This extends to non-resolved measurements from ongoing programs and data supplied by 
commercial companies: for example, light curve fluctuations should be consistent with the models. In this sense, an 
object model can serve as an unbiased consistency check across all modalities: contributing sensors that continually 
produce data in line with the model predictions would be ranked as more trustworthy than those that do not. The 
approach has the potential therefore to set a new community-wide paradigm for the synthesis and interpretation of 
SSA observations. 
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