
SPACE OBJECT MANEUVER DETECTION ALGORITHMS

USING TLE DATA

Dr. Mark Pittelkau

Solers, Inc.

ABSTRACT

An important aspect of Space Situational Awareness (SSA) is detection of deliberate and accidental orbit

changes of space objects. Although space surveillance systems detect orbit maneuvers within their tracking

algorithms, maneuver data are not readily disseminated for general use. However, two-line element (TLE)

data is available and can be used to detect maneuvers of space objects. This work is an attempt to improve

upon existing TLE-based maneuver detection algorithms. Three adaptive maneuver detection algorithms are

developed and evaluated:

The first is a fading-memory Kalman filter, which is equivalent to the sliding-window least-squares

polynomial fit, but computationally more efficient and adaptive to the noise in the TLE data.

The second algorithm is based on a sample cumulative distribution function (CDF) computed from a

histogram of the magnitude-squared |∆V|2 of change-in-velocity vectors (∆V), which is computed from the

TLE data. A maneuver detection threshold is computed from the median estimated from the CDF, or from

the CDF and a specified probability of false alarm.

The third algorithm is a median filter. The median filter is the simplest of a class of nonlinear filters

called order statistics filters, which is within the theory of robust statistics. The output of the median filter is

practically insensitive to outliers, or large maneuvers. The median of the |∆V|2 data is proportional to the

variance of the ∆V, so the variance is estimated from the output of the median filter. A maneuver is detected

when the input data exceeds a constant times the estimated variance.

1. INTRODUCTION

One of the key operations in space situational awareness is space event monitoring, one function of which

is timely detection of maneuvers of orbiting objects. Although most satellites execute maneuvers for orbit

maintenance, some execute maneuvers outside of their normal or anticipated operations. Some objects

thought to be inert have unexpectedly “come alive” and others thought to be placed in orbit for a particular

purpose change their orbit to serve another purpose. Maneuvers can also result from system failure or

operator error and present a hazard. On another extreme, a collision is detected as a maneuver. A false

detection of a maneuver can occur because of tracking and data association (cross-tagging) error.

The purpose of this paper is to define and analyze algorithms to process two-line-element (TLE) data to

detect maneuvers of space objects, and to improve upon the performance of existing algorithms.

There are essentially two main categories of maneuver detection algorithms: tracking filters and

polynomial-fit algorithms. Tracking filters estimate orbital motion from tracking sensor data and can be

sensitive maneuver detectors, particularly when gravity and perturbations are modeled accurately. Unfortu-

nately the tracking data are not readily available. However, space surveillance tracking systems provide only

two-line element (TLE) data to most end-users. The TLE data are readily available from Space Track [1],

which is operated by the Joint Space Operations Center (JSpOC), and from CelesTrak [2].
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Most of the published maneuver detection algorithms compute a least-squares fit of a low-order poly-

nomial to a sliding window of orbital parameters derived from TLE data, typically semimajor axis and

inclination [19–26]. These algorithms require manual adjustment of parameters (window length, polynomial

order, and threshold) for each space object to obtain acceptable results. They exhibit an inherent lag, low

probability of detection, and high false-alarm rate. The polynomial algorithms require some information

about the error in the TLE data, which is computed from a long span (a year or more) of data, though

details are not published. A second algorithm [26] removes trends and harmonics from the TLE data prior to

detecting maneuvers. The algorithm in [27] is a second-order filter with an elaborate treatment of residuals

and a computationally intensive startup procedure.

The least-squares polynomial-fitting algorithms require significant manual adjustment of parameters

(number of TLEs fitted, polynomial order, and threshold) for each space object to obtain acceptable results.

A fixed set of parameters reported in [20, 25] were obtained by adjusting the parameters and comparing

maneuver detection results for two satellites against a history of known maneuvers. The fixed parameters

result in a large number (13%) of false alarms and missed detections (17%) [20, 25]. It is not clear which

or how many space objects with known maneuver histories were used to determine the false alarm rate and

missed detection rate, and the detection threshold was not stated.1

Some desired capabilities of a maneuver detection algorithm are as follows:

1. The maneuver detection algorithm should be computationally efficient to process daily TLE updates,

and reprocess corrected TLE data, for a single space object within a few seconds.

2. The maneuver detection algorithm should be able to initialize itself in a few minutes for all objects in

the TLE catalog.

3. The algorithm can be started for any object at any time.

4. The algorithm should run autonomously. Therefore it should require little to no re-tuning, and the

tuning should work for all objects at all times. Different tunings are permitted for a small number of

classes of objects (GEO, HEO, MEO, LEO).

5. The false alarm rate and the missed detection rate should be small (ideally less than 1% (TBR) false

alarm rate and less than 5% (TBR) missed detection rate).

Item 4 is important because the error statistics of the TLE data are nonstationary and can differ amongst

various space objects. It is not practical to manually tweak the parameters of a maneuver detection algorithm

as conditions change, and it is not practical to manually select parameters for each space object. Requirement 5

is particularly important because in a catalog of over 22 000 objects in which perhaps 10% of the objects

are of particular interest, so an operator having to give special attention to only 1% (say) of the objects of

interest is time consuming and tedious. In addition, an operator should not have to be an expert on maneuver

detection algorithms.

An algorithm based on TLE data cannot be optimal (or even nearly optimal) because little is known

(publicly) about how the TLE data are computed and how accurate they are. In addition, maneuver detection

algorithms based on TLE data essentially filter data that are the output of a filter. The TLE data are estimated

from either a continuous stream of measurement data or from overlapping intervals of measurement data, so

there can be significant correlation of the errors in the TLE data. We can assume that upon detection of a

maneuver, the TLE estimator (operated by JSPOC) detects maneuvers and “forgets” previous measurement

data. For example, When a maneuver occurs, the orbit determination filter is re-initialized or its covariance

is opened-up (increased) when a maneuver is detected. Errors in the TLE data are therefore sequentially

correlated until a maneuver occurs, after which the correlation resumes. Characteristics of TLE data and

some difficulties encountered are discussed in [26, §II.A].

1The performance results reported in [25] may be substantiated in [20], but [20] was not available when this article was written.
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Despite the foregoing limitations of using TLE data to detect maneuvers, it appears there is still room for

improvement upon existing TLE-based algorithms. In this paper we define and analyze algorithms to process

two-line-element (TLE) data to detect maneuvers of space objects and to improve upon the performance and

computational requirements of the algorithms cited above. Three new maneuver detection algorithms are

introduced:

Fading-Memory Filter: The recursive fading-memory polynomial filter with a prescribed memory

length is nearly equivalent to but computationally more efficient than the sliding-window fixed-memory

least-squares algorithm. The fading-memory filter is adaptive to the noise in the data.

Histogram Method: A histogram of ∆V data derived from the TLE data approximates the probability

distribution function of the data. Maneuvers are detected at the tail of the distribution with a probability

threshold computed from the data. A fixed threshold can be used instead. The histogram gives

significant insight into the statistical nature of the TLE data.

Median Filter: The median filter is one of a class of robust statistics filters and detects outliers in the

∆V data. It is faster than the polynomial filters, has fewer fiddle parameters, and is easier to “tune”.

The histogram method gives insight into the statistical nature of the data and is related to the median filter.

A recursive fixed-memory or fading-memory histogram may be effective but was not investigated. The

fading-memory filter and the median filter are temporally adaptive in that the detection threshold depends on

the data as the data arrive. The histogram method is adaptive, but the detection threshold is not determined

until all the data over a fixed window is processed.

When a maneuver is detected, the ∆V and the orbital elements can be examined to determine the nature of

the maneuver, eg., orbit adjust or orbit change, and altitude or inclination change. Maneuver characterization

is beyond the scope of this report.

1.1. Organization

The fading-memory polynomial filter in Section 2.1 and the median filter in Section 2.3 Test and evaluation

are reported in Section 2.5 and Section 3. Results for a selection of space objects are reported in Section 3.

2. MANEUVER DETECTION ALGORITHMS

2.1. Fading-Memory Polynomial Filter

TLE-based maneuver detectors are typically based on fitting a short window of TLE elements (notably the

semimajor axis data) to a low-order polynomial. The maneuver detection is based on comparing a residual

with a threshold. The parameters chosen in [25] are a window length of 11 TLEs, order 3 polynomial, and a

3σ threshold. The residual is the difference in the element and the fitted element, either at the center or at

the end of the interval. The threshold is a function of the error statistics of the TLE data. The error statistics

are computed from the TLE data with some type of compensation for maneuvers. The polynomial fitting is

performed by using batch least-squares fit to the data. The batch least-squares solution is recomputed for

each new TLE data. The error statistics are typically compiled from the catalog of TLE data [19, 22–26].

The sliding-window fixed-memory least squares algorithm can be reformulated as a fixed-memory

Kalman filter [4, Ch. 7, §10, p. 255–258]. However, it requires significant data storage and its numerical

stability would have to be evaluated. A recursive fading-memory least-squares estimator with a Cholesky-

factor update algorithm was initially considered and was found to perform about as well as a fixed-memory

least-squares estimator. A fading-memory Kalman filter [4, Ch. 8, §10, pp. 307–311] is essentially equivalent
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but has computational advantages, and is simpler to implement. A factorized-covariance formulation of the

fading-memory filter, which is equivalent to the Cholesky factor update algorithm for the fading-memory

least-squares estimator, is not presented here. The fading-memory polynomial filter is described in what

follows.

Define the state vector

xk =



x (0)
k

x (1)
k
...

x (n)
k


(1)

where x (i)
k

is the ith derivative of the orbital element x(t) at time t = tk and let yk be a “measurement” of an

orbital element from the TLE data at epoch tk . The filter equations are as follows.

Pk |k−1 = αkΦkPk−1 |k−1Φ
T
k covariance prediction (2a)

Vk = HkPk |k−1HT
k + Rk residual covariance (2b)

Kk = Pk |k−1HT
k V−1

k Kalman gain (2c)

zk = yk − Hk x̂k−1 |k−1 residual (2d)

x̂k |k−1 = Φk x̂k−1 |k−1 state estimate prediction (2e)

x̂k |k = x̂k |k−1 + Kk zk state estimate update (2f)

Pk |k = Pk |k−1 − KkVkKT
k covariance update (2g)

The various matrices are

Φk state transition matrix

Hk observation matrix

Vk residual covariance matrix

Rk measurement covariance matrix

Kk Kalman gain

Pk |k−1 prior covariance matrix

Pk |k posterior covariance matrix

The state transition matrix for a second-order polynomial filter (n = 2) is

Φk =



1 T
k

1
2
T2
k

0 1 T
k

0 0 1


(3)

where Tk = tk − tk−1 is the time between observations yk . The observation matrix is constant,

Hk =

[
1 0 0

]
(4)

The scalar α
k

in (2a) is the fading factor (or forgetting factor) given by

αk = exp(Tk/τ) (5)
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where τ is the effective memory length (in the same units as Tk). It can be shown that when compared to

a fixed-memory least-squares estimator with a memory length of N samples (with equal time steps) that

τ ≃ N − 1/2.

The measurement update is skipped when Tk = 0 because there is likely no new information in the TLE

data. It is possible that the TLE was corrected and reissued. If that is the case, the state of the filter prior to

the previous update should restored and the update should be made with the corrected TLE.

There is no process noise covariance in the covariance prediction equation, (2a). We can write (2a)

as P
k |k−1

= Φ
k
P
k−1 |k−1

Φ
T
k
+ (α

k
− 1)Φ

k
P
k−1 |k−1

Φ
T
k

from which we obtain Q
k
= (α

k
− 1)Φ

k
P
k−1 |k−1

Φ
T
k
.

Since αk > 1, the multiplier α
k
− 1 ≥ 0. We must guard against α

k
= 1, which happens when Tk = 0, since

that would cause the subsequently updated covariance Pk |k to become singular.

The state is initialized to

x̂1 =



y2

(y2 − y1)/T2

0


(6)

with T2 = t2 − t1. The first update of the filter following initialization is with the third measurement, unless

T3 = 0 in which case the third measurement is skipped. The covariance is initialized to

P1 = diag
[
R

1
2R

1
/T2

1
(σas2/m)2

]
(7)

where σa = 0.0001 m/s2 is the standard deviation of the acceleration process noise, s = 86400 scales the

time units from seconds to days, and m = 1000 scales the distance units from meters to km. When the

measurement yk is the semimajor axis from the TLE, which is given in km, the units of Rk are conveniently

specified in meters but should be scaled to km. Note that the covariance of error between the first two states

in x1 is zero. Normally we would want to calculate this, but the TLE data are already highly correlated in an

unknown way. It is safer to over-estimate the covariance of error in the TLE data so that the filter does not

become too optimistic.

A residual edit test is usually used to detect outliers in the measurements. In this case, we use the residual

edit test to detect maneuvers. The residual edit test is

χ2
= zTk V−1 zk > κ

2 (8)

where κ > 0 is the test threshold. If the test is true, the state and covariance are reinitialized.

The measurement y
k

is a scalar y
k

and so the measurement covariance Rk = σ
2
k

is a scalar. The variance

of the measurement error can be estimated by averaging the square residuals with an averaging filter

σ̂2
k = σ̂

2
k + g( |zk |

2 − σ̂2
k ) (9)

where g is a gain. This averaging step is skipped when a maneuver is detected via (8). The initial convergence

rate of σ̂2 is improved, and the effect of an erroneous initial estimate mitigated, by computing the gain as

g = 1/min( j , jmax) (10)

where j is the number of iterations since initialization of the filter and jmax sets the minimum gain. The

initial value for σ̂k should be larger than the anticipated error in the TLE element and should be chosen so

that it works well for TLE data from a wide variety of space objects. This determination requires extensive

experimentation with the data. Alternatively, we can compute σ2 from the median of |zk |2, similar to the

method in Section 2.3. This has not yet been tried with the fading memory filter.

The foregoing variance estimator turns the Kalman filter into an adaptive filter. In [19, 22–26] the

variance is estimated by analyzing an entire record of TLE data and, evidently, is fixed for the duration of

the data processing. The method of computing the variance is not clear in those publications.
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2.2. Histogram Method

If the probability density function of the TLE errors were known, one could base a maneuver detection

algorithm on a hypothesis test and establish a detection threshold based on specified probabilities of false

alarm and missed detection. Even if the form of the probability density function were known, typically

we do not know the parameters of the density function. In addition, the TLE errors are not stationary and

outliers (due to maneuvers) make it difficult to determine the parameters of the density function. In lieu of

exact knowledge of the probability density function, we can create a histogram of the data to approximate the

probability density function (PDF) and similarly to approximate the cumulative distribution function (CDF).

The CDF is approximated as the cumulative sum of the histogram that approximates the PDF. Theoretical

statements regarding the accuracy of these approximations versus the number of samples are not provided in

this report, but should be investigated.

Histograms of the position and velocity changes between TLE epochs are computed over the history of

a space object to obtain a statistical characterization of the orbit prediction errors of the space object. Large

maneuvers are identified as position and velocity changes in an upper percentile (say the 97th percentile) of

the histograms.

The TLE data at epoch tk is converted to an orbital position vector r
k,k−1

and velocity vector v
k,k−1

at the

epoch tk−1 of a previous TLE.2 The prediction algorithm includes a general perturbation model. The TLE

data at the epoch tk−1 from the previous epoch tk−1 is converted to an orbital position vector rk−1,k−1 and

velocity vector vk−1,k−1 at the epoch tk−1. We then compute the magnitude-square of the change in position

and velocity3

(∆rk )2
=
��∆rk ��2 = ��rk,k−1 − rk−1,k−1

��2 (11a)

(∆vk )2
= ��∆vk ��2 = ��vk,k−1 − vk−1,k−1

��2 (11b)

It turns out that a maneuver detection algorithm based on (∆vk )2 is more sensitive to maneuvers than one

based on (∆rk )2, so we will focus on analyzing (∆vk )2 in what follows.

The histogram N (ℓ), 1 ≤ ℓ ≤ L, of (∆vk )2 is computed over a range of bin edges X (ℓ). Maneuvers then

appear as counts in the bins above a specified percentile, for example, the 97th percentile. The last bin edge,

X (L), is ideally less than the minimum detectable (∆vk )2. (The bin edge is the right edge of the bin. The

left edge of the first bin is zero.) The tally N (ℓ) in each bin is normalized by the total number K of samples

to obtain the sample density function,4

f (ℓ) = N (ℓ)/K , 1 ≤ ℓ ≤ L (12)

Observe that

K =
L
∑

ℓ=1

N (ℓ) (13)

The sample probability distribution function, or CDF, is the cumulative sum of the N (ℓ),

F (ℓ) =
ℓ
∑

m=1

f (m) = F (ℓ − 1) + f (ℓ) , 1 ≤ ℓ ≤ L , F (0) = 0 (14)

2It is assumed that the backward prediction is within the fit interval of the TLE data and therefore should be more accurate than

a forward prediction.

3The position and velocity vectors are in the True-Earth Mean-Equator (TEME) reference frame [3], which differs from Earth-

Centered Inertial coordinates (ECI J2000) coordinates by precession and nutation, which changes slowly and negligibly over the

prediction interval. The TEME frame is therefore a quasi-inertial frame.

4More precisely, f (ℓ) is a probability mass function (PMF). To obtain a density, we should compute f (ℓ) = (N (ℓ)/K)/δX (ℓ),
where δX (ℓ) = X (ℓ) − X (ℓ − 1) is the bin size. But then we would have to multiply f (ℓ) by the bin size to compute the sample

cumulative distribution function in (14).
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Equivalently,

M (ℓ) =
ℓ
∑

m=1

N (m) = M (ℓ − 1) + N (ℓ) , 1 ≤ ℓ ≤ L , M (0) = 0 (15a)

F (ℓ) = M (ℓ)/K , 1 ≤ ℓ ≤ L (15b)

The bin size is chosen to be sufficiently small to obtain a fairly smooth histogram, but not so small that

the bins contain too few samples. The bins do not have to be uniformly spaced. The main difficulty in

implementing the histogram method is in choosing the number of bins, bin edges, and the maximum bin, all

of which are data-dependent. A one-size-fits-all set of parameters may be chosen for particular classes of

space objects or perhaps for all space objects. The feasibility and success of this method has to be determined

empirically by evaluating its performance for a variety of space objects.

Assume that vk,k and vk,k−1 are the true velocity vectors plus independent Gaussian random error vectors

with equal variances for each component of error. Then (∆vk )2
= ��∆vk ��2 is a χ2 random variable with d = 3

degrees of freedom (DOF).5 Assume that each element of vk,k has variance σ2
0

and that each element of ∆v1

has variance σ2
k,k−1

. Then assuming that the errors in v
k,k

and in v
k,k−1

are uncorrelated,6 each element of

∆vk has variance σ2
= σ2

0
+ σ2

1
. Then the mean value of χ2

= (∆vk )2 is

µ = dσ2 (16)

the median is (to a close approximation)

m = d(1 − 2/9d)3σ2 (17)

and the variance of χ2 is

σ2
χ2 = 2dσ4 (18)

The variance is easily estimated from the sample mean or sample median once one of the latter is estimated.

The mean is statistically more efficient to compute from the data than is the median. The mean of (∆vk )2

can be computed from the histogram as a discrete integration by multiplying each normalized bin value

by the value of (∆vk )2 that it represents, and summing the results. The sample mean and sample median

may not be representative of the actual mean or median for small sample sizes. The mean can be adversely

influenced by outliers (too-frequent maneuvers or a few large maneuvers), and for this reason the median

is preferred. The median is the bin location where the sample CDF is approximately 0.5, which is where

there are approximately equal numbers of samples in lower and higher bins. The approximation is due to

bin quantization and the finite (and usually small) number of samples.

Maneuvers are declared for any (∆vk )2 that lies above some specified threshold τ. The threshold can be

computed by one of two methods. (1) Assuming that (∆vk )2 is chi-square distributed, the threshold can be

computed as a multiple of the variance for some dimensionless multiplier κ,

τ = κσ2 (19)

where κ is chosen for a given probability of false alarm. This threshold is valid if the distribution of the data

is close to chi-square distribution with known degrees of freedom. Excessive maneuver detections can occur

when the estimated σ2 is too small or the (∆vk )2 are chi-square distributed (in the absence of maneuvers,

5If the errors are independent, then d = 6, which would explain why the maneuver detection thresholds, when tested on real

TLE data, had to be larger than originally anticipated. This will be examined in an update to this report.

6The errors in v
k,k

and in v
k,k−1

are not completely uncorrelated, but we do not know the covariance of error in the TLE data.
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since the median is used to estimate σ2). (2) For any probability distribution of (∆vk )2, a threshold can be

computed from the sample CDF F (ℓ) at the bin value closest to a given probability Pτ of false alarm. Since

F (ℓ) is a sample cumulative distribution, we find the bin X (ℓ) for which F (ℓ) is closest to Pτ ,

ℓτ = arg min
1≤ℓ≤L

|F (ℓ) − Pτ | (20)

The corresponding independent variable is

τ = X (ℓτ ) (21)

Computing the threshold from Pτ makes the histogram method independent of the form of the distribution

of the data, but it also guarantees, on average, ⌊(1 − Pτ )K⌋ false maneuver detections.7

Other than the bin parameters, the multiplier κ or probability Pτ is the only tuning parameter in the

histogram method. A typical value for Pτ is perhaps 0.97 (97th percentile), though a value somewhere

between 0.85 and 0.98 may be appropriate for some space objects. A lower threshold increases the false

alarm rate but also increases the probability of detection. For any fixed threshold, performance ultimately

depends on the noise level in the data. The histogram method works well when the maneuvers are sufficiently

distinct from the noise in the TLE data. Since the threshold is computed from the entire record of data, the

false alarm rate and probability of detection can vary when the errors in the TLE data are not stationary, that

is, the statistics of the data vary over time.

The histogram is easily updated as new observations arrive. A sliding window histogram can be

implemented by reducing bin counts as old data exit the window, then re-normalizing to obtain a distribution.

It is possible to implement a fading-memory histogram in the same manner as the fading-memory filter.

Much greater efficiency may be gained by realizing that only the median and upper percentiles need to be

computed. An algorithm similar to the one in [5] may be suitable for this purpose.

2.3. Median Filter

Significant drawbacks to sliding-window least-squares estimation or Kalman filtering of TLE data for

maneuver detection are that the TLE data are already filtered quantities and we do not know the accuracy

and correlation of the TLE data. A filter has to be run for each TLE element of interest, and each such filter

requires its own tuning parameters. A single tuning does not work equally well for all space objects and may

require operator intervention.

The histogram method is limited in performance as explained in the previous section, but can be modified

to operate as a fading-memory statistic of the data. The median filter in this section is computationally fast

and requires only choosing a window width and a threshold, and it is adaptive to non-stationary statistics of

the TLE data. The median filter is used in a variety of signal processing applications. It is commonly used

in image processing to remove speckles from an image. It was also used in the Space Shuttle’s redundant

IMU processing algorithm to reject measurements from a possibly failed gyro.

The median filter is the best known filter in a class of filters based on order statistics, which is a branch

of robust statistics [11]. The median filter is widely used in signal processing, image processing, and data

analysis in various other fields. Its wide applicability is due to its relative immunity from influence of outliers

in the data. In this section we apply the median filter to the TLE data to detect maneuvers of space objects.

Some further background and mathematical analysis of the median filter is given in Section 2.3.1 followed

by its application to maneuver detection in Section 2.3.2. The performance of the median filter is verified

and characterized in Section 2.5.

7The false alarms can be mitigated by ignoring the detections when the corresponding (∆vk )2 is below some fixed threshold.

This check was not implemented in the histogram method prior to production of results reported in Section 3. A combination of the

two thresholds, (20) and (21) may be beneficial.

Copyright © 2016 Advanced Maui Optical and Space Surveillance Technologies Conference (AMOS) – www.amostech.com



2.3.1. Background

The median filter was introduced by J. W. Tukey in 1963 [6] but remained unpublished until 1974 [7,

Ch. 7 & 16], [8, p. 210] to smooth noisy time-series data, and it was subsequently used to remove impulsive

noise from signals and images. Statistical and deterministic analyses of the median filter are given in [9].

An overview of these and other properties of the median filter are given in [10–12] and in the numerous

references therein. Some pertinent results are presented here.

The median filter is a nonlinear fixed memory-length filter that selects the middle value yk from a sliding

window of N data values xk−N+1, . . . , xk−1, xk ,

yk = median(xk−N+1, . . . , xk−1, xk ) (22)

We require N to be odd to simplify analysis and implementation of the median filter. If N were even,

the median would be the arithmetic mean (the average) of the two middle values, which incurs additional

computation. Using the lower or upper median can bias the average of the medians from the sliding window

over the data, but would be acceptable for a large window. Thus we can write N = 2n + 1 where n ≥ 1.

For N odd, yk is one of the input samples. The median filter can be viewed as a type of sliding-window

histogram, and in fact some median filters for image processing are implemented as histograms.

Suppose we have a sequence of data x1, x2, . . . , xN (N odd or even here) and we want to estimate a value

ρ that is “closest” in some sense to the data [9]. Define a distance measure, or cost function,

Dr (ρ) =
N
∑

i=1

ai |xi − ρ|r (23)

where the ai are weighting coefficients such that ai > 0. The optimal value for ρ is that which minimizes

Dr (ρ). In what follows we will set ai = 1/N , so the ai can be effectively omitted from the distance measure.

It is well known that for r = 2 the distance measure D2(ρ) is the L2-norm square (the sum of square

errors). The L2-norm is minimized by the Minimum Mean Square Error (MMSE) estimate

ρ2 = arg min
ρ

D2(ρ) = mean(x1, x2, . . . , xN ) =
1

N

N
∑

i=1

xi (24)

This is the maximum likelihood (ML) estimate for Gaussian data, for which the probability density function is

f2(x) =
1

2πσ2
exp

(

− 1

2σ2

(

x − µ)2
)

(25)

where µ is the mean and σ2 is the variance of the data. For r = 1, the distance measure D1(ρ) is the

L1-norm (also known as the Manhattan Distance). The L1-norm is minimized by the Minimum Absolute

Error (MAE) estimate

ρ1 = arg min
ρ

D1(ρ) = median(x1, x2, . . . , xN ) (26)

This is the ML estimate for Laplacian data, for which the probability density function is the biexponential

density function

f1(x) =
1

2σ2
exp *,−

√
2

σ
��x − µ ��+- (27)

Typically the distribution is not known, or is a mixture of a known density function (perhaps with unknown

parameters) and an unknown density function of additive impulsive noise. For example, the data may be
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Gaussian plus impulsive noise, so the density function of the data is a Gaussian density with a heavy tail.

The tail may be modeled as a lumped probability mass.

Although the sample mean is a statistically more efficient estimator than the sample median, the sample

mean is sensitive to outliers, whereas the sample median is practically insensitive to outliers. The median

filter effectively “clips” the tail of the input distribution. It is shown in [9] that the MAE estimator is more

robust to large outliers (impulses), and therefore less sensitive to the tail of the distribution, than the MMSE

estimator. The median filter has a breakdown point of 50%, which means that the median becomes unreliable

when more than 50% of the data are impulses. When 50% of the data are impulses, the probability of missed

detection equals the impulse rate for all window widths of the median filter. For lower impulse rates the

median is more reliable as the window width increases [11].

For any input distribution, the output distribution is given by [9, Eqs. (10), (11)] and [11, Eqs. (9), (10)],

[12, Eqs. (3), (4)]. Weighted median filters [9, 11, 12] exist for unequal ai, and of course the weighted MMSE

estimator is well known. Other statistical and deterministic properties of median filters are given in [9] and

[11, §II.A]. One notable deterministic property is that the impulse response of the median filter is zero.

Other types of filters designed to remove impulsive noise, many of which are related to the median filter,

are discussed in [9–11, 13, 14]. These filters are primarily designed for image processing but can be applied

to other types of signals. Some of these algorithms are impressive in their ability to remove high-density

impulsive noise, so they may be candidates for maneuver detection.

2.3.2. Application to Maneuver Detection

Let xk = (∆vk )2, where (∆vk )2 is defined in 11b. Since xk is χ2 distributed with d = 3 degrees of freedom

(in the absence of maneuvers), the median filter yields the sample median yk of the χ2 distribution, which

is related to the variance of xk . The median filter suppresses the tail of the distribution of xk , with greater

suppression for larger windows. The presence of maneuvers creates a tail on the distribution of xk , but the

tail is essentially “clipped off” by the median filter. Theoretical results on the statistics of the sample median

are found in the literature within the subject of order statistics. A numerical analysis of the median filter

shows that the variance of yk is essentially the same as that of xk prior to the addition of outliers, and so yk

is practically insensitive to outliers.

From (17), a rough estimate of the variance of the χ2 data is

vk = yk/[d(1 − 2/9d)3] (28)

The divisor is approximately 2.38 for n = 3 and its reciprocal is approximately 0.42. The estimate vk is

averaged by a first-order filter

σ̂2
k = σ̂

2
k + g(vk − σ̂2

k ) (29)

where g is a gain parameter. A maneuver is declared when

xk−ℓ > κ σ̂
2
k (30)

where ℓ is a lag such that 0 ≤ ℓ ≤ N − 1 lag and κ > 0 sets the detection sensitivity. The lag places the

test value xk−ℓ within the window of data from which the median is computed. To make the filter causal we

set ℓ = 0 so that the test is based on only past data. Frequent outliers tend to skew the median, so we set

xk−ℓ = yk when a maneuver is detected.

The median operation in (22) involves finding the element of a list of N numbers (for odd N) for

which there are as many elements greater than the median as there are smaller elements. A brute-force

implementation requires N (N − 1)/2 comparisons. Wirth’s “k-smallest” algorithm [18] is more efficient.

Various algorithms and architectures for computing the running median are discussed in [11, §V].
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Experiments with several sets of TLE data indicate that N = 3 to 9, g = 0.002 to 0.005, and κ = 25

to 35 are suitable parameters for most space objects. Theoretically a wider window increases sensitivity

to maneuvers, as shown by the statistical analysis in [11, p. 1896]. If the number of degrees of freedom

of are known and the variances in each axis are equal, κ can be chosen based on probabilities from the

χ2 distribution functions. One advantage to the median filter and the variance estimator is that they are

scale-invariant. That is, the parameters do not have to be changed if the scaling or units of the data changes.

2.4. A Generalization

An assumption regarding the errors in ∆vk is that they have equal variance in each coordinate direction.

Consider ∆vk in Range-Intrack-Crosstrack (RIC) coordinates defined by r
k,k

and v
k,k

. Assume that the

covariance matrix in RIC coordinates has the form C = diag(σ2
x, σ

2
y, σ

2
z ), where σ2

x is the radial error

variance, σ2
y is the in-track error variance, and σ2

z is the cross-track error variance.8 Then elements of the

vector C−1/2(∆vk ) are independent standard normal (zero mean, unit variance, Gaussian) random variables.

Thus χ2
C
= (∆vk )TC−1(∆vk ) is chi-square distributed with mean µ = d and median m = d(1 − 2/9d)3.

Because the three variances are not known, we would have to estimate them or compute one variance and

assume some ratios for the other two variances. We could instead apply the median filter to each (squared)

component of ∆vk in RIC coordinates, which would help to distinguish various types of maneuvers. Three

medians would be computed, from which estimates for σ2
x , σ2

y , and σ2
z would be obtained.

2.5. Verification and Characterization

The median filter is validated by generating K + 1 zero-mean white Gaussian random velocity vectors vk of

dimension d×1 and standard deviation σ = 0.1 in each component. Velocity differences are then computed,

∆vk = vk − vk−1 (31)

and then we compute (∆vk )2
= |∆vk |2. The (∆vk )2 data are χ2 distributed random variables with variance

parameter 2σ2 with one-step correlation. A subset of the ∆vk vectors are replaced with M ≪ K random

vectors ekuk at unique random indices uniformly spaced over I = {1, 2, . . . ,K }. The random maneuver

amplitudes ek are uniformly distributed on the interval (0, A).

If the velocity vectors were replaced by maneuver vectors, the ∆vk would contain doublets, which would

give twice as many maneuver detections. An alternative approach would be to add the maneuvers to the ∆vk
vectors, but replacement makes it easier to compute the probability that the maneuver exceeds a threshold.

Note that the probability distribution of the input data (∆vk )2 is not χ2, but is a mixed distribution of χ2

data contaminated with uniformly distributed maneuver data.

The |∆vk |2 data are passed through the median filter with window widths N = 3, 5, 9, 15. The median filter

output is scaled using (18) to obtain a sample variance. Cases are run with σ = 0.1, K = 100 000 samples,

and M = 0.2K , so 20% of samples are maneuvers. The square root of the sample variance computed in (28)

is the sample standard deviation s =
√
v, which has a mean value of approximately

√
2σ. Forσ = 0.1 we have

s = 0.141. A threshold κ depending on d is chosen for a specified probability of false alarm. For example,

the false alarm rate P
FA

is 1% for d = 3 and κ = 11.34. Since the component variances of the ∆vk data are

2σ2, a maneuver is detected when the maneuver amplitude exceeds
√

2κσ2
= 4.76σ. Choosing a maximum

maneuver amplitude A = 20σ, and recalling that the maneuver amplitudes are uniformly distributed, we

expect that the probability of missed detection P
MD

is (4.76σ)/(20σ) × 100 = 24.7%, that is, 24.7% of the

8Typically the cross-track error is smaller than the radial error, and the radial error is smaller than the in-track error (in general),

so σ2
y ≤ σ2

z ≤ σ2
x .
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Table 1: Verification Test Results

N Detections (%) PFA (%) PMD (%) s

0% Impulse Rate

3 0.4 0.432 n/a 0.153
5 0.6 0.621 n/a 0.15
9 0.8 0.764 n/a 0.145

15 0.9 0.889 n/a 0.144

5% Impulse Rate

3 3.8 0.237 28.0 0.162
5 4.1 0.411 25.7 0.153
9 4.3 0.593 25.3 0.149

15 4.4 0.689 24.9 0.147

20% Impulse Rate

3 12 0.001 39.8 0.24
5 14 0.021 32.0 0.19
9 14 0.134 28.2 0.165

15 15 0.194 27.2 0.162

50% Impulse Rate

3 14 0.002 72.4 0.43
5 18 0.0 63.2 0.37
9 24 0.0 52.7 0.32

15 27 0.0 45.9 0.27

simulated maneuvers will not exceed the detection threshold. In practice, the threshold is computed from

the average sample standard deviation s̄, so the expected P
MD

is

(4.76s̄)/(20σ) × 100 (percent) (32)

Verification test results are shown in Table 1. Although there is some variabilty from run-to-run, these

results are typical. It can be seen that the average sample standard deviation increases as the window width

decreases. This is due to two effects: (1) the median of the input data is biased (increased) due to the

larger tail on the probability distribution with maneuvers, compared to the χ2 distribution in the absence of

maneuvers, and (2) the median of the output of the median filter is biased (increased) for shorter windows.

The median filter “clips” the tail of the distribution, effectively removing most of the maneuver information,

which mitigates the first effect. The second effect causes the computed value of the average sample standard

deviation to increase, thus increasing the average maneuver detection threshold. As is evident in Table 1,

the larger detection threshold reduces the number of detections (shown as percentage of the total number

of data samples), and it decreases P
FA

and increases the P
MD

according to (32). However, the performance

of the median filter is not too sensitive to large maneuvers. In all cases, the P
FA

is less than 1%, which

is in accordance with κ = 11.34. The P
MD

depends on the probability distribution of the amplitude of

the maneuver, increasing for smaller maneuvers and decreasing for larger maneuvers. The performance of

the median filter degrades when 50% of the data are maneuvers, but the filter does not “fall apart”. The

performance results are somewhat improved when the maneuver indices are equally spaced, since random

spacing can cause sequential maneuvers whose duration is not less than the width of the window, thus

temporarily increasing the detection threshold.

Further testing shows that the average sample standard deviation decreases to about 0.180 for N = 3

when the maneuver density is reduced to 10%. In the absence of maneuvers, with purely χ2 input data, the
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false alarm rate is less than 1%, and the average sample standard deviation is close to the theoretical value

of 0.141 for N > 9 and becomes biased for smaller N , growing to about 0.153 for N = 3.

3. RESULTS

Vallado [3] provides a set of Matlab functions to convert two-line element strings to orbital elements and

to position and velocity vectors. The relevant top-level functions are twoline2rv.m, sgp4init.m, and

sgp4.m. These functions are sufficient to demonstrate the maneuver detection algorithms, though improved

perturbation force models are desirable and would yield better performance.

The maneuver detection algorithms were evaluated with the fixed set of parameters in Table 2 for all

space objects. The same parameters were used to evaluate the algorithms using TLE data from several other

space objects with good results (not reported here).

TLE data were obtained from Space Track [1]. Maneuver detection results for three space objects are

listed in Table 3. In Table 3, the apogee and perigee are the apogee height and perigee height of the orbits

relative to the mean equatorial radius of 6378.137 km. The orbital period, perigee height, apogee height,

eccentricity, and inclination in the table are computed from the TLE data at the end of the time span.

Table 2: Maneuver Detection Parameters

Parameter Symbol Value Units

Fading Memory Filter

Polynomial order n 3

Measurement noise σm 1 km

Process noise σa 0.0001 m/s2

Residual test threshold κ 3.0

Histogram Method

Number of bins B 200

Maximum bin value ∆Vmax 4 m/s

Degrees of Freedom (DOF) d 3

Detection probability Pτ 0.97

Detection threshold multiplier* κ 80.0

Median Filter

Window length N 5

Variance filter gain g 0.005

Variance multiplier κ 22.68

Minimum ∆V detection threshold ∆Vmin 2.0 m/s

The Histogram method was found to work better if the detection threshold is

computed from Pτ in (21), rather than (20), so κ is not used.

Maneuvers often span more than one TLE and so multiple detections can occur. A maneuver reflected

in one TLE generates two detections by the HIS and MED algorithms, since the velocity is differenced

with the preceding and the following TLE. The FMF algorithm generates fewer detections because the filter

covariance is opened up when a maneuver is detected.

The maneuver detection results are plotted in Figures 1 through 3. The maneuver detections are indicated

by vertical lines on the graphs of the semimajor axis. The χ values and detection threshold are plotted for the

FMF algorithm and the threshold for the HIS algorithm is indicated by a red vertical line on the histogram of
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Table 3: Maneuver Detection Results

# SatID Name
Date Range Maneuver DetectionsOrbit Period Perigee Apogee Ecc Incl

Start End FMF HIS MED Type min km km deg

3 22076 TOPEX 1993-01-03 1996-12-30 10 53 73 MEO 112 1332 1344 0.0007 66.0

10 23560 ERS 2 2007-01-02 2010-12-31 46 147 293 SS 100 784 785 0.0001 98.5

11 28884 GALAXY 15 2010-01-06 2010-12-31 21 12 61 GEO 1435 35766 35779 0.0002 0.7

13 29499 METOP-A 2011-01-23 2011-08-09 4 10 34 SS 101 820 821 0.0001 98.7

16 33331 GEOEYE 1 2008-09-07 2010-08-06 26 70 88 SS 98 671 686 0.0010 98.1

17 25544 ISS (ZARYA) 2005-01-02 2005-12-30 38 69 227 LEO 92 342 356 0.0011 51.6

21 25273 IRIDIUM 57 2010-01-02 2010-03-31 2 6 9 LEO 100 776 779 0.0002 86.4

the ∆V data. For the MED algorithm, the maneuver detection threshold computed from the running median

is plotted in red along with the ∆v data. A square plot symbol is shown at the top edge of the plots to indicate

the existence of χ values and ∆v values that are off-scale.

Results for TOPEX are shown in Figure 1. TOPEX is an Earth-observation satellite in a MEO orbit.

TOPEX executed 9 known fine-control maneuvers from 1993 up to 1996 [19]. The FMF detected all of the

maneuvers and a few false maneuvers. The HIS method and MED filter reported multiple detections for

the same maneuvers. An examination of Figure 1C. b shows increased ∆V at the times of the maneuver

detections by the MED filter. Maneuver detection results for TOPEX using a polynomial filter are reported

in [19]. The actual maneuver times are shown in [19, Fig. 2a].

Results for ERS 2 are shown in Figure 2. ERS 2 an Earth resources spacecraft in a sun synchronous LEO

orbit. Maneuvers from 2007 through 2010 comprise altitude and inclination adjustments. As can be seen

in Figures 2, the FMF filter detected every maneuver, the HIS detected all but one maneuver, and the MED

filter detected all maneuvers. An examination of the ∆V data in Figure 2 b shows that these all appear to be

correct detections. These results compare favorably with those in [21, p. 12].

Results for Iridium 57 are shown in Figure 2. Iridium 57 is a communications satellite in a high-inclination

LEO orbit as part of a constellation. The FMF filter just missed detection of one of the three maneuvers by

a small margin. The HIS method and the MED filter detected all three maneuvers. The three maneuvers are

seen in the residual data in [25].

4. CONCLUSION

An adaptive fading memory filter, a histogram method, and a median filter were developed to detect maneuvers

of space objects. These algorithms are adaptive to the noise level in the TLE data, which is not known and

is non-stationary. These algorithms generally performed well with a single set of parameters and TLE data

from several space objects in various orbital regimes. The fading memory and median filters do not require

that a long history of data be processed prior to being started, as do other TLE-based algorithms.

The fading memory filter was tested using only semimajor axis data. Separate fading memory filters are

needed to processes semimajor axis and inclination data, and any other orbital parameters, and each filter

requires its own set of tuning parameters.

The histogram method and the median filter process the magnitude-square of the change in velocity

computed from TLE data predicted to the same epoch, which essentially incorporates all orbital parameters.

The histogram method works best with the detection threshold computed from a fixed probability of false

alarm, rather than a threshold computed from a variance estimated from the median.
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The median filter is a statistically robust estimator, which makes it suitable for maneuver detection. The

median filter is simple and computationally fast, except for the need to compute velocity vectors from the

TLE data.

It was found that the ∆V data are noisy, often well above the maneuver levels. Nevertheless, the histogram

and median filter maneuver detection algorithms were able to detect most maneuvers. Typically there are

multiple detections for the same maneuver. It was also found that the detection threshold κ for the median

filter had to be 2 to 3 times larger than expected. It may be that the error in the ∆V data is not Gaussian,

though it is zero-mean except for maneuvers.

Variations on the median filter should be considered. The median filter could be used in place of the

threshold detection in the fading memory filter. The components of the ∆V vector could be processed

individually, without squaring. In RIC coordinates it would detect in-plane and out-of-plane maneuvers. A

similar but more efficient algorithm is to input the square of the 1-norm of the ∆V vector, rather than the

square of the 2-norm, into the median filter [10, p. 29, Def. 3.1]. The vector median filter [15] may offer

some advantages. Other algorithms include the weighted median filter and the adaptive weighted median

filter (L-filter) [11, p. 1906], an adaptive order statistics filter [11, p. 1912], and a sliding window adaptive

filter similar to a least-mean square adaptive filter [11, 16]. The recursive median filter (a median filter with

feedback) [10, p. 8, §1.2] is a simple extension of the median filter introduced in this report and may be more

robust.

The histogram method can be implemented much more efficiently by computing only the necessary

quantiles, rather than numerous bins that are not used [5]. A sliding-window fading-memory histogram can

also be implemented. Techniques such as those in [17] may improve efficiency.
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Fig. 1: Maneuver detection results for 22076-TOPEX
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Fig. 2: Maneuver detection results for 23560-ERS-2
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Fig. 3: Maneuver detection results for 25273-IRIDIUM-57
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