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Abstract

Atmospheric turbulence degrades the resolution of images of space
objects beyond that predicted by diffraction alone. Adaptive optics
telescopes have been widely used for compensating these effects, but
as users seek to extend the envelopes of operation of adaptive optics
telescopes to more demanding conditions, such as daylight operation
and operation at low elevation angles, the level of compensation pro-
vided will degrade. We have been investigating the use of advanced
wave front reconstructors and post detection image reconstruction to
overcome the effects of turbulence on imaging systems in these more
demanding scenarios. In this paper we show results comparing the op-
tical performance of the exponential reconstructor, the least squares
reconstructor, and the stochastic parallel gradient descent algorithm
in a closed loop adaptive optics system using a conventional contin-
uous facesheet deformable mirror and a Hartmann sensor. The per-
formance of these reconstructors has been evaluated under a range of
source visual magnitudes, and zenith angles up to 67 degrees. We have
also simulated satellite images, and applied speckle imaging, multi-
frame blind deconvolution algorithms, and deconvolution algorithms
that presume the average point spread function is known to compute
object estimates.

∗All authors are with the Michigan Technological University Department of Electrical
and Computer Engineering, 1400 Townsend Dr., Houghton, MI 49931, USA.
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1 Introduction

The degradation in performance of imaging systems due to atmospheric tur-
bulence is a well-known problem [1, 2]. The key limiting factor in the
resolution of a telescope due to the hardware is diffraction from the finite
size of the aperture. Increasing the size of the primary aperture reduces
the effects of diffraction. However, corruption of an optical field that has
propagated a significant distance through the atmosphere imposes a much
greater restriction on resolution than diffraction alone for a large telescope.
Varying temperature and pressure in the atmosphere results in a randomly
varying index of refraction. The initial effect of this on a propagating optical
field is to cause phase errors in the wavefront [2]. As optical fields travel
long distances through relatively strong turbulence, the mechanics of wave
propagation cause phase errors to produce amplitude errors known as scin-
tillation. Under severe conditions with scintillation, the surface of constant
phase known as the wavefront will become badly distorted and discontinuous
[3].

An adaptive optics system attempts to compensate for turbulence induced
field distortions by reducing phase errors in the field. An example of such a
system is shown in figure 1. A deformable mirror makes a phase correction
on the incident field, and a wavefront sensor measures a set of local wavefront
phase differences on the residual field. There is always a small time delay
between sensing and correcting the field [4, 5]. The goal of any adaptive
optics phase reconstructor is to start with a vector ~s of wavefront sensor
phase difference measurements, and compute a set ~p of relative phases to be
used as actuator commands for the deformable mirror.

Traditionally, adaptive optics systems have been used under relatively
weak turbulence conditions where scintillation effects are low. The least
squares reconstructor has been the most widely used method in these con-
ditions [4, 5]. One basic limitation in keeping turbulence effects minimal is
that the zenith angle must be small. As the zenith angle increases, the
path through the atmosphere becomes longer and turbulence effects be-
come stronger. Discontinuities known as branch points in the wavefront
can result, violating a primary assumption of the least squares reconstruc-
tor [6, 7]. There are reconstruction methods that attempt to locate branch
points [8, 9, 10], but they are slow and complicated, and their performance
in the presence of noise is not well understood. The exponential reconstruc-
tor is known to perform well in the presence of phase discontinuities without
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the need to locate branch points [7]. Its implementation to an adaptive
optics system with a Hartmann wavefront sensor, however, is not straight-
forward. Here we present a new way of using the exponential reconstructor
on Hartmann data.

The new implementation of the exponential reconstructor has resulted in
better performance in a closed loop simulation than both the least squares
reconstructor and a previously proposed method of implementing the ex-
ponential reconstructor on Hartmann data. In addition, the new method
of implementing the exponential reconstructor performs better by a larger
margin over the other methods as noise levels increase and also as turbulence
conditions worsen. This makes the method presented here a good choice for
use in severe turbulence conditions and also in low light level conditions.

Advanced phase reconstructors can provide better phase compensation in
severe conditions. However, an alternative to wavefront sensing and phase
reconstruction is the stochastic parallel gradient descent (SPGD) algorithm
[11]. The basis of this algorithm is to generate random perturbations on the
deformable mirror shape and then test some measure of performance. New
random perturbations are generated and tested until the process converges
to an adequate deformable mirror figure. This algorithm is desirable because
it does not require any wavefront sensing. The measure of performance is
based on the total intensity in the aperture, so it is not as vulnerable to
low light levels divided among many subapertures. One concern with this
algorithm is its convergence speed. This algorithm has been tested in severe
conditions by simulation, and also with a beam compensation experiment.

The remainder of this paper is organized as follows. Section 2 gives
a basic description of the reconstructors studied. Section 3 describes the
problem with the geometrical arrangement of the Hartmann wavefront sensor
data with respect to implementation of the exponential reconstructor. A
previously proposed method of splitting the data into two reconstructor grids
is presented, along with the new method which keeps all of the data on
a single grid. Section 4 describes the stochastic parallel gradient descent
method. Finally, section 5 presents the simulation results.

2 Phase Reconstructors

The goal of a wavefront reconstructor is to use wavefront sensor phase dif-
ference measurements to obtain the phase at a set of points. A single sub-
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Figure 1: Closed Loop Adaptive Optics System

aperture of a Hartmann wavefront sensor is shown in figure 2. There are
two phase difference measurements obtained from each subapeture, one in
the x direction, and one in the y direction. For N subapertures, the vec-
tor ~s contains all the phase difference measurements [sx1sy1sx2sy2...sxNsyN ].
The actuator locations of the deformable mirror are positioned at each cor-
ner of the wavefront sensor subapertures. A vector ~p = [p1p2...pM ] must be
obtained where M is the number of actuators.

A least squares reconstructor finds a solution to the problem of mapping
~s to ~p such that a particular measure of the mean square error is minimized.
The basic idea behind a least squares reconstructor is to use the actuator
and subaperture locations to construct a matrix M such that the slope mea-
surements ~s are related to the estimated phases ~p by

p̂ = M~s, (1)

where M is an inverse to a gradient matrix G that would solve the problem
~s = G~p. The matrix M can be computed for any arrangement of phase
difference measurements and actuator locations.

The exponential reconstructor is based on adding phase differences along
a path. This confines it to a geometry in which phase differences link the
actuator locations. In addition, the algorithm operates by reducing the grid
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Figure 2: Single subaperture of a Hartmann wavefront sensor

size by a factor of 2 repeatedly, and then expanding it by a factor of 2 back to
the original size. This requires the grid size for the exponential reconstructor
to be (2N +1)× (2N +1), where N is a positive integer with phase differences
linking those points. This results in the need for (2N + 1)× (2N) x-directed
phase difference measurements and (2N)×(2N +1) y-directed phase difference
measurements. An example of this starting grid with N = 3 is shown in
figure 3. The exponential reconstructor has three parts to its algorithm.
In the reduce portion, the grid of phase differences is cut in size repeatedly
such that a grid of (2N + 1) × (2N + 1) grid points is reduced to a grid of
(2N−1 + 1) × (2N−1 + 1). Phase difference measurements in the reduce part
of the algorithm are consolidated such that two phase differences along the
x or y direction are replaced with one phase difference. This is done until
the grid is only of size 2× 2. At this point the least squares solution to the
2× 2 grid is calculated. The final step of the algorithm is the build part, in
which the 2 × 2 grid of phase points is expanded such that at each step a
(2N + 1)× (2N + 1) size grid becomes a (2N+1 + 1)× (2N+1 + 1) grid. This
is done until the grid is back to the original size and contains phases at all
of the original grid points. A detailed presentation of this algorithm can be
found in reference [7].
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Figure 3: Exponential reconstructor grid for N = 3

3 Exponential Reconstructor Geometry Im-

plementation

One key challenge in implementing the exponential reconstructor is that it
must operate on the geometry shown in figure 3. Phase difference measure-
ments must link actuator points in a square grid. This is referred to as the
Hudgin geometry [12]. For a Hartmann wavefront sensor, however, phase dif-
ference measurements are positioned across the center of a subaperture while
the actuator locations are at the corners of a subaperture. This is the called
the Fried geometry [13]. Both of these geometries are shown for comparison
in Fig. 4. In both drawings a single subaperture is contained inside a square
with an actuator at each corner so that there are 4 subapertures shown. A
sample gx and gy phase difference measurement or value is shown in each
drawing.

The solution to adapting Fried geometry data to a Hudgin geometry
reconstruction lies in recognizing that wave front sensor slope measurements
can be determined with respect to any rotation of the coordinate system.
The first step in creating a Hudgin geometry is to obtain phase differences in
the diagonal directions of up-right and up-left gradients [7]. This is shown
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Figure 4: Comparison of the Fried and Hudgin Geometries

in figure 5.
Diagonal phase differences connect actuator locations, so if the coordi-

nates are rotated by 45 degrees the result is identical to the Hudgin geom-
etry. There still remains a problem in that the diagonal phase differences
cross each other. The solution proposed by Fried is to split the set of ac-
tuator locations and phase difference measurements into two separate grids
that can be solved separately [7]. Figure 7 shows this two-grid geometry.
Actuators on one of the interlaced grids occupy every other position on the
full grid of actuators. There is difficulty, however, in combining the two grids
because of waffle error in the reconstruction. The waffle mode in its most
basic form is a checkerboard pattern of positive and negative phases across
all the actuators. A portion of this pattern containing four subapertures is
shown in figure 6. Note that the phase difference measurements due to the
waffle mode is shown to be zero. This means that the waffle mode is not
detected by the Hartmann wave front sensor. Very little waffle mode would
actually exist in a propagated field, but waffle mode can creep into the phase
reconstruction in a closed loop adaptive optics system and continue to grow
because waffle is unobserved in the wave front sensor. This is a well known
problem, especially when converting from the Fried geometry to the Hudgin
geometry [14, 15, 16].
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Figure 6: Drawing and Analysis of Waffle Error

8



Figure 7: Two grid geometry: Open circles and dashed lines are the first
grid, colored circles and solid lines are the second grid
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Methods for removing waffle error involve either spatial filtering or re-
moving the components of the waffle mode in the frequency domain. When
noise is present, as it is in the simulations described here, waffle error is
difficult to remove [16]. An example of the reconstructed phase from the
two grid geometry is shown in figure 8. It is clear that the waffle mode is
present with a varying sign and amplitude across the aperture. A solution
to the waffle error was devised such that waffle error doesn’t quickly ap-
pear in the reconstruction. The first step is to replace each phase difference
measurement with two phase differences that each span half the length of
the original. These two phase differences will also be half the value of the
original as well. This allows a single reconstruction grid to be defined rather
than two independent grids. A diagram of this reconstruction grid is shown
in figure 9. Using this single grid creates a set of phase points and phase
differences that contains phase points at all of the actuator locations along
with some phase points that are not at an actuator location. These phase
points not at an actuator location in the reconstruction grid are at the cen-
ter of each subaperture. The reconstruction can then be performed on the
single grid, and the phase points that are not at an actuator location can
be ignored when matching the reconstructed phases to actuator commands.
It was found that this method results in better performance and virtually
no waffle error as compared to reconstructing the wave front on two disjoint
grids.

4 Stochastic Parallel Gradient Descent: SPGD

The SPGD algorithm for wavefront correction is quite different from conven-
tional wavefront sensing and phase reconstruction techniques. The SPGD
approach to deformable mirror control attempts to iteratively optimize some
measure of performance by operating on the actuator control signals and
some measure of performance. The performance measure, which we will rep-
resent with the symbol J , is a function of all the actuator positions. In
practice, J is a scalar function of the deformable mirror actuator positions
that is determined to be a good measure of performance. In this case en-
circled energy with an exponential weighting was chosen. The exponential
weighting favors the intensity close to the center and only intensity in a cho-
sen radius is integrated. The exact weighting function equation used in the
simulation is exp(−r/3), r <= 3.
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The algorithm begins by randomly generating a set of perturbations δu to
add and then subtract from the control signals. In this study each actuator
perturbation has a magnitude of +a or −a with equal probability. Letting f
be the function of the actuator commands that gives the performance metric
J , we define

J+ = f(u + δu) (2)

J− = f(u− δu) (3)

for the randomly chosen perturbation δu. J+ and J− are computed in order
to determine what the slope of J is in the direction of δu around the current
actuator commands u. The commands un+1 are updated from the current
commands un by [17]

un+1 = un + γ(J+ − J−)δu (4)

where γ is referred to as the descent strength. γ can be chosen to be a
constant through all the iterations, or some choices can be made to vary it.
To illustrate considerations for choosing γ and a as they relate to equation
4, consider figure 10. Figure 10 is a plot of the performance metric in a
randomly generated direction δu as discussed as the magnitude a in that
direction varies around zero in both the positive and negative directions.
Two different trials are shown to illustrate different possible curves for the J
function as the magnitude along a fixed perturbation direction varies. Note
that the J curves shown in the figure are clearly not linear. This means that
the calculation of the slope of the J function δJ = (J+ − J−) is only valid
for some range about the starting point. The magnitude a of the random
perturbations should be chosen so that there is not too much curvature in the
J function between +a and −a. Also, γ should be chosen to generally keep
the magnitude γ(J+−J−) multiplied by δu in the update step of equation 4
less than 1. Due to the curvature and nonlinear nature of J , confidence in J
is low beyond the magnitude of the perturbation tested. In both simulation
and experiment, if the command update magnitude γ(J+ − J−) is greater
than 1 at any iteration, then γ is reduced by .75.

An experimental setup has been constructed to test the SPGD algorithm.
The layout of this experiment is shown in figure 11. The phase distortions are
provided by a spatial light modulator (SLM) from Boulder Nonlinear Systems
and their Matlab software development kit. A phase screen is generated in
Matlab and then written to the SLM. A columnated laser beam is reflected
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Figure 10: Performance metric J as the magnitude along a particular direc-
tion of phase perturbations as δu varies. Two examples are shown.
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Figure 11: Block diagram of an SPGD simulation

from this SLM. The second SLM is used to correct the beam which was
distorted by the first SLM. Two lenses are placed between the SLM’s as
shown in order to ensure that the field falling on the correcting SLM matches
the field falling on the distorting SLM. The SLM’s have 512×512 independent
control channels which is much larger than the desired number of variables
the SPGD algorithm will operate on. Instead of using the full resolution of
the SLM, 32×32 images are written to the correcting SLM. The software
automatically scales the smaller images to fit the SLM. This allows for 1024
independent control channels which is similar to the number used for the
simulations. A CCD camera is placed in the focal plane of the outgoing
beam. The camera image is then used to compute the performance metric
for the algorithm.
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5 Simulation Results and Discussion

Four methods of wavefront reconstruction were simulated for comparison: (1)
the least squares reconstructor, (2) the exponential reconstructor working on
the new single grid, (3) the exponential reconstructor working on the two
grid geometry, and (4) a combination of the least squares and exponential
reconstructor suggested in Ref. [18] known as the slope discrepancy method.
This method involves performing a least squares reconstruction, differenti-
ating the resulting phase, and using the exponential reconstructor on the
residual phase differences obtained. The reconstructors were tested for fields
propagating through the atmosphere, arriving at the top of the atmosphere
at zenith angles of 0, 30, 60, and 67 degrees. The amount of light available
to the wavefront sensor helps to determine how much noise is present in the
measurements. Equation 5 was used to calculate the standard deviation of
the noise [2]. The parameter η represents the imperfections of the detector
and is set to 1.35 for these simulations. The parameter KW is the number
of photons falling in each subaperture during the measurement integration
time. Photon counts were obtained from calculations using a 1ms integration
time on a source of visual magnitude 2, 4, and 6. The transmission loss at
each zenith angle was also accounted for. Trials were done with no noise and
increasing noise based on the source visual magnitude of 2, 4, and 6.

σn =

0.86πη

(KW )1/2r0
rad/m d > r0

0.74πη

(KW )1/2d
rad/m d ≤ r0

(5)

Plots of the Strehl ratios for all the trials simulated are shown in figures
12 and 13. The best method of wavefront reconstruction with Hartmann
wavefront sensor data was found to be the exponential reconstructor oper-
ating on the new single grid geometry. This is true at every zenith angle
and noise level. There is also a trend that the exponential reconstructor out-
performs the least squares reconstructor by a greater margin as the zenith
angle increases and as the noise levels increase. This shows that while the
exponential reconstructor is always superior, its advantage is even better the
more severe the conditions get.

The other two advanced methods of wavefront reconstruction had varied
success. The two grid exponential reconstructor tends to only outperform
the least squares reconstructor when the zenith angle increases, and the
noise level is high. This is because in severe conditions the advantage of
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using the exponential reconstructor outweighs the disadvantage introduced
by waffle error. The slope discrepancy reconstructor does at least as well as
the least squares reconstructor, and tends to do best when the noise level is
low. This makes sense because the slope discrepancy reconstructor does two
sequential reconstructions based on noisy data. The effect of noise on the
least squares reconstruction propagates into the exponential reconstruction.
These trends are interesting, but the ultimate result is that the single grid
method of using the exponential reconstructor is clearly the best option. It is
especially encouraging that the margin of increased performance gets larger
the zenith angle and noise increase. This implementation of the exponential
reconstructor will expand the range of conditions in which adequate phase
correction can be accomplished.

After determining the parameters to be used, the SPGD algorithm was
simulated for 100 independent realizations of the atmosphere at θz = 67.
The resulting radially averaged PSFs are shown in figure 14. The Strehl
ratios obtained from the simulations are 29.18% for the standard Maui3 tur-
bulence profile and 14.85% for twice the Maui3 profile. With the standard
Maui3 profile the performance of the SPGD algorithm is almost always worse
than the reconstructors studied. It only performs better at the highest noise
levels. The least squares and exponential reconstructors were simulated at
twice the Maui3 profile to compare with the SPGD algorithm as well. The
resulting Strehl ratios at twice the Maui3 profile are shown in figure 15.
Note that the SPGD algorithm does outperform the reconstructors with the
single exception of the exponential reconstructor with no noise. The recon-
structors are expected to perform very poorly under these conditions as the
Fried parameter is r0 = 6.61cm for θz = 67 at twice the Maui3 profile. The
subaperture size for the wavefront sensor is 11.25cm, so the field is clearly un-
dersampled. If a new wavefront sensor and deformable mirror were designed
with sampling on the order of r0 = 6.61 cm, a large increase in performance
is likely to be seen. The SPGD algorithm doesn’t decrease in performance
as rapidly with more severe field corruption because it doesn’t depend on a
wavefront sensor. Note that doubling the turbulence strength roughly cuts
the Strehl ratio in half for the SPGD algorithm. The Strehl ratio is reduced
by more than half when using the reconstructors. This suggests a possibility
that the SPGD algorithm could be advantageous in using existing hardware
to perform corrections in conditions that would be too severe for phase re-
constructors.

The experimental setup for testing the SPGD algorithm was used to test
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Figure 12: Strehl ratios of the reconstructors with: (a) No noise; (b) Magni-
tude 2 source;
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Figure 13: Strehl ratios of the reconstructors with: (a) Magnitude 4 source;
(b) Magnitude 6 source;
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Figure 14: Average PSF over 100 iterations of the SPGD algorithm with
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the algorithm’s convergence with moving phase screens. A 1024×1024 phase
screen was generated that has D/r0 = 36. The phase screen written to
the distorting SLM is a 512×512 subarray from the larger 1024X1024 phase
screen. The distorting SLM is timed to update once per iteration of the
algorithm such that the section of the large phase screen written to it pro-
gressively moves from left to right. This was done for a range of speeds from
4 iterations per pixel shift to 50 iterations per pixel shift. Linear interpola-
tion was used to update the SLM with a new partially shifted phase screen
every iteration of the algorithm. For a single shifting phase screen, the re-
sulting converged spot was averaged for a series of 6 images separated by
100 iterations. This was done well after the algorithm initially converged.
This process was then repeated for 30 independently generated phase screens.
The final result is a compensated PSF obtained from averaging all 180 images
obtained as described.

In order to compare performance, the ratio of intensity inside the first
zero of the diffraction limited spot to the total intensity was computed. This
was chosen because it is a measure relative to the total intensity. Peak
intensity and even total intensity were found to vary too much to be used
for comparisons. This percentage of encircled energy for each trial is shown
in figure 16. For this plot, the range of error is shown representing two
standard deviations from either side of the mean. In addition figure 17
shows the radially averaged PSFs obtained from each speed of moving phase
screens along with uncompensated and diffraction limited PSFs. Note that
the uncompensated PSF is much worse than all the compensated PSFs and
also the compensated PSFs approach the width of the diffraction limited
PSF. From these plots it can be seen that the tails of the PSF become close
to zero and the encircled energy rises above 50 percent at around 20 to 30
iterations per pixel shift of the phase screen. The sample spacing of the phase
screens is made to represent sample spacing of 7.5mm in a 3.6m telescope
pupil. Typical wind speeds of 7.5m/s would correspond to a pixel shift every
millisecond. The results demonstrate that very good compensation could be
attained at iteration speeds of 20− 30kHz in order to get 20 to 30 iterations
per pixel shift. Significant compensation can even be attained down to 4
iterations per pixel shift which might correspond to 4kHz.
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Figure 16: Percent of energy within the first zero of the diffraction limited
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6 Conclusion

This work has demonstrated a wide variety of phase compensation tech-
niques. As for wavefront reconstruction, the exponential reconstructor is
showing a lot of potential for use in severe turbulence and high noise levels.
The new method of using it with Hartmann wavefront sensor data is also very
feasible. Splitting the measurements in half is a simple solution. It does not
gain any resolution, but it keeps the data in a single reconstruction problem
and helps the reconstructor perform in closed loop by greatly reducing waffle
error. The simulations have shown this implementation has at least modest
improvement over all the other methods and in all the conditions tested.

The SPGD algorithm is very simple to implement, and it has shown some
usefulness. It is not likely to outperform a well sampled wavefront sensor and
phase reconstruction system. However, severe turbulence and low light levels
can get very taxing on a wavefront reconstructor. The only sensing for the
SPGD algorithm is a single measurement of the entire aperture in order to
obtain a performance measure. The aperture does not need to be divided into
many subapertures for wavefront sensing. This is very helpful in low light
levels when each wavefront sensor subaperture would only get a fraction of
the little light available. To add to the problem of having many subapertures,
as turbulence conditions worsen, more subapertures are needed to adequately
sample the field. The SPGD simulations have shown performance compa-
rable to wavefront reconstructors in the most severe noisy conditions. Also,
the experiment has shown convergence of the algorithm in changing turbu-
lence. The main consideration for SPGD is whether the convergence is fast
enough to overcome the rate of changing turbulence conditions. The results
show that improvement can be gained with changing turbulence, and that
improvement can be quite good if the algorithm is able to run fast enough.
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