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Abstract:  Sample statistics from a multi-frame blind-deconvolution (MFBD) algorithm are compared with Cramer-
Rao bounds (CRB) in order to evaluate the noise reduction performance of the MFBD algorithm.   In this paper, 
CRB theory is employed as a metric to evaluate the performance of a MFBD imaging algorithm developed at the Air 
Force Maui Optical and Supercomputing Site, a site operated by the Air Force Research Laboratory.  Sample 
variances from the MFBD algorithm named PCID (physically constrained blind deconvolution) and CRB lower 
bounds to variances are compared for a baseline model imaging scenario that employs an object, blurring, photon 
noise and read noise.  The variance reduction effects produced by imposing support constraints on the object and on 
the point spread function (PSF) are analyzed.  Pixel-by-pixel sample variance maps are compared to CRB  maps for 
the case of perfect and loose object support constraints.  The PCID sample variance maps are evaluated against 
CRBs both to determine the relative magnitude of these variances as opposed to CRB lower bounds and to assess 
overall morphology differences.  For the baseline model imaging scenario, the PCID pixel-by-pixel sample variance 
magnitudes match their associated CRBs, and the PCID sample variances and CRBs share the same overall 
morphology.  Additionally, PCID sample variance results are presented for cases where the baseline model imaging 
and post-processing scenario above is extended beyond where CRB theory has been developed.  The model imaging 
scenario is extended to include the use of positivity in the imaging algorithm. 

 
1.  Introduction  
 
Recently, Cramér-Rao bound (CRB) theory for support-constrained multi-frame blind deconvolution was 
developed.1  CRB theory can be used to generate algorithm-independent lower bounds to either unbiased or biased 
estimators of a set of parameters.  In this paper, the CRB theory for unbiased estimators is employed as a metric to 
evaluate the performance of a multi-frame blind-deconvolution (MFBD) imaging algorithm developed at the Air 
Force Maui Optical and Supercomputing Site, a site operated by the Air Force Research Laboratory.  Sample 
variances from our MFBD algorithm named PCID (Physically Constrained Blind Deconvolution) are compared to 
their corresponding CRBs for a model imaging scenario.  PCID employs a conjugate gradient search algorithm in 
order to minimize a cost function that expresses the difference between the given measurement and estimates of the 
measurement based on convolving the estimated object and blurring point spread functions (PSF).  It is shown that 
the PCID sample variances and the CRBs have similar morphology, and that the PCID sample variances approach 
their respective CRBs, i.e., they nearly achieve the theoretical performance bounds of noise reduction.   
 
Then, the imaging scenarios employed in the PCID/CRB comparison are once again post-processed using PCID, this 
time enforcing a positivity constraint.  The associated positivity constrained CRBs are not presented.  The positivity 
enforced PCID results are evaluated against the unconstrained PCID and CRB results both to determine the 
numerical effect of positivity on reconstructions and to assess morphological differences.  The remainder of this 
paper is structured as follows: the basic imaging model and an explanation of the PCID algorithm are given in 
Section 2, a brief explanation of how Cramer-Rao bound theory is employed is this research is provided in Section 
3, results are presented in Section 4, then a conclusion and remarks about future work are given in Section 5. 
 
 
 
 
 



2.  Imaging model and PCID 
 
The imaging model used in this research is  
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where im is the mth

 measured image, x specifies locations in the image, * denotes convolution, hm is the mth PSF, o is 
the object, and nm is the mth zero mean, spatially-uncorrelated noise function   In a typical imaging application, the 
exposure time of im(x) is on the order of 1-10 ms so that high frequency content out to the diffraction limit is 
retained.2  Then, our PCID algorithm can be employed to extract much of the information content concealed by the 
blurring and noise.  The PCID algorithm jointly estimates both the object and the blurring function from the blurred 
and noisy image data by minimizing the following cost function: 
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x

xx
2

1        (2) 

 
where J(…) is the cost function to be minimized with respect to estimates of the object and all the PSFs, using all M 
measured images, and the ( )xmî  are the estimates of the M images generated by convolving the estimated object 
and the M blurring functions.3  It should be noted that both positivity and support constraints can be imposed on the 
algorithm. 
 
3.  Cramer-Rao Bounds 
 
Cramer-Rao bound theory provides an algorithm-independent analysis approach to explore how the combination of 
the model imaging scenario and support constraints impact reconstructed image quality. This approach is employed 
because it produces “gold standard” results that characterize the benefits of prior knowledge constraints without the 
concerns that the results are algorithm dependent and that the results may change if a more clever algorithm is 
employed. Cramér-Rao lower bound (CRB) theory relies upon the Fisher information matrix (FIM) to generate 
lower bounds to the variances of any estimate of a collection of random variables. As a result, it can be viewed as 
characterizing how the information content in a prior knowledge constraint reduces noise in an image, rather than 
how a specific algorithm uses the information in a prior knowledge constraint to reduce noise.4 
 
4.  Results 
 
The measured data consisted of the satellite object shown in Fig.1 convolved with M atmospheric blurring point 
spread functions corresponding to  D/r0 = 8 and corrupted by either zero-mean Gaussian white noise or by Poisson 
distributed photon noise and zero-mean Gaussian white noise (read noise), where D is the telescope diameter and r0 
is the Fried parameter.  The PSFs were made invertible by first low-pass-filtering them with a square low-pass filter 
and then embedding these low-pass-filtered versions in an array of the same size as the low-pass filter.  They were 
then made to have finite support by applying a circular support constraint in the image domain.  These modifications 
to the PSFs were made to simplify the comparison between sample variances and CRBs by making possible 
unbiased estimates of the object.  A large set of blurred and noisy data was generated using this approach for use in 
PCID reconstructions.  Pixel-by-pixel sample variances were produced from support-constrained PCID restorations 
using this dataset with M = 10.  In this paper, perfect object support where the support boundary conforms perfectly 
to the ocnr object, and the blur2 and circular object support shown in Fig. 1 were employed in PCID restorations.  
CRBs for this imaging situation were obtained from previous work. 5    
 
CRB, PCID, and PCID with positivity enforced results for the read noise only case are presented in Figure 2.  These 
results are depicted as pixel-by-pixel variance maps, normalized to the highest valued pixel of the associated CRB 
variance map.  PCID sample variances and CRBs, for the case of perfect object support,  tight but non-perfect blur2 
object support, and circular support are shown.  The CRB and PCID results were generated from the same imaging 
scenario, so that the CRBs can be employed as a metric to evaluate the PCID results.  The similarities in 
morphology show that the CRBs and the PCID sample variances are in qualitative agreement for all three support 
constraints sizes.  Also, the numerical value of the summed CRB arrays and PCID sample variance arrays shows 



that PCID is approaching the theoretical limits to noise reduction for this imaging scenario, as given in Table 1.  The 
mean-square error (MSE), i.e., the total variance summed with the total squared bias (these results were largely 
unbiased), of the PCID reconstructions nearly meet the CRBs. 6  In order to achieve the CRBs, the PCID algorithm 
must drive to the global minimum solution of the given noise corrupted, blind deconvolution problem.  In imaging 
situations where positivity was not employed, the blurred and noisy data could be used to seed the PCID algorithm.  
In challenging imaging situations where the object support is significantly larger than the object and where positivity 
is employed, the PCID algorithm can get stuck in local minima. In this case, the initial object guess employed to 
seed the algorithm consisted of the ocnr object with noise that amounted to three or more times its associated CRB 
variance. 
 
The summed sample variances of the positivity constrained case are the same or lower than the unconstrained case.  
Although the positivity constrained CRBs are not provided, it seems reasonable to conclude that the variances in the 
positivity constrained case are lower because negative intensity values are eliminated thereby reducing the range of 
possible variance from the mean.  Also, the squared bias of the reconstructions rose above the unconstrained PCID 
sample variance levels as might be expected from the application of the positivity constraint.  Also, positivity 
appears to operate like an object support constraint when the applied object support constraint is loose, as shown in 
the positivity enforced, circular support constrained results in Figure 2. 

 
                                                                   (a)                                          (b)                                         (c) 
Fig. 1. (a) Computer-simulated satellite model, (b) the blur2 support constraint and (c) circular support used for the 

PCID and CRB calculation. 
 
 

Totals within support constraint: true support blur2 support circular support 
CRBs 4.8 x 105 7.7 x 105 3.1 x 106 
PCID 4.9 x 105 8.0 x 105 3.8 x 106 
PCID positvity enforced 4.9 x 105 5.5 x 105 5.8 x 105 

 
Table 1.  Read noise case.  The total CRBs within a support constraint consist of the summation of all the minimum possible pixel-by-pixel 
variances that any unbiased estimate could achieve.  For each PCID result presented in this table, the summed pixel-by-pixel sample variances 
were drawn from a set of fifty reconstructions.  Each reconstruction was post-processed from measurements formed from the ocnr object, the ten 
PSFs, and independent read noise realizations.  
 



 
 
Fig. 2.  Read noise only case.  The first row consistts of pixel-by-pixel CRB lower bounds to variance maps. The second and third row consist of 

PCID sample variance maps and  for unconstrained and positivity constrained cases.  Support constrained cases are organized by column: 
perfect or true support, blur2 non-perfect support, and circular support.  All PCID variance maps are normalized to the highest value within 
the associated CRB map located at the top of the column. 

 
CRB, PCID, and PCID with positivity enforced results for the photon and read noise are presented in Figure 3.  As 
in the read noise only case, these results are depicted as pixel-by-pixel variance maps, normalized to the highest 
valued pixel of the associated CRB variance map.  PCID sample variances and CRBs, for the case of perfect object 
support,  tight but non-perfect blur2 object support, and circular support are shown.  The CRB and PCID results 
were generated from the same imaging scenario, so that the CRBs can be employed as a metric to evaluate the PCID 
results.  Again, the similarities in morphology between the two maps show that the CRBs and the PCID sample 
variances are in qualitative agreement.  Also, the numerical value of the summed CRB arrays and PCID sample 
variance arrays shows that PCID is approaching the theoretical limits to noise reduction for this imaging scenario, as 
given in Table 2.  The MSE of the PCID reconstructions nearly meet the CRBs. 6  It is worth noting that the MSE 
was almost entirely comprised of variance; these results were largely unbiased.  
 
In order to achieve the CRBs, the PCID algorithm must drive to the global minimum solution of the given noise 
corrupted, blind deconvolution problem.  In imaging situations where positivity was not employed, the blurred and 
noisy measurement data could be used to seed the PCID algorithm.  In challenging imaging situations where the 
object support is significantly larger than the object and where positivity is employed, the PCID algorithm can get 
stuck in local minima, e.g., the positivity constrained case with circular support, shown at the bottom right in Figure 
3, did not converge to the global minimum.  In this case, the initial object guess employed to seed the algorithm 
consisted of the ocnr object with noise that amounted to three or more times its associated CRB variance.    
 
 
Totals within support constraint:  true support blur2 support circular support 
CRBs 2.0 x 1010 2.4 x 1010 2.8 x 1010 
PCID 2.3 x 1010 2.7 x 1010 3.0 x 1010 
PCID positvity enforced 2.2 x 1010 2.3 x 1010 Not available 

 
Table 2.  Photon and read noise case.  The total CRBs within a support constraint consist of the summation of all the minimum possible pixel-by-
pixel variances that any unbiased estimate could achieve.  For each PCID result presented in this table, the summed pixel-by-pixel sample 
variances were drawn from a set of fifty reconstructions.  Each reconstruction was post-processed from measurements formed from the ocnr 
object, the ten PSFs, and independent photon noise and read noise realizations.  
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Fig. 3.  Photon and read noise case.  The first row consistts of pixel-by-pixel CRB lower bounds to variance maps. The second and third row 

consist of PCID sample variance maps and  for unconstrained and positivity constrained cases.  Support constrained cases are organized by 
column: perfect or true support, blur2 non-perfect support, and circular support.  All PCID variance maps are normalized to the highest 
value within the associated CRB map located at the top of the column. 

 
4.  Conclusions and Future Work 
 
We have employed CRBs as a metric to measure the performance of the PCID algorithm for the cases of a satellite 
object, ten blurring PSFs, and photon and read noise.  Pixel-by-pixel sample variance maps were compared to CRB 
maps for the case of perfect, tight, but non-perfect, and circular support constraints on the ocnr object.  When these 
support constraints are employed, variances are in numerical and morphological agreement with CRB theory.  The 
PCID sample variances are roughly equal to or slightly higher than the CRBs, however, because PCID 
reconstructions achieved the global minimum of the associated PCID conjugate gradient search algorithm.  PCID 
sample variances for the positivity enforced case were compared to the CRBs for the unconstrained case. In this 
case, summed PCID variances dropped below unconstrained CRBs and biases increased, as might be expected.  
Also, the positivity constraint acts as an object support constraint when loose object supports are employed.  In 
future work, factors that make the PCID algorithm get stuck in local minima will be investigated.  Also, the noise 
reduction benefit of additional frames of data to MFBD algorithms will be investigated.  CRB theory indicates that 
the relative amount of noise reduction per iteration is greater than 1/m for the first few frames, where m is frame 
count, and then shallows out to approximately 1/m relative noise reduction per iteration. Sample variances from 
PCID will be tested for agreement with CRB theory. 
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