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ABSTRACT 

Random fluctuations in the index of refraction, caused by differential heating and cooling of the atmosphere, can 
severely limit the quality of ground-based observations of space objects.  Techniques such as adaptive optics can help 
compensate for the deleterious effects that turbulence has on the images by deforming the telescope mirror and thus 
correcting the wave-front. However, when imaging through strong turbulence such techniques may not adequately 
correct the wave-front. In such cases blind restoration techniques – which estimate both the atmospheric turbulence 
characterized by the atmospheric point-spread-function and the object that is being observed - must be used.  We 
demonstrate high quality blind restorations of object scenes, obtained when observing through strong turbulence, by 
using a sequence of images obtained simultaneously at different wavelengths and prior information on the distribution of 
the sources of regions of low spectral power in the data. 
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1. INTRODUCTION 
Blind restoration is an important post-processing technique for restoring imagery when the point spread function (PSF) 
for the imaging system is either not known or is poorly known. Perhaps one of the most widely used blind restoration 
techniques is multi-frame blind deconvolution (MFBD)1,2 This technique is used for sequences of images of a target 
obtained over time scales such that the target can be considered stationary but the PSFs are changing. This situation is 
common for observations of objects through the Earth's atmosphere where fluctuations in the air temperature at the 
interface between different layers of air, give rise to random fluctuations in the refractive index of the air. These 
fluctuations produce aberrations in any wave front propagating through the air (hence yielding a changing PSF).  Though 
adaptive optics (AO) can compensate for these randomly induced aberrations, this compensation is never complete 
especially in regimes of strong turbulence where post-processing is often applied to AO data.  

The blind restoration problem is typically both ill-conditioned (due to noise in the measurements) and ill-posed (i.e. it 
does not have a unique solution3 ). However, one can find physically meaningful solutions by using prior information 
about the object being viewed (e.g., spatial extent, positivity, real-plane zeros4) and knowledge about the underlying 
physics of the imaging process. In general, the fidelity and resolution of the restoration is directly related to the amount 
and quality of prior information used to constrain the restoration. Here we investigate a new information prior that is 
based on the fact that not all spatial frequencies in the data carry the same amount of information. We combine this new 
constraint with current wavelength diversity5 image restoration methods to obtain high fidelity image restorations using 
data obtained when the target is observed through strong turbulence.  

We restrict our studies to imagery that is obtained under isoplanatic conditions, that is, the PSFs are spatially invariant. 
This allows us to describe the observed imagery gk(x) in terms of a convolution of the target object f(x) and PSF h(x) 
plus additive noise nk(x). That is,  
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where the subscript k denotes a time index. Equivalently, the observed Fourier spectra are represented by  
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Isoplanatic conditions will apply when the main source of atmospheric turbulence is close to the telescope aperture. 

 

 

2. SPECTRAL HOLES  
Spatial frequencies in the data that have low Fourier power carry little or no information. We refer to such frequencies as  
spectral holes.  Equation (2) shows that, in spectral regions where the signal-to-noise ratio is greater than unity, spectral 
holes in the data are a direct result of holes in the spectra of the object and PSF. In general, the source of an individual 
hole is unknown. However, when imaging a stationary object through the turbulent atmosphere, the spectral holes in the 
data associated with the PSF will change from frame to frame while the holes that are part of the object spectrum will 
remain fixed. This allows us to identify the source of each hole and thus determine the distribution of the spectral holes 
between the PSF and object. 

Interestingly, the Fourier spectra of man-made objects such as spacecrafts and satellites appear to have a large fraction of 
the spectrum that can be omitted before any significant visual impact is noticed (see Fig. 1)  

 
Figure 1 Left column: Model of the Hubble Space Telescope [top] and its full Fourier spectrum [bottom]. Right column: 

Fourier-constrained object where the threshold for identifying spectral holes is 10-5 of the peak object power. The number in 
the upper right hand corner of the top panel denotes the relative (r.m.s.) error between the truth and the Fourier-constrained 

target scene, that is the scene after spectral holes are excluded from the spectrum, while the number in the bottom panel 
denotes the fractional amount of the Fourier spectrum that is present in the constrained scene.  

 

Knowing the locations of these regions of low power (spectral holes) should therefore provide a strong prior constraint 
on the object during the image restoration process. Similarly, knowledge of the spectral-hole structure for the PSF should 
aid in the recovery of the PSF.  The leverage gained from using this prior information on the PSF, however, will depend 
on the strength of the turbulence and the extent of the power spectrum of the object. The former is because the number of 
PSF spectral holes increases as the turbulence strength increases (see Figs. 2 & 3). The latter is a consequence of how we 
identify PSF spectral holes (see below), basically they can only be identified in regions where the object spectrum has 
signal.  



 
 

 
 

 

 
Figure 2 Left column: PSF for D/r0 = 15 [top] and its Fourier power spectrum [bottom] Right column: Fourier constrained 
PSF [top] where spectral frequencies with power below 10-5 have been identified as spectral holes.  The number in the upper 
right corner is the relative error between the truth and constrained PSF while the number in the lower right is the fraction of 

Fourier frequencies within the PSF diffraction band-limit that remain after applying the threshold. 
 
 

 
Figure 3 Left column: PSF for D/r0 = 80 [top] and its Fourier power spectrum [bottom] Right column: Fourier constrained 
PSF [top] where spectral frequencies with power below 10-5 have been identified as spectral holes.  The number in the upper 
right corner is the relative error between the truth and constrained PSF while the number in the lower right is the fraction of 

Fourier frequencies within the PSF diffraction band-limit that remain after applying the threshold. 



 
 

 
 

Our method for identifying the sources of the observed spectral holes relies on the fact that for a sufficiently large data 
ensemble, the average power spectrum of the PSFs is expected to be nonzero out to the diffraction-limit of the 
observations6. With this assumption we compute the ensemble SNR,  
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where N denotes the number of frames and σG  denotes the error due to the random nature of atmospheric turbulence. 
The noise bias |N(u)|2 is estimated from spatial frequencies beyond the diffraction cut-off frequency. We then define a 
spectral frequency as being an object spectral hole if the SNR at that frequency is below some user set threshold TF. One 
basis for setting the value of, TF, is that it should equal some minimum value of SNR. 

Once the object holes are known the PSF spectral holes can be computed for each frame using the individual frame SNR, 
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where Nσ  denotes the standard deviation of the additive noise-process. Spatial frequencies in frames where the SNRk(u) 
is below a threshold TH are then associated with spectral holes of the PSF. It is obvious that we can only identify PSF 
spectral holes where there is signal in the spectrum of the object. This means that we usually only have knowledge of a 
subset of the PSF spectral holes. Finally, we note that spectral holes can only be clearly identified in data when the target 
signal is completely captured by the imaging array. Any truncation of the signal by the detector array will lead to 
artificial zeros in the Fourier spectra of the observed data. 

3. IMAGING AT MULTIPLE WAVELENGTHS 
 
Imaging a target scene simultaneously at multiple wavelengths enables one to obtain information about materials on the 
target and to acquire additional constraints on turbulence induced wave perturbations in the telescope pupil. The strength 
of these perturbations is related to the Fried parameter r0 parameter which scales as7 
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where Vλ  and Iλ denote the observation wavelengths in the visible and infrared respectively, while Vr0 and Ir0 are Fried 
parameter values at these wavelengths.  For multi-wavelength observations when the exposure time is less than or equal 
to the atmospheric coherence time, i.e. atme ττ ≤ , the  wave-front phase at the jth wavelength can be expressed as,  
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where W(u) denotes an optical path difference that is common for all channels. The phase when expressed in terms of 
the common OPD, which can be represented using a convenient basis such as Zernike polynomials, can easily be scaled 
to another wavelength.  In MFBD one can use this fact to estimate the phases at the longer wavelength, where the 
turbulence is less severe and then scale these phases to use as an initial seed when restoring the imagery at the shorter 
wavelength where the turbulence is more severe.  
 
 
 
 



 
 

 
 

4. MFBD ALGORITHM USING SPECTRAL HOLES AND COMMON OPD 
 

We model the object and PSF intensity distributions at the jth wavelength using the model,8  
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which enforces our prior knowledge that both functions must be real and positive. The variables of this model can be 
defined in either the image domain or in the Fourier domain. In the latter case we use the re-parameterization 
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where F-1 denotes the inverse Fourier Transform and Mj(u) is a real-valued binary mask that is defined over the central 
N/2 x N/2 region of the pixel array used to model )(ujΦ . Here we choose the image domain for modeling the object, 
(i.e. )(xφ  are the variables) and the Fourier domain for modeling the PSFs (i.e. )(uP  and )(uθ  are the variables. The 
choice was based on the fact that the latter version of the model directly incorporates the physics of the imaging system - 

)(uP  and )(uθ represent the wave-front amplitudes (assumed unitary for isoplanatic imaging), the phase expressed in 
terms of OPD via Eq. (6) , respectively, and )(uM incorporates information on the pupil of the telescope – while the 
former version allows prior knowledge of the morphology of the object to be straightforwardly incorporated into the 
deconvolution problem.  In the case of long exposure AO imaging (when atme ττ >>  where eτ and atmτ  denote the 
exposure time and the atmospheric coherence time respectively) or when scintillation (variations in the wave-front 
amplitudes) are present, Eq. (8) is an appropriate model for the PSF.  In this work we focus on short exposure AO 
imagery (when atme ττ ≤ ) and ignore the effects of scintillation and only estimate variations in the wave-front phases.  

The variables in the image model are determined using a conjugate gradient algorithm to minimize the cost function 
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where the individual components lε  represent the enforcement of different prior information. For this work we have 

three terms, ( )2...0=l , 0ε  measures the error between the data model and the actual data, while 1ε and 2ε penalize 

energy at spatial frequencies defined to be spectral holes in the object and PSF respectively. The 0ε component is given 
by 
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Here dk(x) is a binary data mask with zeros at locations of bad pixels or pixels with a low image domain SNR and gk(x) 
represents the observed data at different times (k). In the denominator, )(ˆ xgk  and Nσ , represent the Gaussian and 

Poisson components of the noise variance respectively9.  The remaining lε components are given by 
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where )(uAk is the Fourier transform of )(xa and hole
kM (u) is computed via Eq. (3) or (4) depending on the type of 

spectral hole. 

We note that, ideally, the lε should mimic a probability density function so that 1=lα for all l . However, it is not 

always practical to achieve this requirement and values of lα need to be determined that will provide the best solution. 

Here we define 10 =α  and choose the values of 0≠lα  such that the derivatives 
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the beginning of the iteration. We have found that this results in values for lα  that are close to optimal. 

 

5. RESULTS 

We present MFBD restorations using simulated short exposure AO-imagery ( atme ττ ≤  where eτ and atmτ  denote the 
exposure time and the atmospheric coherence time respectively) obtained in strong atmospheric turbulence characterized 
by 80/ 0 =rD  where D denotes the diameter of the telescope pupil. A “lucky shot” data frame is shown in Fig 4. When 
running MFBD algorithms on data obtained in this regime of turbulence, the algorithm will typically stagnate due to 
local minima in the parameter space. An example of one such minimum is shown on the left in Fig. 5 where a restoration 
was obtained using a pixel basis for representing the object and the wave-front phases. Avoiding entrapment into such 
minima require two important elements: 1) a good initial start that should be as close to the actual solution as possible 
and 2) the use of additional constraints such as knowledge about the location of object and PSF spectral holes. 

Our strategy for overcoming the stagnation problem in strong turbulence was to image the object simultaneously at 
infrared (1.6 μm) and visible (0.425 μm) wavelengths. An MFBD restoration was performed on the infrared data (where 
the turbulence is less severe) using PSF spectral holes to obtain a point-by-point estimate of the wave-front phase. These 
phases were decomposed using a Zernike basis and the coefficients for each Zernike mode were scaled appropriately to 
visible wavelengths. Though these phases only contain information on low order spatial frequencies in the PSF, their 
knowledge is an excellent initial guess for starting the minimization. Furthermore, we enforce additional constraints on 
the Fourier frequencies in the object and PSF via spectral holes.  By using both the common OPD and spectral holes we 
satisfy both requirements outlined above.  Shown on the left in Fig 5 the restoration that was obtained when using a poor 
initial start (zero wave-front phases), while on the right is the restoration when we supply a good initial start, obtained 
from the infrared data, and constraints on the object and Fourier spectrum expressed via the spectral holes.  This ability 
to extract meaningful information from data obtained through strong turbulence conditions means that we can 
dramatically extend the range of conditions for successfully identification and monitoring of spaced-based targets. 

 

 

 

 

 

 



 
 

 
 

 
Figure 4 Shown is a “lucky shot” data frame for D/r0 = 80  

 

 

 

 

 
Figure 5 Left: Image restoration using a pixel basis for the object and the wave-front phase for D/r0 = 80 and no spectral hole 

information. Right: Image restoration using same approach but use of spectral holes and common OPD for D/r0 = 80. The 
truth object is shown in Fig 1.  
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