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Abstract 
 

The effects of A/D saturation on the correction of image smear on frame-transfer CCD sensors are analyzed and 
shown to be proportional to the amount of image value lost by the A/D saturation.  This analysis leads to a new 
correction algorithm that recovers the image values of the saturated pixels while removing the frame-transfer smear. 
 

1. Introduction 
 
When a pixel on an optical detector receives too much light and its value exceeds the dynamic range of the analog-
to-digital converter, it will saturate.  All that is recorded is that the value of the individual pixel exceeded the 
maximum value of the A/D converter.  The actual value of the pixel is lost.  There is one circumstance, however, in 
which the pixel value can be recovered, and that is when the image has been blurred by frame transfer smear. 
 
Frame-transfer CCD sensors make an exposure and then transfer the charge image to a readout buffer.  During the 
time it takes to transfer the charge to the readout buffer, the light-sensitive array continues to be exposed, thereby 
adding an additional linearly-smeared component of the object, which is roughly proportional to the ratio of the 
transfer time to the exposure time.  See Figure 1 for an example image that has a small horizontal smear to its right. 
 
Ordinarily, this smear would be considered a defect, but it actually opens an opportunity to recover the values of any 
saturated pixels.  Because the image has been smeared across the CCD array, the brightest areas of the image that 
saturated in the exposed image have also been imaged all across the array in regions where it is not saturated. 
 
This paper analyzes the effects of saturation in individual pixels on the smear correction algorithm.  The analysis 
shows that a residual smear in the readout transfer direction remains after the smear correction is performed.  The 
value of the smear is proportional to the loss in value in the saturated pixels.  As a result, the saturated pixels can be 
restored by measuring the amount of the residual smear.  The effects of saturated pixels on the smear correction 
algorithm are analyzed and illustrated with examples from saturated and unsaturated images of an unresolved star. 

  
 
Fig. 1.  Short-exposure image of HR 4630, Epsilon Corvi.  A greatly enhanced image from a sequence of 2000 
frames, taken at 210 frames/second.  During the readout of the charge distribution, the CCD continues to be 
exposed, leading to the horizontal smear to the right of the star.  The plot shows an average in digital counts of 10 
columns of pixels, revealing a vertical cross-section of the smear, which is about 1% of the brightness of the star. 



2. Frame-Transfer Smear 
 
The image of the bright star Epsilon Corvi (HR 4630) in Figure 1 was taken on the evening of 19 April 2007 on the 
GEMINI sensor on the 1.6-meter telescope mount at the Air Force Maui Optical & Supercomputing Site (AMOS) 
on Haleakala.  The image is one of 2,000 frames taken at 210 frames/second with an exposure time of 0.899 
milliseconds and a field-of-view of 24 arc seconds.  A clear filter was used to capture these short-exposure images.  
 
The GEMINI sensor [2] is a frame-transfer CCD sensor.  Just before the exposure, the 128 x 128 pixel frame is 
cleared and a bias level established.  After the exposure, the two-dimensional array of pixels is shifted to the left, 
one column at a time, into the readout buffer.  Figure 2 shows the result after one column has been shifted into the 
readout buffer.  The detector array continues to be exposed during this transfer, which takes 1 microsecond/column. 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2.  Frame transfer.  Image pixels are shifted to the left through the detector array into the readout buffer. 
 
Since the detector array continues to be exposed during the frame transfer, the pixels being transferred receive 
additional exposure to the object.  The effect is to smear the image in the direction opposite to the transfer. 
 
The plot in Figure 1 shows a vertical cross-section through the smear.  The peak value of 40 is 1% of the 
approximate peak value of the star image of 4,000.  Under many circumstances, this 1% value is not visible in the 
displayed image.  For example, if the image were linearly scaled between its maximum and minimum values and 
reduced to 8 bits, or 256 values, the smear would disappear into the background. 
 
On the other hand, when trying to detect faint objects, the contrast is often significantly stretched, for example by 
taking the logarithm of the pixel value.  In this case, the smear will be significantly enhanced and clearly visible.  In 
the figures in this paper, the contrast detail has been stretched to reveal the smears.  All the images in this paper have 
been enhanced in the same manner and to the same degree. 
 

3. Correcting Frame-Transfer Smear 
 
The problem of correcting frame-transfer smear was addressed in a paper by Ruyten[1].  He modeled the smear 
problem as the addition of a signal that is proportional to the linear sum of the pixels to one side of each individual 
pixel.  If the original input image is I(m, n) and the smeared image is S(m, n), where m and n are the pixel numbers 
that vary from 1 to N, then S(m, n) is modeled by: 
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This equation assumes that the frame transfer is to the left and that the smear extends to the right.  The constant a is 
equal to the ratio of the transfer time per pixel to the exposure time and can be determined empirically. 
 
Solving Equation 1 for I(m,n), one can write the original image values as the difference between the measured 
values and a new variable, T(m,n), which is the sum of all of the original values to the left of the desired value. 
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or 
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T m,n( ) = T(m "1,n) + I m,n( )  (4) 
 
Equations 2 and 4 are applied iteratively starting with the first column, m = 1, with T(0,n) defined as identically 
zero.  As each column is calculated, the variable T(m,n) contains the known values determined in the previous 
iterations.  Since the smeared image was created by iteratively adding the object information into the shifted image, 
the smear is removed by iteratively subtracting it in the opposite direction. 
 

 
a) 

 
b) 

Fig. 3.  Smear removal.  In part a) the original smeared image is shown on the right and the post-processed image to 
remove the smear is shown on the left.  In part b), the cross-section of the smear shows that the smear is completely 
removed.  The blue solid line is through the original image, while the red dashed line is through the corrected image. 
 
The images need to be corrected for bias and dark current before this algorithm is applied.  The smearing of the 
object does not apply to the bias or dark current values.  For the GEMINI sensor, the readout is accomplished in four 
parallel ports, oriented horizontally.  There are four additional columns, adjacent to the 128 x 128 detector array, 



that are not light sensitive.  These four columns can be used to measure the amount of bias in each row for the 
detector array.  A series of dark exposures is used to measure the dark current component. 
 
Figure 3 shows the result of applying this smear correction algorithm to one of the GEMINI frames.  The frame 
shown on the right side of Figure 3a) contains no saturated values.  The maximum value in this image is 3984, 
where the saturated or maximum value of the 12-bit A/D converter is 4095. 
 
By trial and error, a value of a = 0.0011 was determined to completely remove the smear.  This is exactly what 
theory predicts, i.e. a = time to shift a column divided by the integration time = 1/899 = .0011.  No smear is visible 
in the corrected image on the left side of Figure 3a).  The contract enhancement applied to the corrected image is the 
same as that applied to the smeared image, so any remaining smear would be visible in the image. 
 
The plot in Figure 3b) shows vertical cross-sections through the smear regions of both the original and corrected 
images.  From the plot, it is clear that the smear has been removed down to the level of the background in the image.  
The cross-sectional plots do not reflect the contrast enhancement that was applied to the displayed images in part a). 
 

 
a) 

 
b) 

Fig. 4.  Smear removal in the presence of saturated pixels.  The 20 red pixels in the image centers in part a) are 
saturated, i.e. they all have the value 4095.  The smear removal algorithm, when applied to the image on the right, 
leaves a residual smear (left image) that is proportional to the image value that is missing in the saturated regions. 
 



When the smear removal algorithm is applied to an image with saturated pixels, as shown in Figure 4, the smear is 
not completely removed.   The amount of the smear is based on the actual light impinging on the detector array, 
while the correction algorithm can only correct using the saturated value that was recorded in the image array.  Since 
the saturated value is smaller, it cannot completely remove the smear.  Based on this idea, it is possible to determine 
how much was lost in saturation by the amount of smear left by the correction algorithm.  A detailed analysis is 
given in the next section of the amount of residual smear remaining after the smear correction algorithm is applied to 
an image containing saturated pixels. 
 

4. Correction Algorithm in the Presence of Saturated Pixels 
 
If the measured image has no saturated pixels, then the correction properly restores the image to its original 
exposure values.  On the other hand, if a measured pixel value exceeds the maximum value of the A/D converter, 
then the true measured pixel value is unknown and the true value is not used in the restoration of the image values.  
This leads to errors in the smear removal algorithm, which leave a residual smear.  The errors created by the smear 
removal algorithm, due to a saturated pixel, are shown below in Figure 5. 
 
 
 
 
 
 
 
 
 
 
Fig. 5.  Errors by applying algorithm.  The initial error, Δ, made at a saturated pixel is spread to the following pixels. 
 
Just before the saturated pixel, the correction algorithm subtracts all the known image values to the left that were 
determined in the earlier calculations.  There is no error at that location. 
 
At the saturated pixel, the measured value exceeded the maximum value by an amount, Δ.  When the sum of the 
earlier true values is subtracted from the maximum value at the saturated pixel location, the restored value is the true 
value minus Δ.  The error at the saturated pixel location is therefore just equal to -Δ. 
 
According to Equation 2, the restored value at position, n=0, is determined by subtracting a times the sum of the 
previous true values.  Since that sum is smaller by an amount, -Δ, the restored value is larger by an amount of aΔ. 
 
At all subsequent positions, the error, E(n), will be -a times the sum of all the previous errors.  The error just before, 
E(n-1), is already equal to -a times the sum of the errors before it, so the new error, E(n), is the sum of the previous 
error, E(n-1), and -a times that same previous error, or (1-a)E(n-1).  In other words, 
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The error, as a function of position, n, is a constant times another constant to the power n.  In the case considered in 
this paper, where the constant a is a very small number, 0.0011, and the farthest pixel away from the saturated pixels 
in the center is only 64 pixels, the term in the parentheses raised to the power n is only 0.93 at the edge of the image, 
or a drop of only 7% from the center. 
 
This means that, to a reasonable approximation, the smear has a constant value of approximately aΔ.  In other 
words, the amount lost due to saturation, Δ, can be determined by dividing the magnitude of the residual smear by a.  

saturated 
pixel 

Errors 

0 -Δ aΔ aΔ(1-a) aΔ(1-a)2 
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In the example shown in Figure 5, only one saturated pixel with a single loss of Δ was considered.  If a second 
saturated pixel existed on the same row, clearly the contributions of the two pixels would simply add.  The amount 
of residual smear contains the sum of the saturation losses at all of the saturated pixels in that row. 
 
In Figure 6, the residual smear is removed by measuring the amount of residual smear, dividing it by a, and adding it 
back into the saturated pixels, splitting it equally between all the saturated pixels on a given row.  When the smear 
correction algorithm is applied to the newly augmented image, a restored image results that has no residual smear.  
The amount added to the saturated pixels was 30% of their total value and 10% of the total value of the entire image. 
 

 
a) 

 
b) 

Fig. 6.  Restoring the saturated pixels.  In the far left image in part a), the pixels were augmented by an amount 
determined from a measurement of the residual smear in the middle image.  The additional digital counts added to 
the saturated pixels were sufficient to remove the residual smear leaving the cleaned image on the left.  The plot 
compares all three smear regions.  The blue solid line shows the absence of a smear in the final corrected image. 
 

5. Conclusions 
 
When a smear removal algorithm is applied to an image with saturated pixels, a residual smear remains that is 
approximately a constant across the image and is proportional to the information lost due to saturation.  Using this 
constant of proportionality, the sum of the true values of all the saturated pixels on any given row can be recovered. 
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