
Numerical studies of the value of including pupil 
intensity information in multi-frame blind deconvolution 
calculations for data measured in the presence of 
scintillation 
 
 
Michael C. Roggemann1, Paul A. Billings2, Jeffery Houchard3 
 
1Pacific Defense Solutions, Kihei, HI, and Michigan Technological University, Houghton, MI 
2Textron Corporation, Kihei, HI 
3Pacific Defense Solutions, Kihei, HI 
 

Abstract 

Under most situations where it is appropriate to reconstruct imagery using a 
multi-frame blind deconvolution (MFBD) algorithm, defects in the point spread 
function (PSF) are dominated by phase errors arising from atmospheric 
turbulence. However, under extreme conditions, such as horizontal imaging or 
imaging at low elevation angles, scintillation can also arise. These amplitude 
errors also contribute to the degradation of the PSF.  MFBD algorithms which 
parameterize the phase aberrations in the pupil generally neglect pupil intensity 
information. The key issue addressed in this paper is whether incorporating 
information about the pupil intensity in an MFBD algorithm improves the accuracy 
of the reconstruction. Using a numerical simulation approach to address this 
issue, we show that incorporating pupil intensity information improves the quality 
of the reconstructed images only slightly. 

Introduction 

Atmospheric turbulence affects the density, and hence, the index of refraction of 
air [Goodman, 1985].  As a result, many combinations of turbulence strength and 
path length give rise to turbulence-induced wave front errors that are dominated 
by phase effects.  Turbulence-induced phase errors can turn into amplitude 
errors through wave propagation when the combination of turbulence-induced 
phase error strength and propagation path are sufficient [Beland, 1993].  Under 
these conditions the instantaneous point spread function (PSF) of the imaging 
system/atmosphere combination is affected by both phase and amplitude errors.  
For an aperture larger than a few times the Fried seeing parameter 0r , the 
instantaneous PSFs arising under these conditions are are badly speckled, and 
individual images of space objects measured with short exposures are generally 
unintelligible.   

A number of strategies have been developed to overcome turbulence effects on 
imaging systems.  At the present time, they span a spectrum of hardware and 
software complexity and expense.  Historically, post detection image processing 



algorithms (referred to as speckle imaging techniques) were developed as the 
first means of overcoming turbulence effects in imaging systems [Roggemann, 
1996].  These techniques exploit the fact that certain specialized second and 
third order moments of the Fourier transform of short exposure images contain 
high spatial frequency information about the object.  Under a reasonable range of 
practical conditions, this information can be measured with sufficient signal-to-
noise ratio (SNR) to be used for restoration.  Due to the placement of optical SSA 
assets atop mountains, reasonably good seeing is often realized, and scintillation 
effects are generally negligible in actual practice.  It should be noted that speckle 
imaging techniques do not explicitly estimate the aberrations or PSF associated 
with any particular image measurement. 

More recently, multi-frame blind deconvolution (MFBD) techniques were 
developed to overcome turbulence effects in image reconstruction.  MFBD 
algorithms exploit the fact that the object associated with a sequence of short 
exposure measured images can be considered constant, while the atmosphere 
continuously changes.  Combining this observation with maximum-likelihood 
estimation formalism yields feasible algorithms.  MFBD algorithms jointly 
estimate both the common object and various atmospheric descriptions (either 
the PSFs or the wavefront aberrations) associated with each measured image.  
Two broad classes of algorithms have been developed – one based on the 
expectation-maximization algorithm [Schulz, 1993] and the other based on a fully 
parameterized joint estimation of the object and the aberration [Billings, 2001].  It 
should be noted that these two algorithms have much in common, and they differ 
primarily in their approach to optimizing and regularizing the same log-likelihood 
function.   

To address a need for corrections performed in real-time, adaptive optical (AO) 
systems have been developed to correct turbulence-induced aberrations while 
images are being measured.  AO systems require complicated and expensive 
hardware: a tilt measurement and control system, a wave front sensor (WFS), a 
deformable mirror (DM), a closed loop controller linking the WFS to the DM in a 
manner which insures stability, very high speed, multi-channel electronics, and 
an additional set of optical surfaces which reduce the radiometric throughput of 
the system.  In spite of the expense and complexity, a large number of AO 
systems exist today, and the design and implementation of systems with a 
reasonable number of DM degrees-of-freedom (i.e., several tens to a few 
hundred) has been reduced to an engineering exercise.  We also note that a 
number of hybrid techniques combining elements of AO and post detection 
processing have been developed [Roggemann, 1996]. 

The success of the techniques mentioned above in overcoming turbulence 
effects has led to considerable research interest in “extending the envelope” of 
operation.  A key underlying assumption in the development of speckle imaging, 
MFBD, and AO is that the underlying turbulence process is “weak”.  In other 
words, the turbulence-induced errors are dominated by phase effects, and 
amplitude fluctuations are negligible.  If the propagation path is sufficiently long, 



or if the turbulence is sufficiently strong, wave propagation mechanics cause 
amplitude fluctuations to arise, which are referred to as scintillation [Beland, 
1993].   Amplitude fluctuations are generally ignored in MFBD processing and in 
the control loop of AO systems.  One direction of research is to examine the 
effects of relaxing the assumption of weak turbulence, exploring avenues for 
incorporating information about the amplitude fluctuations if it is available, and 
evaluating the performance of the resulting algorithm.  Situations where 
scintillation could be non-negligible include horizontal path imaging near the 
surface of the Earth and high zenith-angle imaging of space objects.  In addition 
to scintillation, strong turbulence can cause light emanating from even closely 
spaced points on the object to propagate through a significantly different volume 
of turbulence, giving rise to a condition called anisoplanatism.  Under 
anisoplanatic imaging conditions no single PSF can accurately model the blur in 
the image, and in fact, the PSF is a space-varying function [Beland, 1993].   
Anisoplanatism effects will also be strong under most practical combinations of 
observation geometries and turbulence strengths for the horizontal path scenario. 

In this paper we explore the implications of incorporating pupil intensity 
measurements into a specific implementation of an MFBD algorithm [Billings, 
2001] and evaluate performance.  To create scintillated fields falling in the pupil 
we developed a wave optics simulation of incoherent, horizontal path imaging.  
We presumed that a separate system was available to measure the pupil 
intensity fluctuations, and we incorporated this data into the MFBD processing.  
We compared these results to those of the baseline MFBD code, which ignores 
intensity fluctuations and assumes a uniform intensity pupil field. We find that 
these two approaches provide object estimates which have comparable mean 
squared errors (MSE) compared to the known input object.  However, the 
aberration parameter estimates for the two cases are significantly different.  We 
conjecture that when pupil intensity fluctuations are ignored, the variations in the 
PSFs due to the amplitude fluctuations are encoded in small perturbations of the 
aberration coefficients. 

The remainder of the paper is organized as follows.  In the next section we briefly 
review the relevant theoretical considerations, specifically, the mathematical 
description of the concept of weak turbulence, the MFBD algorithm, and our 
means of incorporating pupil intensity information.  In the following section we 
present the details of the wave optics simulation used to create the data sets 
processed.  We then present the results of our study.  The final section presents 
our conclusions. 
 
Theory 

The implementation of MFBD that we are working with is based on Ref. [Billings, 
2001].  We summarize this technique here, but without the details of the 
derivation.  We are working with shot noise limited images in the present case.  
The noise-free image model for the kth image of a set of turbulence corrupted 
images is obtained from Fourier optics [Goodman, 2005] as 
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where ox  is a 2-D coordinate in object space, ix  is a 2-D coordinate in image 
space, ( )oxf  is the object, and ( )oik xxh ,  is the kth PSF.  The photo-electron 
count statistics of photon-limited images are governed by Poisson statistics.  The 
appropriate log-likelihood function is [Paxman, 1992; Schulz, 1993] 
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where ( )ik xd  is the kth realization of the Poisson noise-corrupted image, and the 
notation ( )hfLP ,  indicates that the log-likelihood function depends upon both the 
object estimate f  and the set of PSFs { }kh .  The goal of maximum likelihood 
estimation is then to maximize ( )hfLP ,  by appropriate choices for the object 
( )oxf  and PSFs { }kh .  It is common to parameterize the PSFs in terms of the 

phase aberration by describing the phase aberration as a combination of a basis 
set of functions in the pupil of the telescope [Paxman, 1992; Schulz, 1993], and 
this approach is taken here by parameterizing the aberration in terms of the first 
91 Zernike polynomials [Roggemann, 1996].  A standard and widely used 
multidimensional optimizer is used to maximize the log-likelihood function given 
in Eq. (2) over all points in the object estimate and the 91 Zernike polynomial 
coefficient estimates associated with each measured image.  Excellent results 
have been obtained using this approach over a wide range of conditions. 

Fluctuations of the amplitude of the field falling on the pupil directly affect the 
PSFs, { }kh .  Let the instantaneous complex field falling on the pupil be 
represented by  

(3)    ( ) ( ) ( )PP xj
PPP exAxU ϕ= , 

where Px  is a coordinate in the pupil plane, ( )PxA  represents the amplitude of 
the field, and ( )PP xϕ  is the phase of the field.   

The instantaneous PSF is related to ( )PP xU  by 
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where { }•FT  represents the 2-D Fourier transform operator, If  is the 
independent frequency space variable arising from the Fourier transform 
operation, lf  is the focal length of the imaging systems, λ  is the mean 



wavelength, and the subscript 
l

II f
xf λ=  indicates the mapping between the 

spatial frequency variable If  and the physical location in the image plane Ix .   

In the MFBD algorithm implemented for this study [Billings, 2001], and others 
[Schulz, 1993; Paxman, 1992], the estimated turbulence-induced phase error 

( )PP xϕ~  is modeled as a linear combination of Zernike polynomials 
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where ( )Pn xZ  represents the nth Zernike polynomial as ordered by Noll 
[Roggemann, 1996], na  represents the weight associated with the nth Zernike 
polynomial, and ZN  represents the number of Zernike polynomials used in the 
estimation process.  The object intensities are estimated directly.  Hence, the 
optimization algorithm has ZP KNN +2  free parameters.  The optimizer is based on 
a widely used multidimensional optimization technique [Billings, 2001], which 
requires analytic gradients to operate most efficiently.  The required gradients, 
which are the partial derivatives of the log-likelihood function with respect to both 
the pixel intensity estimates and the Zernike polynomial weights, were derived in 
[Paxman, 1992]. 

The baseline algorithm ignores the possibility of amplitude fluctuations in the field 
falling on the pupil.  As a result, the baseline algorithm models fluctuations in the 
PSF due to non-uniform ( )PxA  by adjusting the na ’s.  Our modification to the 
baseline algorithm provides the ability to use information about the intensity of 
the field falling on the pupil ( )2

PxA  assuming it can be measured.  This pupil 
amplitude information is selectively enabled or disabled under user control to test 
and compare the importance of providing this typically “missing” information to 
the MFBD algorithm.  When enabled, the known truth of the pupil intensity from 
our wave-optics simulation is provided to the part of the MFBD algorithm which 
estimates the PSFs. As a result, when enabled, we expect that the MFBD 
estimated na ’s will be different when there is scintillation present as compared to 
the baseline algorithm which assumes a constant pupil amplitude.   

The key question addressed in this study is whether incorporating pupil intensity 
data in the MFBD calculations yields results which are in some sense better than 
ignoring the pupil intensity fluctuations in the presence of scintillation.  We 
evaluate the answer to this question by computing and comparing the sum of the 
squared difference between the estimated object and the real object for each 
case.  Addressing these issues requires a wave optics simulation be used to 
create the simulated data.  We now describe such a simulation. 



Simulation 

The simulation developed for this application is a wave optics simulation of 
imaging over a horizontal path.  The combination of turbulence strength and path 
length was chosen to cause significant scintillation in the field arriving at the 
pupil.  Our goal was to implement an incoherent imaging simulation of a spoke 
target, while isolating the effects of scintillation from the effects of 
anisoplanatism.  This is feasible in simulation, although not in actual practice.  
Our approach to this problem was as follows.  A wave optics propagator based 
on the angular spectrum was used to propagate light emanating from an on-axis 
point source in the target plane to the pupil.  The light falling on the pupil was 
scintillated, and was used to form a PSF, which was then convolved with the test 
object to form an isoplanatic image.  This process was repeated to form a data 
set of 100 images which were then used as input to the MFBD processing.   To 
further isolate the effects of scintillation on the process, the images were 
simulated at a very high light level.  We now present the details of the inputs to 
the simulation. 

Figure 1 shows the input object.  It is a spoke target widely used to measure 
resolution.  In object space it is 25 cm in diameter, viewed at a range of 1 km, at 
a mean wavelength of 700 nm, with a 30 cm diameter aperture.  It should be 
noted that these conditions give rise to anisoplanatic effects, as the object 
subtends 250 µRad, while the isoplanatic angle is on the order of 10 µRad for the 
cases run here.  The actual 2

nC  profiles used to generate the results are 
presented in the results section.  It should be noted that in actual practice, when 
imaging anisoplanatic objects, measuring the pupil field would be of little practical 
value since the scintillation patterns from object points separated by significantly 
more than the isoplanatic angle would arrive superimposed at the pupil, and 
“sorting” these contributions would be at least impractical and likely impossible.  
Hence, while we conducted this investigation for a horizontal path, it is our 
expectation that the real-world impact of the results shown below will be for 
imaging satellites, which are generally isoplanatic, under conditions where 
scintillation could be significant, such as at low elevation angles. 
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Figure 1.  Input object for horizontal imaging simulations.   

The imagery generated was Nyquist sampled.  The array size used to hold both 
the pupil and the object was 256=PN .  The diameter of the circular pupil 

spanned 2
PN  samples, and the sample spacing was 34.2=Δx mm.  The 

angular sample spacing in both image and object space is given by  

 (6)     
xNΔ

=Δ
λθ , 

which evaluates to Rad17.1 μθ =Δ .  The sampling requirement for the angular 
spectrum propagator used here is 

 (7)     2
2
x
zNP

Δ
≥

λ , 

where z  = 1 km is the path length.  In the present case the right hand side of Eq. 
(7) evaluates to 256, so the sampling requirement for the propagator is satisfied.   

A layered turbulence model which had 10 layers was used.  The phase screen 
generator requires the plane wave Fried parameter 0r  as input for each layer.  
The values of 0r  for each layer were calculated by starting at the object and 
integrating toward the pupil an appropriate distance.  Phase screens were 
equally spaced, with the first screen encountered by the light placed 100 m from 
the object, and the last screen placed in the telescope pupil.  Photon-limited 
images were simulated with a mean number of photon events per image equal to 
106.  Noise free pupil intensity information was extracted from the simulation and 
used to compute the MFBD image reconstructions for the cases where pupil 
intensity information was used.  We now present the results of our study. 



Results 

Figures 2, 3, and 4 show the results of applying the MFBD algorithm with and 
without including the pupil intensity information in the reconstruction.  Also shown 
are the input 2

nC  profiles for each case, the resulting standard atmospheric optics 
parameters, and the sum of the square of the differences between the object 
estimates and the true object, represented by 2ε  (the true object and the 
estimated object are normalized to unit energy).  The log amplitude variance 

32.02 =χσ  for the case presented in Fig. 2 is at the edge of saturated scintillation, 

and the values of 2
χσ  for the data used to prepare Figs. 3 and 4 are past the 

threshold of saturated intensity fluctuations. 

Inspection of Figs. 2, 3, and 4 shows that there is very little subjective difference 
in the quality of the reconstructed images regardless of whether pupil intensity 
information is used in the reconstruction – even in the case of very strong 
scintillation.  The use of pupil intensity information resulted in reconstructions 
with a lower sum squared error metric 2ε  for the strong scintillation cases shown 
in Figs. 3 and 4 but not for the weaker case shown in Fig. 2.   

Perhaps more interesting, is comparing the values for the estimated Zernike 
polynomial coefficients obtained with and without the use of the pupil intensity 
information.  Example results are presented in Fig. 5, where the estimated 
coefficients for one image (drawn from the data used to make Fig. 3) are 
presented for the cases of using and not using pupil intensity information in the 
MFBD image reconstruction.  The results in Fig. 5 are representative of the 
results obtained for the rest of this data set.  Inspection of Fig. 5 shows that when 
pupil intensity information is used in the process, significantly different values are 
estimated for the Zernike polynomial coefficients than when pupil intensity 
information is not used.  It should be noted that due to the nature of wave 
propagation mechanics the phase arriving at the pupil is “wrapped” in the sense 
that only the principal value of the phase is available without some sort of 
unwrapping [Ghiglia, 1998], and there may also be branch cuts in the phase map 
[Fried, 1998].  As a result, simply projecting the incident phase onto the Zernike 
polynomial basis set would yield misleading results.  In this case the true values 
of the Zernike polynomial coefficients associated with the field falling on the pupil 
are not available, and are not displayed in Fig. 5. 
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Figure 2.  Example outputs of the simulation runs:  (a) input 2
nC  profile; (b) object 

estimate obtained ignoring amplitude fluctuations in the pupil; (c) object estimate 
obtained using the “measured” pupil intensity; (d) parameter values for this case. 
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Figure 3.  Example outputs of the simulation runs:  (a) input 2
nC  profile; (b) object 

estimate obtained ignoring amplitude fluctuations in the pupil; (c) object estimate 
obtained using the “measured” pupil intensity; (d) parameter values for this case. 
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Figure 4.  Example outputs of the simulation runs:  (a) input 2
nC  profile; (b) object 

estimate obtained ignoring amplitude fluctuations in the pupil; (c) object estimate 
obtained using the “measured” pupil intensity; (d) parameter values for this case. 
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Figure 5.  Example of Zernike polynomial coefficients estimated both with and 
without pupil intensity information. 
 



Conclusion 

We have presented a study of the value of incorporating scintillation information 
into the MFBD image reconstruction process.  A wave optics simulation was 
used to create the data sets processed, and minor modifications were made to 
an existing MFBD code to incorporate pupil intensity information into the PSF 
estimation process.  Since the subjective image quality does not vary significantly 
when pupil intensity information is used compared to the case when this 
information is not used, we conjecture that good PSFs must result in both cases.  
There are, however, significant differences in the estimated Zernike coefficients. 
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