
 

 

 
 
 

Super Resolved Harmonic Structure Function for 
Space Applications 

 
Dr. R. David Dikeman(a) 

John Reagan(b) 

Mr. Gerran Ueyama(a) 
 

 
 

(a)Lockheed Martin IS&GS (Hawaii) (b)Lockheed Martin Space Systems Co. 
3375 Koapaka Street, Suite I-500   1111 Lockheed Martin Way 
Honolulu, Hawaii 96819   Sunnyvale, CA 94089 
dave.dikeman@lmco.com    john.reagan@lmco.com 

    
 
 

Abstract 
Lockheed Martin IS&GS (Hawaii) has combined two novel signal processing algorithms in order to characterize 
non-resolved objects viewed by electro-optical sensors.  The combined algorithm is termed the Super Resolved 
Harmonic Structure Function (SR-HSF).  This paper introduces the SR-HSF algorithm and demonstrates its utility 
for creating "fingerprints" of space-based objects.  The work presented here offers promise for enhancing the 
performance of several Missile Defense Agency sensor systems.  An overview of the SR-HSF algorithm is 
initially presented.  SR-HSF is shown to extract key space situational awareness (SSA) fingerprints from a 
minimal set of observations.  Mathematical details of the SR-HSF algorithm are then described.  SR-HSF has 
been shown to be both optimal and suited for real-time processing.  This HSF method is extended to operate for 
cases where beating harmonic sets occur; i.e., the so-called Beat Structure Function (BSF).  BSF processing 
results are then presented from both simulated data and unclassified data collected at AMOS from objects in 
space.  These analytical results show that SR-HSF is capable of uniquely "tagging" an object with a minimal set of 
observations.  The SR-HSF algorithm’s capabilities provide important new considerations for sensor developers, 
SSA systems, and operators. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 

 
 

I.  Introduction 

This paper continues work presented at last years conference, Ref. [1].  The concept of the Harmonic 
Structure Function (HSF) was developed there and some initial applications were discussed.  Here we 
show the application of an extended version of the HSF, the so-called Beat Structure Function (BSF).  
A sample of real-world data is introduced – a rocket booster captured by the Visible Imager (VISIM) on 
the 3.6-m Advanced Electro Optical System (AEOS) telescope.  This data is used to construct a simple 
functional model.  The functional model then allows us to vary a simulated observation window to test 
the impact of sample size versus spectral resolution versus observable features.  In our analysis, we 
focus on the ability of the HSF and BSF to detect observables until lack of samples yields spectra with 
such limited resolution that observable features do not exist – in fact this is precisely how our detectors 
are tuned.  We then introduce super-resolution algorithms which decrease the number of samples, and 
thus decrease the observation window, required to detect the observables of interest. 
 

II.  Phenomenology. 

Our starting point is an observation of a booster by the VISIM on the 3.6-m AEOS telescope.  Figure 1 
shows the collected data.  Clearly, there are modulations of multiple frequencies taking place. 
 

 
Figure 1.  Rocket Body Data (Red).  Model in Blue. 

 
A simple model of the data is overlaid in blue in Figure 1, and is functionally: 
 

( ) ( )tt 21 Ψ⋅Ψ=Ψ ; where ( ) ( )φπφπ +⋅++⋅=Ψ tfCtfC 12111 4sin2sin  

and ( )tfCC 2432 2sin π+=Ψ . 
 
Though general, the model captures the essential features of the collected data.  There is a smooth, in 
the sinusoidal sense, modulation of energy coupled with a ‘less smooth’, or non-sinusoidal, periodic 
modulation which gives rise to harmonics.  In the spectral domain the coupling of these modulations 
yields a beating harmonic set, where the harmonics are generated by 1Ψ  and the beats are generated by 



 

 

the pure sinusoid 2Ψ .  Figure 2 shows the spectrum of the model with harmonics shown in red and 
beats in blue. 
 

 
 

Figure 2.  Spectrum of the Model.  
 
III.  The Harmonic Structure Function. 

The detection of such modulating functions is performed using HSF.  For a given fundamental 
frequency, 0f , the harmonically-related components will have frequencies 0nf  for 1>n , where n is the 
harmonic number and 1=n  is the fundamental.  An integration of a signal, )( fs , is performed over 
frequency space and weighted such that only frequencies harmonically related to a given fundamental 
frequency will contribute to the integration.  The integration is given by 

,)(

)()()(~

max

min

max

min

0

0
00

∑

∫ ∑

=

∞

=

=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

n

nn

n

nn

nfS

dfnfffSfH δ
 

where minn  and maxn define the range of the harmonic components to be integrated over, and )( fδ  is 
the Dirac delta function.  Since the data are in discrete frequency bins, the integration must be 
performed as a sum over the corresponding bins.  If ][ix  is the ith bin of the frequency spectrum and f∆  
is the frequency resolution of spectrum, then the sum over the discrete bins is given by 
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which defines the harmonic structure function (HSF).  The HSF is essentially the population of the 
matrix via spectrogram scans, as shown in Figure 3.  Subsequent HSF detections are performed via non-
trivial schemes that integrate the HSF matrix over harmonic number.  Such schemes handle sidelobe 
and harmonic rejection tasks which are required to generate optimal detection metrics. 

 
Figure 3.  The HSF Matrix. 



 

 

In Figure 3, a simple sum is used for the integration rather than other schemes which can also be 
employed. 

Harmonic Detection Example 

Figure 4 shows HSF working on the model, with harmonics only; i.e. 02 =f , up to the point where the 
observation window required for HSF to perform its detections is just large enough to achieve ‘good 
enough’ spectral resolution ⎯ this is a particular area of interest.  Such a result has to be scaled to the 
frequency of the modulations; i.e. number of total modulations in the sample.  For our particular case 
the model parameters are fixed to give relatively good correlation to the collected data, where there are 
roughly ten low frequency modulations in thirty minutes. The plot in Figure 4 is the FFT of the model 
(Figure 1) for roughly 2000 (blue) and 2 (red) low frequency cycles.  The right plot of Figure 4 shows 
the corresponding HSF detections of the spectrums in blue and red.  Generating the FFT with less data 
than ~2 or 3 cycles does not give spectral resolution which can support detection of harmonics. 

 
Figure 4.  Resolved (blue) and Partially Resolved Spectra (red) are Detected by HSF 

(bottom).  

IV.  The Generalized Harmonic Structure Function. 
To properly treat the data and model (with 02 ≠f ) presented above, the HSF must be generalized to the 
case where two frequencies of motion are considered.  To accomplish this we expand from the HSF 
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Figure 5a and 5b.  BSF Cube and Integration of the BSF Cube when beating harmonics 

exist. 
matrix to the BSF cube, as is shown in Figure 5a.  The BSF cube is constructed in such a way that each 
‘sheet’ (representing either a beat or harmonic) in the cube (Figure 5a) will contribute to the overall 
integration of the cube to form a detection for a particular set of frequencies.  Figure 5b shows an 



 

 

example detection generated from the integration of the BSF cube of our model (see Figure 2) with 
non-zero 2f . Here, a bright point indicates a ‘detection’. 

V.  Super-resolution Aided HSF and BSF. 

FFT and other known spectral techniques suffer when insufficient observations are available.  
Therefore, to deal with such cases, we have enlisted the aid of a Lockheed Martin patented super-
resolution technique, Reference [2].  Figure 7 shows the spectrum via super-resolution and FFT.  
Studies of the use of super-resolved spectrum versus an FFT show that roughly 30 to 50% fewer 
samples are required for generating positive detection of harmonics and/or beating harmonic sets. 
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Figure 7.  Super-resolved Spectra (dark blue) Plotted Alongside Unresolved Spectra 

(light blue).  Red Lines Denote the Expected Peak Locations of Harmonics and Beats. 
VI.  Conclusion 

This paper highlights two key concepts. One, there exists a mathematical technique to automatically 
detect signals with harmonic and beating harmonic structure. Two, these techniques, when coupled with 
super-resolution algorithms, allow for detections of harmonics and beating structures with small 
observation windows. Such a capability may also find relevance for SSA applications to perform 
fingerprinting, tagging, or feature added tracking, as well as detecting, classifying and counting rotating 
bodies in a single pixel of a sensor’s focal plane array. 
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