
HYPERSPECTRAL SIGNATURE CLASSIFICATION  
WITH TABULAR NEAREST-NEIGHBOR ENCODING 

 
Mark S. Schmalz 

 

Department of Computer and Information Science and Engineering 
University of Florida, Gainesville FL  32611-6120 

mssz@cise.ufl.edu       
 

Gary Key 
 

Frontier Technology, Inc. 
Altamonte Springs, FL  32714-2019 

gkey@fti-net.com
       

ABSTRACT 
 

Accurate classification of multiple or partial multispectral or hyperspectral signatures is a crucial task in the 
nonimaging detection and recognition of space objects.  Previous approaches to signature classification have been 
based on artificial intelligence techniques such as Bayesian networks, rule-based systems, and linear operators or 
neural networks (NNs) expressed in terms of the algebra (R, +, x).  Unfortunately, in these methods the separation 
of tightly interleaved pattern classes tends to be suboptimal, and the number of signatures that can be accurately 
classified often depends linearly on the number of classifier inputs. Further, such classifiers tend to be static and 
therefore brittle, leading to potentially significant classification errors in the presence of noise or densely interleaved 
signatures, as well as decreased performance in the presence of input nonergodicities. 

In previous publications, the first author and his colleagues have shown that the performance of classical neural 
nets can be improved upon by the use of autoassociative morphological memories (AMM), a construct similar to 
Hopfield autoassociative memories defined on the lattice algebra (R, +, ∨, ∧). Unlimited storage and perfect recall 
of noiseless real valued patterns has been proven for AMMs [1]. However, AMMs suffer from sensitivity to specific 
noise models, which can be characterized as erosive and dilative noise. It has further been shown that AMMs can be 
based on dendritic computation, which yields improved classification accuracy as well as class 
segmentation/separation ability in the presence of highly interleaved, noisy signature data [2]. 

In this paper, we present an improved paradigm for signature classification based on a classify-before-detect 
approach to pattern recognition.  This technique, called Tabular Nearest-Neighbor Encoding (TNE), was developed 
for image compression using vector quantization, and has been successfully applied to a wide variety of problems in 
time series prediction, speech analysis, and signature classification/recognition.  We show that TNE can achieve 
accurate signature classification in the presence of noise and closely spaced or interleaved signatures.  In particular, 
we examine two critical cases: (1) classification of materials in spaceborne satellites using their spectral signatures, 
and (2) classification of multiple closely spaced signatures that are difficult to separate using TNE as well as 
customary distance measures.  In each case, test data are derived from a NASA database of space material 
signatures.  Additional analysis pertains to computational complexity and noise sensitivity, as well as adaptation of 
TNE to input sampling density, via processing of an internal Boolean array called the agreement map.   
 

Keywords:  Automated signature detection, Pattern recognition 
 

1. INTRODUCTION 
 

Non-resolved detection and classification of space objects can be achieved by spectral analysis, which depends 
on accurate and precise spectrometry, physically faithful data sampling techniques, and accurate, comprehensive 
classifier technology.  Although passive remote sensing technology has advanced significantly over the past decade, 
yielding imaging devices with increasing spectral coverage and resolution, the development of classifier technology 
has not necessarily kept pace.  For example, the high spectral resolution produced by current hyperspectral devices 
facilitates identification of fundamental materials (spectral endmembers [3-6]) that comprise remotely sensed 
objects, thus supporting spectral discrimination based on parameters (e.g., abundance fractions) derived from such 
measures.   
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However, in non-resolved space object detection and classification, it is not necessarily possible to determine 
endmembers a priori.  Instead, the decomposition of an object’s spectral signature requires solution of demixing 
equations that are predicated upon prior knowledge of the materials that might comprise an object, as well as their 
relative abundances in an hypothetical object representation, for example, a digital signature obtained by telescopic 
spectrometry [3,4].  Thus, the object classification problem in the non-resolved case depends primarily on whether 
or not the classifier that is applied to the hypothetical abundance fractions can distinguish the spectral endmembers.  
If this is not possible, then the object signature cannot be compared accurately or precisely with signatures from a 
catalogue of objects. 

In this paper, we discuss recent developments in an emerging classifier technology called tabular nearest-
neighbor encoding (TNE), which is a highly efficient, accurate paradigm for pattern recognition developed by 
Frontier Technology, Inc. [7].  The development of TNE proceeded naturally from the development of signal and 
image compression algorithms based on vector quantization, as described in Section 2.1.  In this study, TNE is 
evaluated for its applicability in non-resolved space object characterization, in particular, for distinguishing 
endmember spectra.  We assume the case of non-imaging detection and classification, where a spectrometer is 
affixed to a telescope that does not detect a space object as an image, but as a collection of scalar intensities at 
different wavelengths.  We analyze the ability of TNE to classify these endmembers in relationship to a common 
spectral comparison technique called Euclidean distance, from which is derived mean-squared error.   

This paper is organized as follows.  In Section 2, we overview the theory of tabular nearest-neighbor encoding 
in relationship to vector quantization, then describe its practical implementation in salient detail.  Section 3 provides 
a summary of classification test results on a database of eight materials found in domestic satellite applications.  
Noise, sampling density, and thresholding considerations are discussed, and TNE is found to be superior to the 
Euclidean distance in each test case.  Conclusions and suggestions for future work are given in Section 4. 

2. THEORETICAL SUMMARY 

We begin with an overview of vector quantization (Section 2.1) that is couched in terms of image algebra, a 
rigorous concise notation that unifies linear and nonlinear mathematics in the image domain [8].  We then proceed to 
a mathematical description of tabular nearest-neighbor encoding (Section 2.2), with complexity analysis presented in 
Section 2.3. 
2.1. Overview of Vector Quantization 

Let X denote an MxN-pixel image domain, and let a codebook c be comprised of KxL-pixel exemplars, for 
convenience.  Let a be an image on X, whose m-bit values are in the set F = Z  and which can be expressed as the 
mapping a : X  F , denoted in image algebra as 

m2
→ ∈a FX.  Assume that this image is mathematically subdivided 

into KxL-pixel encoding blocks.  Further assume that ∈c (FKL)N, where domain(c) is an indexing set.  
Denote a VQ-compressed image as ac ∈NY, where Y denotes a subset of X (for example, an M/K by N/L -pixel 

domain), such that each index in range(ac) is in domain(c).  Let an indexing function map a point in the 
source domain to a point in the compressed domain, such that a point x in the domain of the yth encoding block (it-
self a subset of X) is mapped to .  Further assume that h has a dual  2X, which returns the domain of 
the yth encoding block, from which the compressed pixel value ac(y) is derived. 

YX →:h

Yy ∈ →Y:*h

Given the preceding discussion, a VQ transform can be expressed at a high level as 

YNX NZZ →× )()(:
22
KL

mmT  ,    (1) 

such that ac = T(a,c).  In practice, the codebook is understood, so we write ac = T(a).  Decompression is similarly 
expressed via the dual transformation 

XNY ZZN )()(:
22 mm

KL*T →×  ,   (2) 

which is invoked to yield an approximation to the source image denoted by b = T*(ac)  a.  Since VQ is a lossy 
transformation, the inverse transform T -1 does not necessarily exist. 

≈
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In order to understand the relationship between VQ and TNE, we need to consider the effect of codebook size.  
For example, we note that when VQ is applied to image compression applications, the compression ratio CR of T : 
FX →  GY is given by  

    
)(
)()(

G
F

Y
X

siz
sizTCR ⋅=      (3) 

where |S| denotes cardinality of the set S, and siz(S) denotes the number of bits required to encode S (for example, in 
terms of linear quantization). 

Given a codebook domain U, the compression ratio of the VQ transform T can be expressed in terms of its 
domain compression ratio CRD and its range compression ratio CRR, as follows: 

KL
KL

CRD ===
/X
X

Y
X

       and      
UG

F
log)(

)( m
siz
sizCRR ==  .  (4) 

The compression ratio of a VQ transform, absent of the codebook, is thus given by: 

  
Ulog

KLmCRCRCR RD =⋅=  .    (5) 

Given CR, K, L, and m, the codebook size, also denoted by Q for brevity, is constrained by the following 
relationship: 

      CRKLmQ /2≤≡ U  .    (6) 

Implementationally, it is important to note that the VQ codebook can be large, necessitating efficient search 
algorithms in the computational implementation of Equation (1).  Again assuming encoding in terms of the KL-
element encoding block or sample vector, we observe that Q can be computed from CR and other parameters, so we 
can use Q to estimate VQ codebook search overhead.   

For example, if linear search of codebook exemplars is implemented sequentially, then each of |Y| = |X|/KL 
source blocks are compared with each of Q codebook exemplars comprised of KL pixels, for a total cost of Q ⋅ |X| 
comparisons.  Since KL pixel-level comparisons are usually combined with KL-1 operations per block, the minimum 
overhead exclusive of I/O is given by 2Q ⋅ |X| operations.  If a more computationally involved matching criteria 
such as Euclidean distance implemented as mean-squared error (MSE) are employed, then the work involved in 
determining a best-match exemplar for each source block can increase considerably.  For example, blockwise MSE 
computation would require 2KL-1 additions, KL+1 multiplications, and one square root per encoding block per 
codebook exemplar.  Denoting N  |X| for brevity, we have the following linear-search work requirement: ≡

         . (7) rootssquare/ionsmultiplcatadditions2additions2 KLNQNQNQWNQ lin
cs ++<≤

If logarithmic search is employed, then it is well known that one can in principle decrease the preceding 
estimate by a factor of log(Q)/Q, via a tree-structured architecture. 

2.2. Tabular Nearest-Neighbor Encoding 
It is possible to visualize each KL-element sampling vector as part of a subset of a larger collection of vectors from 
which examples can be abstracted for purposes of pattern matching.  For example, each KxL-element sample vector 
can be seen as a point in KL-dimensional Euclidean space, denoted by RKL. This concept support the construction of 
a database of templates, each one containing KL elements, against which each input sample (modeled as a point in 
RKL) can be compared to determine its best-match exemplar or template in the database.  By selecting the 
appropriate subset of the template database corresponding to the input patterns, a highly efficient comparison with a 
relatively small number of templates can be implemented.   

In practice, this database of patterns can be indexed very efficiently to yield a comparison approach that 
involves small amounts of floating-point or integer computations, and is primarily I/O-intensive.  By using a broader 
collection of templates, or by varying sampling density, tradeoffs between computational cost and classification 
accuracy can be achieved in terms of practical constraints on the pattern classification process. 
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This basic concept that underlies TNE indicates a comprehensive approach to pattern matching which we first 
overview (Section 2.2.1), then describe in detail mathematically (Section 2.2.2).  
2.2.1. Overview of TNE.  Assume that the spectral classification process requires the comparison of multiple data 
blocks or test vectors from different sensor/classifier assets with a library of target-related exemplar or training set 
vectors.  This library does not need to be large initially, and can be augmented adaptively during the pattern 
classification process. TNE begins processing by placing thresholding values called acceptance bounds around each 
component value of each test vector, then determine the number of components from each training set exemplar that 
fall within these bounds.  A binary vector is generated for each training set exemplar, as shown in Figures 1, 3 and 4.  
This binary vector indicates the components of the test vector that agree with a particular database exemplar.  Note 
that the intervals of agreement can be all equal or weighted, as appropriate.  At the heart of the TNE paradigm is a 
procedure for very efficiently deriving this agreement map for the entire pattern library without significant 
computation – only a few logical or integer arithmetic operations are required.   

Sample
values,

1st profile

Template
Vector 

“Agreement”
range

Sample
values,

2nd profile

Binary 
“agreement”

vector
1  1  0   1   1  0  1  1   1  1   1  0  1  1   1  1  

TEMPLATE VECTOR 1

TEST (DATA) VECTOR

 
Figure 1. TNE derives a binary agreement vector, where a 1 signifies that 

the associated components agree within a pre-specified tolerance. 
 

As Figure 2 indicates, the TNE algorithm constructs a binary vector for each quantization level along each of 
the KL coordinate axes (vector block dimensions).  This binary vector contains a bit for each exemplar in the 
training set.  If the KL-dimensional boundary corresponding to the agreement intervals about each training set 
exemplar projects onto the associated quantization interval, a 1 is assigned, otherwise a 0.  

Xn

0

256

128

Possible levels, component Xn

Training Set Boxes

k

Boxes which project onto level k

Level K boxes:                    2, 5, 6, 9, 14, …

Level K Binary vector:      01001100100001… 
 

Figure 2. Derivation of binary agreement vectors for each quantization level along each dimension. 
 

The utility of these binary agreement vectors is that once they are constructed, a virtual agreement map for any 
new test vector can be specified immediately by simply using the KL component values of a test vector as pointers 
into the larger, pre-existing table.  Again, recall that this table can be prespecified or computed adaptively.  Also, as 
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shown in Figure 3 binary agreement vectors can be combined logically to facilitate inferences with respect to test 
vector classification. 

(117)

( 19)

Component 1 agreements (“1”)
1101000010000001100000010000000…

Component 2 agreements (“1”)
0000010000101000100110001001100…
Agreements: component 1 AND component 2
0000000000000000100000000000000…
Agreements: component 1 OR component 2
1101010010101001100110011001100…

Agreement by Component between Test Vector
And Each Training Set ExemplarTest Vector =  117

19 
Test Vector =  117

19 

 
Figure 3.  Example of a two-dimensional system (i.e., two pixels per sampling vector) that illustrates utility of the 

binary agreement vectors. Note that only one training set exemplar matches both components of the test vector. 

Each dimension of  the search space RKL can be any numerically represented object.  We have thus successfully 
applied TNE to a wide variety of multi-data and multi-sensor classification problems.  For example, detection of a 
launch- or boost-phase event can be structured as shown in Figure 4, where multiple sensors that each output 
multiple values (e.g., spectra) which can be represented in terms of the agreement map. Here, each dimension of the 
search space has its own binary pointer table, from which the binary agreement vector is derived via I/O operations 
only.  Thus, TNE is an efficient paradigm for multi-data and multi-sensor fusion, as well as pattern classification. 

 22
121
155
 44
101
 47
 11
 13
 27
144
121
223
193
 66
77
44

100101110101011100000111...
0010111010110101011100011..
0100101010000101111000000...
        . ..
        . ..

Binary Pointer Table, Dimension 1

Table, Dimension 2
0010101010110100111110000...
0101110010101000101010000
  . ..
  . ..

001011101010100111110000...
0101110010101000101010000
  . ..
  . ..

Table, Dimension M

0100101010000101111000000. 
0101110010101000101010000 
0100101010000101111000000...
        . ..
        . ..

1000101010001010010010101....

“agreement 
map”

SENSOR
1

SENSOR
2

SENSOR
3

Signal Vector

Time = t1, …

Training Set 
Exemplar   (columns)

Vector Component
(rows) (AM)

Multi-sensor test vector
provides pointers to retrieve
corresponding training set agreement map (AM).  

Figure 4. Specification of a single (virtual) agreement map via test vector component pointers,  
derived in this example from three fused sensor data types. 

In order to understand the relationship of TNE to spectral signature classification, we next discuss the 
mathematical implementation of TNE, then proceed to a complexity analysis in Section 2.3. 
2.2.2. Mathematical Description of TNE.  Let an image ∈a FX be subdivided by an indexing function h to yield a 
collection of KxL-pixel encoding blocks }:)({ Yyyb ∈=A , where .  Let a codebook c be formed from A, 
such that c contains Q KxL-pixel exemplars, each of which represent a cluster Ci, where i = 1..Q.  Let a feature space 
representation F have axes B1, B2, ..., Bj, ..., BP, to which are projected each of the clusters Ci, thereby producing a 
collection of  intervals denoted by 

XY ⊂

}1and1:{ 2
, PjQiII ji ≤≤≤≤∈= R .    (8) 
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2.2.2.1. Algorithm.  Let an encoding block b(y) be represented by a point or region p in feature space F.  Let p be 
projected to axes Bj, j = 1..P, to yield a collection of intervals denoted by  

}1and1:{ 2 PjQiJJ i,j ≤≤≤≤∈= R .    (9) 

Although Ji,j is one-dimensional when p is a point, we assume that Ji,j is two-dimensional, for purposes of generality.   
Step 1.  Let I and J be processed by an operation that compares the extent of Ji,j with the extent of  Ii,j, such that a 

PxQ-element bitmap d is formed, as follows: 

   .   (10) 
⎩
⎨
⎧ ≤≥

=
otherwise0

)()(and)()(if1
),( 2211 i,ji,ji,ji,j IpJpIpJp

jid

Step 2.  As an example of pattern recognition, sum d rowwise, and subtract P as to yield scores i)( dg Σ−= Pi , 
where di denotes the i-th row of d.  The resultant scores equal the Hamming distances between p and each 
exemplar c(i) represented by cluster Ci. 

The best-match codebook exemplar is given by c(choice[domain(min(g))]). 
2.2.2.2. Observation.  It is readily seen by comparison of Sections 2.1 and 2.2.2.1 that TNE provides an efficient 
means for VQ codebook search.  In imaging applications, TNE can be used to compress a hyperspectral datacube a 
by indexing each encoding block according to the spatial configuration of its values.  That is, a given pixel (x,a(x)) 
of a provides both spatial and grayscale information to a map GRX →×:D , where R denotes domain(a) and G is 
an indexed set of pointers to Q-bit Boolean vectors stored in database D.  Each vector represents one of the KL 
pixels of a given encoding block b.  In the resulting QxKL-pixel array d, which is called the agreement map, the j-th 
column represents a bit vector of binary matching scores between (a) value b(x) at position x of domain(b) indexed 
by j, and (b) all exemplar values c(i)(x), where i =1..Q.  The exemplar that best matches b is given by 

          c(choice(domain(min(KL – Σdi)))) ,    (11) 

where di denotes the i-th row of d.   
2.3. Complexity Analysis of TNE 
Assuming that the TNE codebook cluster projections are precomputed, projection of p to the axes of F would 
naïvely require O(P) arithmetic and transcendental operations per source block, for example, P sine operations and 
2P additions.  Comparison of I and J requires 2PQ comparisons per source block, with P(Q+1) additions required to 
produce g.  Similarly, Q comparisons are required to find the best-match exemplar in c.  In principle, the work 
required by a naïve implementation of the TNE codebook search over a is given by: 

ntals)transcendeadditions3)(scomparison1)(2( PQPPQMNWTNE ++++= . (12) 

It is readily verified that the precomputation of D is the burdensome step in the TNE algorithm, which can be 
compared to the overhead of codebook construction in VQ.  For example, if each encoding block has KL pixels each 
having G graylevels, then GKL block configurations are possible.  Comparison of these configurations with the Q 
codebook exemplars yields a total cost of W = O(KLQGKL) comparison operations.  Given typical values in 
hyperspectral imagery of K,L = 16, Q = 256, and G = 256, it is easily verified that W is prohibitively large.    Hence, 
it is reasonable to determine the subset S of the GKL block configurations that occurs in a given training set.  Given S, 
W can be reduced to O(KLQ . |S|)comparison operations.   For example, if |S| = 105 and the proportionality constant 
in the complexity estimate of W is set to unity for purposes of simplicity, then W = 2563x105 = 1.67 GOPs.  In 
contrast, the non-imaging signature recognition task reported in this paper uses K = 1, L < 2.2 x 104, Q < 800, and |S| 
= 640, yielding W = 11.2 MOPs, which is well within real-time processing rates for existing workstations.  

It has been argued that the preceding analysis misleads the reader into believing that TNE is not a 
computationally efficient classifier.  In practice, the efficiency of TNE derives from the ability to construct the 
agreement map from a precomputed collection D of binary pointer tables, using I/O operations only.  This allows 
TNE to run efficiently on machines with large local or shared memory models, where the majority of D is memory-
resident.  In such cases, we have determined that TNE significantly outperforms traditional classifiers such as 
Euclidean or Mahalanobis distance operators, because TNE requires no floating-point arithmetic or multiplication. 
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Furthermore, in the classifier refinement step that involves agreement map processing, TNE exhibits very 
significant efficiency gains over the aforementioned distance-based classifiers, because only bitwise logical 
operations as well as integer column sums are required for processing of the TNE agreement map.  For example, 
given a PxQ-bit agreement map d, constructed per Equation (10), processing of all columns of d by pointwise 
logical operators requires PQ logical operations.  Formation of a column sum requires a maximum of P 
incrementations.   

Since current workstation employ processors with efficient vector computation, the actual cost of these logical 
and integer operations is very low.  For example, in the tests described in Section 3, 22 < P < 22,000 and 8 < Q < 
800, so 32-fold parallelism in bitwise logic operations reduces the dominant work to a lower limit of 5.5 = 8(22) / 32 
invocations of a logical vector operation (e.g., < 6 machine cycles of an Itanium processor) and an upper limit of 
550,000 = 800(22,000) / 32 invocations (implying approximately 550,000 machine cycles on the same type of 
processor), exclusive of I/O overhead.  As in the preceding analysis of computational work, this timing constraint is 
well within real-time processing capabilities of existing workstations. 

3. APPLICATION OF TNE TO SIGNATURE CLASSIFICATION  

The TNE algorithm was tested against the common Euclidean distance measure, from which metrics such as MSE 
are derived.  The composition of our signature database is given in Section 3.1, with test procedures given in Section 
3.2.  Classifier performance results are discussed in Section 3.4.  

3.1. Signature Database 
A test database of eight spectral signatures, adapted from the NASA database of space material signatures, was 
selected, as shown in Figure 5.  The spectral materials are as follows:  (1) Hubble aluminum, (2) Hubble green glue, 
(3) Solar cell, (4) Black rubber edge, (5) Bolts, (6) Copper stripping, (7) Hubble honeycomb side, and (8) Hubble 
honeycomb top.  Spectra were subsampled from original NASA data at 0.1 micron wavelength intervals. 

 

       0.5                   1.0                     1.5                      2.0                     2.5 
Wavelength, microns 

1.2 

1.0 

0.8 

0.6 

0.4 

0.2 

0.0 

Normalized Intensity 

 
Figure 5.  Normalized test spectra, adapted from NASA database of space materials. 

These materials are chosen because their signatures differ in the visible and near-infrared (NIR) spectral regions, but 
five materials are similar in the IR region, while three materials (#2, #3 and #8) differ significantly in the IR from 
the remaining spectra. 

3.2. Test Procedures 
In this paper, two illustrative test cases are evaluated, with the objective of comparing TNE classification accuracy 
against Euclidean distance classification accuracy.  In the first case (Figure 6), data sampled at 0.1 micron 
wavelength intervals were resampled via linear interpolation at 0.01 micron intervals, to provide a denser test set of 
220 points per spectrum.  The resampled test set was perturbed by random, Gaussian-distributed additive noise at 
standard deviation ranging from 0 < σ < 0.8.   

In the second case (Figure 7), data sampled at 0.1 micron intervals were resampled via linear interpolation at 
0.0001 microns, to provide a denser test set of 22,000 points per spectrum.  As in the first case, the resampled test 
set was perturbed by random Gaussian-distributed additive noise at standard deviation  0.01 < σ < 0.8. 

Classification accuracy was measured as follows.  If a given spectrum of the NS = 8 spectra is distinguished by 
TNE or the Euclidean distance metric from NS – NC other spectra, then the classification accuracy is defined as  
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S

C

N
N

−= 1η  .     (13) 

Thus, if NC = 0, then η = 1.0.  Similarly, if NC = 7, then η = 1 – 7/8 = 1/8 = 0.125.  This simple metric thus allows 
straightforward visualization of results in terms of a grayscale or pseudo-colored image (shown in Figures 6 and 7), 
of which the x-axis (rows) denotes spectrum by number ranging from 1 through 8, and the y-axis (columns) denotes 
the level of additive noise. 

3.3. Experimental Results 
As shown in Figures 6 and 7, TNE superiorly classified the eight endmember spectra, when compared with the 
Euclidean distance metric.  In Figure 6a (10X resampling), TNE correctly classified all spectra at 0 < σ < 0.23, and 
mis-classified only two spectra at 0.24 < σ < 0.36.  In contrast, the Euclidean distance algorithm (Figure 6b) never 
classified all eight spectra correctly, being confounded by materials #1 and #3 at very low noise levels (0 < σ < 
0.03), above which Euclidean classifier performance degraded significantly (e.g., five of eight spectra were mis-
classified at σ = 0.11).  Above, σ = 0.15, the Euclidean classifier exhibited progressively more severe deficits, as 
shown by the black pixels (seven out of eight spectra confused with test spectrum) in Figure 6b. 

 
Figure 6.  Comparison of (a) TNE classification accuracy with (b) Euclidean distance classification accuracy, for 
eight spectra (shown in Figure 5), sampled at 0.1 micron wavelength intervals, then resampled at 10X to yield 220 
samples per spectra. White pixels in the performance chart indicate perfect classification of a given spectrum, while 
black pixels indicate very poor classification, as shown by the gradient bar to the right of each performance chart.  
 

Interestingly, TNE performs significantly better on larger samples, that is, when the resampling factor is high.  
For example, in Figure 7a (1000X resampling), all spectra are classified correctly by TNE up to the high noise level 
σ = 0.45, which is a significant improvement over the 10X resampling case shown in Figure 6a.  Among all tests 
performed in this case (640 tests = 80 noise levels x 8 spectra), only 15 tests resulted in mis-classification, which 
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indicates a probability of correct TNE classification of PC = 1 – 15/640 = 0.977, as opposed to PC = 1 – 207/640 = 
0.677 (207 mis-classifications in Figure 6a) for a 10X resampling factor.  

In contrast, the Euclidean distance classification performance was no better in Figure 7b as opposed to Figure 
6b, and its PC was worse than chance over all 640 measurements in each test case. Due to small-sample statistical 
constraints imposed by the weak law of numbers, there was no statistically significant difference in the performance 
of the Euclidean distance metric between Figure 6b and Figure 7b.  Also, it is visually apparent in Figure 7a that 
TNE’s classification performance improved drastically with respect to Figure 6a. 

 
Figure 7.  Comparison of (a) TNE classification accuracy with (b) Euclidean distance classification accuracy, for 
eight spectra (shown in Figure 5), sampled at 0.1 micron wavelength resolution, then resampled at 1000X to yield 
22,000 samples per spectra. White pixels in the performance chart indicate perfect classification of a given 
spectrum, while black pixels indicate very poor classification, as shown by the gradient bar to the right of each 
performance chart. 

The reason for TNE’s improved performance in Figure 7a, as opposed to Figure 6a, is the increased amount of 
data available for processing in the TNE agreement map d (per Equation 10).  Because we are using a simple 
Hamming distance metric to compute matching scores in the agreement map processing step, each sampling vector, 
and therefore each column of the agreement map, has 10X more data (Figure 6) than the original 22-point spectrum 
shown in Figure 5, and 1000X the data (Figure 7) of each original spectrum.   As a result of increasing the number P  
of rows in d, the signal-to-noise ratio of the Hamming distance metric improves by two orders of magnitude 
between Case 1 (shown in Figure 6) and Case 2 (Figure 7). This supports much higher resolution in discriminating 
correct matches, per the notional diagram of Figure 1.  Additionally, this indicates that TNE would be expected to 
perform better on hyperspectral than multi-spectral data. 

A further advantage of TNE versus other types of published classifiers is that the TNE agreement map tells us 
(a) which patterns were classified correctly or nearly correctly, with what error (if any), and why this classification 
occurred; as well as (b) which patterns were classified incorrectly, with what error, and why.  As a result, we are 
able to adaptively configure the TNE agreement map to intelligently maximize the classification probability PC. 
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4. CONCLUSIONS 

Accurate non-imaging detection and recognition of space objects requires accurate classification of spectral 
signatures that comprise pure materials of which an object is comprised.  In the spectral domain, the signatures of 
these materials are called endmembers, can be mixed to produce a composite signature that characterizes a given 
object.  It follows that if one cannot discriminate accurately among spectral endmembers, then one cannot accurately 
discriminate object signatures.  Unfortunately, the vast majority of classifiers currently in use in pattern recognition 
practice perform poorly when spectral signatures are closely spaced, interleaved, or significantly noise-corrupted 
[9].  Such classifiers include metrics derived from the Euclidean distance, for example, mean-squared error.   

This paper presents an emerging technology for pattern classification, called tabular nearest-neighbor encoding 
(TNE), which has proven highly successful when applied to spectral signature classification.  Developed initially as 
an efficient search engine for vector quantization in image and signal compression, TNE employs a highly-
dimensional search space represented in terms of a binary array called the agreement map (AM).  Processing of the 
AM requires only bitwise logical operations and a few integer additions or incrementation operations, which can be 
performed in vector-parallel fashion.  TNE is thus highly efficient, and very well suited for implementation on 
parallel or embedded processing architectures. 

In this paper, we demonstrate that TNE performs superiorly to the Euclidean distance measure when classifying 
noise-corrupted signatures of eight spectra adapted from the NASA database of space materials.  In particular, TNE 
classifies all signatures completely correctly up to Gaussian noise level at standard deviation σ = 0.23 over the 
unitary intensity interval, given a 10X input resampling factor.  Over the 640 tests (Case 1) conducted for this 
resampling case, TNE’s probability of classification was PC = 0.677, while the Euclidean classifier yielded PC no 
better than chance.  When the resampling factor was increased to 1000X, TNE classified all spectra correctly up to 
the noise level σ = 0.45 at PC = 0.977 for the 640 tests in Case 2, while the performance of the Euclidean distance 
classifier did not improve statistically.  We also show that TNE performs superiorly in the sense of computational 
cost, requiring only I/O operations, bitwise logical operators, and integer incrementation or addition to achieve the 
aforementioned classifier performance levels.  Future work emphasizes development of more intelligent agreement 
map processing techniques, as well as enhancement of TNE’s adaptive classification capabilities. 
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