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RytovProp is a new concept for the simulation of optical propagation through atmospheric turbulence. The

concept is based on a felicitous combination of Rytov approximation based analytic results, matrix theory,

and gaussian random variable theory. Though less versatile than a wave optics propagation simulation

approach, for those problems which it can accommodate it provides large sets of results orders of magnitude

faster than a wave optics propagation simulation. In this work I describe the RytovProp concept and show

results demonstrating its applicability to the Up-Link problem.

1. Introduction

I use the term “Up-Link” to refer to a ground-to-space optical communications system—a system
that establishes a link from a ground based laser transmitter to a receiver on an orbiting satellite.
The laser transmitter has a relatively small diameter and no higher-order adaptive optics, only some
limited tip/tilt correction capability. I take as the “Up-Link Problem” the task of developing sta-
tistical results characterizing the effects of atmospheric turbulence on the signal strength, or Strehl
ratio, of such a link—in particular the task of developing results for the Strehl ratio’s probability
distribution. To address this problem I have developed a new computational procedure which, be-
cause it relies on results developed using the Rytov approximation to capture the optical propagation
effects of atmospheric turbulence, I call RytovProp.

The RytovProp technique is a Monte Carlo approach to the Up-Link problem. It relies on the
generation of a very large number of statistically appropriate, randomly selected realizations of the
value of the Strehl ratio. From these the statistics of the Up-Link are calculated. The RytovProp
computational procedure allows hundreds of thousands of statistically independent realizations of
the value of the Strehl ratio to be generated on a PC in just a few seconds. This great speed is made
possible by a judicious exploitation of propagation theory analytic results, a bit of matrix theory,
and use of gaussian random variable theory.

2. Calculating Signal Strength: Problem Formulation

I consider a laser transmitter system with a circular aperture of diameter D, and define a square-
patterned lattice of points on the aperture plane, an array of points sufficiently dense that it can be
considered to adequately sample the aperture. I chose the spacing between adjacent lattice points to
be such that there are P lattice-points within the aperture, denoting their positions by rp =

(
xp , yp

)

where p = {1, 2, 3, . . . , P}. I shall use the notation r0 to denote the position of the point at the
center of the aperture. The placement of this lattice of points is such that it is symmetric about
this center-point but does not include that center-point—so the center-point (at r0) will be in the
center of the small square formed by the four points of the lattice that are closest to r0 .

Whether speaking of the laser beam transmitted to the satellite or of the tip/tilt measurement signal
from a beacon on the satellite, in referring to the associated time I shall always have in mind the
time at the ground—the time when the signal left the transmitter or when the beacon signal arrived
at the tip/tilt tracker. Farther more, I shall assume that the time of flight of light through the
atmospheric portion of the propagation path is negligibly short, so even when speaking of the time
dependence of the turbulence pattern at some position along the propagation path the term “time”
always refers to the associated instant of time at the ground site.

I use the notation t0 to denote what I call the “current time,” the time associated with some signal
for which the Strehl ratio, S, is to be evaluated. I shall consider a sequence of M prior times, t

m
,

where m = {1, 2, 3, . . . , M} —a sequence of tip/tilt measurement times. Associated with these
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times is a sequence of nominal propagation directions, θm , where m = {0, 1, 2, 3, . . . , M}. I note
that θ

m
is directly proportional to t

m
—except that θ0 , since it is associated with transmission

of the laser beam rather than with receipt of the beacon signal, deviates from this simple linear
dependence by the point-ahead angular distance.

Associated with the (M+1)×(P +1) combinations of time, t
m

, (and associated propagation direction,
θm) with position, rp , I use the notation φp,m and `p,m to denote the turbulence induced perturbation
of the phase and of the log of the amplitude respectively of the optical field in propagation between
the satellite and the aperture plane of the laser transmitter. It is to be noted that, by virtue of the
reciprocity principle in optical propagation between two points, it is not necessary to indicate which
is the source point; the same values for the phase and log-amplitude perturbations apply which
ever one of the two points is the source point. (The quantities φp,m and `p,m apply equally well to
perturbation of light going up and of light coming down.)

The essence of the RytovProp method lies in the following statement:

If a statistically appropriate, randomly selected realization of the set of P × (M + 1) values
for the turbulence induced phase perturbations, φp,m , and for the set of P values for the
turbulence induced log-amplitude perturbations, `p,0 , were available then the value of the
Strehl ratio, S, associated with the signal strength could be calculated according to the
formula that

S =
∣∣∣∣

P∑

p=1

Ap ∆2 exp
(

`p,0 + i [ φp,0 − ϕp ]
) ∣∣∣∣

2
/ ∣∣∣∣

P∑

p=1

Ap ∆2

∣∣∣∣
2

, (1)

where Ap represents the amplitude of the laser beam at position rp on the transmitter’s
aperture, ∆ represents the distance between adjacent points in the set of P points covering
the transmitter’s aperture, and ϕ

p
represents the optical system imposed phase shift at

position rp on the transmitter’s aperture plane that is to be associated with tip/tilt (or
adaptive optics) corrections.

The RytovProp method functions by (in essence) being able to develop a statistically appropriate,
randomly selected set of values for all of the φp,m , `p,0 , and ϕp quantities, and then using this
equation to obtain a statistically appropriate, randomly selected value for the Strehl ratio, S.

For the type of laser transmitter system being considered here, for which there is only tip/tilt
correction (and no higher-order adaptive optics correction) the value of ϕp is given by the equation

ϕp = k
(
x̃p ϑ

X
+ ỹp ϑ

Y)
, (2)

where k = 2 π/λ, the quantities ϑ
X

and ϑ
Y

denote the two components of tip/tilt correction applied
by the laser transmitter system at the current time, t0 , and

x̃p =
xp − x√√√√

P∑

p′=1

(
x

p′ − x
)2

, and ỹp =
yp − y√√√√

P∑

p′=1

(
y

p′ − y
)2

, (3)

with

x =
P∑

p=1

xp , and y =
P∑

p=1

yp . (4)

It is to be noticed that

P∑

p=1

x̃
p

= 0 ,

P∑

p=1

ỹ
p

= 0 ,

P∑

p=1

x̃
p

2 = 1 , and
P∑

p=1

ỹ
p

2 = 1 . (5)
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With the quantities ϑ
X

m
and ϑ

Y

m
denoting the two components of tip/tilt measured at prior time tm ,

the values of the two components of tip/tilt correction, ϑ
X

and ϑ
Y
, are given by the equation

ϑ
X

=
M∑

m=1

α
m

ϑ
X

m
, and ϑ

Y
=

M∑

m=1

α
m

ϑ
Y

m
, (6)

where the set of M different values of α
m

represent a set of coefficients that may be thought of as
defining the bandwidth of the beacon-tip/tilt tracking servo system. The prior time components of
tip/tilt, ϑ

X

m
and ϑ

Y

m
, may be considered to have values given by the equation

ϑ
X

m
= k−1

P∑

p=1

x̃
p
φ

p,m
, and ϑ

Y

m
= k−1

P∑

p=1

ỹ
p
φ

p,m
. (7)

At this point it is convenient to introduce the notations φ̃
p,m

and ˜̀
p,0 which are defined by the

equation

φ̃p,m = φp,m − φ0,m , and ˜̀
p,0 = `p,0 − ` , (8)

with ` denoting the mean (i.e. the ensemble average) value of the turbulence induced log-amplitude
perturbations, which mean value is independent of the aperture plane position, rp . In distinction to
the phase and log-amplitude perturbations, φp,m and `p,m , I refer to these quantities, i.e. to φ̃p,m

and ˜̀
p,m , as the adjusted phase and log-amplitude perturbations. Making use of this notation I can

recast Eq.’s (1) and (7) as

S ==
∣∣∣∣

P∑

p=1

Ap exp
( [ ˜̀

p,0 + `
]
+ i [ φ̃p,0 − ϕp ]

) ∣∣∣∣
2

/ ∣∣∣∣
P∑

p=1

Ap

∣∣∣∣
2

, (9)

and

ϑ
X

m
= k−1

P∑

p=1

x̃
p
φ̃

p,m
, and ϑ

Y

m
= k−1

P∑

p=1

ỹ
p
φ̃

p,m
. (10)

I now rephrase the statement concerning the essence of the RytovProp method, saying:

If a statistically appropriate, randomly selected realization of the set of P × (M + 1) values
for φ̃p,m and for the set of P values for ˜̀

p,0 were available, then the value of the Strehl ratio,
S, could be calculated using Eq.’s (9) and (10).

In the next section I take up the matter of establishing a basis for quickly generating a statistically
appropriate, randomly selected realization of this set of values.

3. Generating A Statistically Appropriate, Random Realization

I separate this section into three quite distinct sub sections. In the first of these I develop a matrix
theory based result concerning the generation of a set of jointly gaussian random variables. In
the second of these I present propagation theory related results for the phase and log-amplitude
perturbations, φ

p,m
and `

p,m
, results derived using the Rytov approximation. In the third sub

section I show how these results can be adapted so they apply for the adjusted phase and log-
amplitude perturbations, φ̃p,m and ˜̀

p,m . Together theses three sub sections provide a basis for
quickly generating a statistically appropriate, randomly selected realization of the needed set of
values for φ̃p,m and for ˜̀

p,0 .

3.1 Producing A Set Of Jointly Gaussian Random Variables

Let z
n

denote a set of n = {1, 2, 3, . . . , N} zero-mean, jointly-gaussian, random variables, and
let z denote a column vector whose nTH element is zn . Using the angle-bracket notation, 〈 . . . 〉, to
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indicate an ensemble average the covariance matrix, Cz , for this set of random variables can be seen
to be given by the equation

Cz =
〈
z z

T 〉
. (11)

This is an N -by-N size matrix.

Let Uz denote a matrix whose columns correspond to the eigen-vectors of Cz , and let Sz denote a
diagonal matrix whose diagonal elements are the corresponding eigen-values of C

z
. Both U

z
and

S
z

are, like C
z
, N -by-N size matrices. I can write

C
z
U

z
= U

z
S

z
. (12)

Because the eigen vectors are ortho-normal U
z

is unitary/orthogonal matrix and I can write

U
z

T
U

z
= I , as well as U

z
U

z

T
= I , (13)

where I denotes the identity matrix of size N -by-N —a diagonal matrix all of whose diagonal
elements are equal to unity.

Let S̃
z

denote a diagonal matrix whose diagonal elements are each equal to the square root of the
corresponding one of the diagonal elements of Sz , so that S̃z S̃z

T
= Sz . Now form the matrix C̃z

according to the equation
C̃z = Uz S̃z . (14)

It is easy to shown that this matrix, C̃
z
, is the square root of the matrix C

z
—the square root of C

z

in the sense that C̃
z
C̃

z

T
= C

z
. To prove this—successively making use of the fact that S̃

z
S̃

z

T
= S

z

and of Eq. (14), and then (13) —I can write

C̃
z
C̃

z

T
=

(
U

z
S̃

z

) (
U

z
S̃

z

)T
= U

z
S̃

z
S̃

z

T
U

z

T
= U

z
S

z
U

z

T
= C

z
U

z
U

z

T
= C

z
. (15)

To generate a single realization I start by letting γ be a column vector of length N of randomly
selected zero-mean, unity-variance, statistically-independent, gaussian random variables—so that

〈
γ

〉
= 0 , and

〈
γ γ

T 〉
= I , (16)

where 0 is a column vector of length N all of whose elements are equal to zero and, as above, I is
the identity matrix of size N -by-N .

I assert that the column vector ζ formed according to the equation

ζ = C̃
z
γ , (17)

is a statistically appropriate realization of the random variable z. To prove that this is so I first note
that since the elements of γ taken as a set of random variables constitute a realizations of a jointly
gaussian set of random variables, and since the elements of ζ are formed as a weighted sums of the
elements of γ, then the elements of ζ constitute a realization of a set of jointly gaussian random
variables. I next note that since 〈γ 〉 = 0, then since C̃

z
is non random then

〈
ζ

〉
=

〈
C̃z γ

〉
= C̃z

〈
γ

〉
= C̃z 0 = 0 . (18)

Finally, I note that

〈
ζ ζ

T 〉
=

〈 (
C̃z γ

) (
C̃z γ

)T
〉

=
〈

C̃z γ γ
T
C̃z

T
〉

= C̃z

〈
γ γ

T 〉
C̃z

T
= C̃z I C̃z

T
= C̃z C̃z

T
= Cz . (19)

These three just noted fact indicate that the values of the elements of ζ, calculated in accordance with
Eq. (17), are a statistically appropriate realization of the random variable elements of the column
vector z. They have the correct mean value, the correct set of covariances and cross-covariances,
and are jointly gaussian.
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From consideration of what has just been shown it is clear that if we had, in numerical form, the
covariance matrix relating all of the phase and log-amplitude perturbations we could develop the
square root of that matrix and then, by simply multiplying that square root matrix by a column
vector of statistically independent normal random variables, could generate a randomly selected
realization of the value of those phases and log-amplitudes—and from those phase and log-amplitude
values could develop a randomly selected statistically appropriate value for the Strehl ratio. As a
first step in developing that matrix, in the next sub section I briefly review/present, in analytic form,
the relevant propagation results, developed using the Rytov approximation. These analytic results
will allow me to carry out the calculation of the values of the elements of that covariance matrix.

3.2 Rytov Approximation Based Analytic Propagation Results

Based on use of the Rytov approximation results have been developed allowing the numerical evalua-
tion of the log-amplitude covariance, C

``
(p, m; p′, m), for the phase structure function, D

φφ
(p, m; p′, m′),

and for the phase:log-amplitude cross-covariance, C
φ`

(p, m; p′, m′) —which quantities are defined by
the equation

C
``

(p, m; p′, m′) =
〈 [

`
p,m

− `
] [

`
p′,m

− `
] 〉

, (20a)

Dφφ (p, m; p′, m′) =
〈 [

φp,m − φ
p′,m′

]2 〉
, (20b)

C
φ`

(p, m; p′, m′) =
〈

φp,m

[
`

p′,m′ − `
] 〉

. (20c)

Making use of the Rytov approximation it has been shown that the values of these quantities are
given by the equations

C
``

(p, m; p′, m′) =
8.16
4 π

k2

∫ Z

0

dz C2
N
(z)

[
z (1 − z/Z)/k

]5/6
F

(
Q(p, m; p′, m′; z)

)
, (21a)

D
φφ

(p, m; p′, m′) =
8.16
2 π

k2

∫ Z

0

dz C2
N
(z)

[
z (1 − z/Z)/k

]5/6
G

(
Q(p, m; p′, m′; z)

)
, (21b)

C
φ`

(p, m; p′, m′) =
8.16
4 π

k2

∫ Z

0

dz C2
N
(z)

[
z (1 − z/Z)/k

]5/6
H

(
Q(p, m; p′, m′; z)

)
, (21c)

where Z denotes the length of the propagation path and z, the variable of integration, denotes
position along the propagation path (with z = 0 corresponding to the ground end of the path),
where the three functions F (Q), G(Q), and H(Q) are defined by the equations

F (Q) =
∫ ∞

0

dκ κ−8/3 J0

(
κ Q

) [
1 − cos(κ2)

]
, (22a)

G(Q) =
∫ ∞

0

dκ κ−8/3
[
1 − J0

(
κ Q

) ] [
1 + cos(κ2)

]
, (22b)

H(Q) =
∫ ∞

0

dκ κ−8/3 J0

(
κ Q

)
sin(κ2) . (22c)

and where the quantity Q(p, m; p′, m′; z) that appears in Eq. (21) has a value given by the equation

Q(p, m; p′, m′; z) =
∣∣ (rp − r

p′ ) (1 − z/Z) + (θm − θ
m′ ) z −V(z) (tm − t

m′ )
∣∣LF

−1 . (23)
Here the quantity V(z) denotes the projection onto a plane parallel to the aperture plane of the
vector representing the wind velocity that exists at the range z, and the quantity LF , which may be
considered to be a sort of Fresnel length, has a value given by the equation

LF =
[
z (Z − z)

/
(k Z)

]−1/2
. (24)
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Evaluation of the integrals in Eq. (22) yield the results that

F (Q) = 1
2

Γ
(
− 5

6

)

Γ
(

11
6

) (
1
4 Q2

)5/6 − 1
2 Γ

(
− 5

6

)
<

{
exp

(
5
12 π i

)
1F1

(
− 5

6 ; 1; 1
4 Q2 i

) }
, (25a)

G(Q) = −1
2

Γ
(
− 5

6

)

Γ
(

11
6

) (
1
4 Q2

)5/6 − 1
2 Γ

(
− 5

6

) [
<

{
exp

(
5
12 π i

)
1F1

(
− 5

6 ; 1; 1
4 Q2 i

) }
− cos

(
5
12 π

) ]
,(25b)

H(Q) = 1
2

Γ
(
− 5

6

)
<

{
exp

(
11
12

π i
)

1F1

(
− 5

6
; 1; 1

4
Q2 i

) }
. (25c)

The hyper geometric functions appearing in this result can be evaluated using the standard power
series formulation—so long as Q is not too large. With 16-digit computational accuracy quite
accurate results can be developed for values of Q as large as Q = 10, but for values of Q much larger
than about Q = 12 the results obtained with 16-digit computational accuracy are very clearly in
error. For values of Q larger than Q = 10 I have developed the asymptotic series results that

F (Q) = 1
4

Γ
(

7
6

)

Γ
(
− 1

6

) (
1
4 Q2

)−7/6 − 1
2

(
1
4 Q2

)−11/6
[
1 − 8

3
11
3

(
1
4 Q2

)−2
+ 8

3
11
3

14
3

17
3

(
1
4 Q2

)−4 − . . .
]

sin
(

1
4 Q2

)

+ 1
2

(
1
4 Q2

)−17/6
[

8
3 − 8

3
11
3

14
3

(
1
4 Q2

)−2
+ 8

3
11
3

14
3

17
3

20
3

(
1
4 Q2

)−4 − . . .
]

cos
(

1
4 Q2

)
, (26a)

G(Q) = −
Γ
(
− 5

6

)

Γ
(

11
6

) (
1
4

Q2
)5/6 + F (Q) + 1

2
Γ
(
− 5

6

)
cos

(
5
12

π
)
, (26b)

H(Q) = 1
2

Γ
(

1
6

)

Γ
(

5
6

) (
1
4 Q2

)−1/6 + 1
2

(
1
4 Q2

)−11/6
[
1 − 8

3
11
3

(
1
4 Q2

)−2 + 8
3

11
3

14
3

17
3

(
1
4 Q2

)−4 − . . .
]

cos
(

1
4 Q2

)

+ 1
2

(
1
4 Q2

)−17/6
[

8
3 − 8

3
11
3

14
3

(
1
4 Q2

)−2 + 8
3

11
3

14
3

17
3

20
3

(
1
4 Q2

)−4 − . . .
]

sin
(

1
4 Q2

)
, (26c)

which results very smoothly joint the results given by Eq. (25) at Q = 10 .

I add to these basic propagation theory results the result that

` = −C`` (p, m; p, m) = −Ry , (27)
where the notation Ry is used to denote what has come to be called the Rytov-number.

These results are all for the statistics of the phase and log-amplitude perturbations, φp,m and `p,m .
What is needed is results for the adjusted phase and log-amplitude perturbations, φ̃p,m and ˜̀

p,m . In
the next section I show how such results can be obtained from the results presented here.

3.3 Adapting Phase And Log-Amplitude Results To Apply
To The Adjusted Phase And Log-Amplitude

The elements of the covariance matrix are the covariance of the adjusted phase, C
φ̃φ̃

(p, m; p′, m′),
the covariance of the adjusted log-amplitude, C ˜̀˜̀(p, m; p′, m′), and the cross-covariance between the
adjusted phase and the adjusted log-amplitude, C

φ̃ ˜̀(p, m; p′, m′). These quantities are expressible as
C

φ̃φ̃
(p, m; p′, m′) =

〈
φ̃

p,m
φ̃

p′,m′

〉
, C ˜̀˜̀(p, m; p′, m′) =

〈 ˜̀
p,m

˜̀
p′,m′

〉
,

and C
φ̃ ˜̀(p, m; p′, m′) =

〈
φ̃p,m

˜̀
p′m′

〉
. (28)

Noting that (a − b) (c − d) = 1
2

[
− (a − c)2 + (a − d)2 + (b − c)2 − (b − d)2

]
and making use of

Eq.’s (8) and (20b) it can be seen that

C
φ̃φ̃

(p, m; p′, m′) = 1
2

[
−Dφφ (p, m; p′, m′)+Dφφ (p, m; 0, m′)+Dφφ (0, m; p′, m′)−Dφφ (0, m; 0, m′)

]
. (29)

From Eq.’s (8) and (20a) it follows that
C ˜̀˜̀(p, m; p′, m′) = C`` (p, m; p′, m′) . (30)

And finally, from Eq.’s (8) and (20c) it can be seen that
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C
φ̃ ˜̀(p, m; p′, m′) = C

φ`
(p, m; p′, m′) − C

φ`
(0, m; p′, m′) . (31)

With all of these equations we are able to populate the covariance matrix with numerical values, and
could directly proceed to the numerical computation of Strehl ratio values. However, as is developed
in the next section, we can greatly reduce the size of the computational task if we directly produce
the prior time tip/tilt components, ϑ

X

m
and ϑ

Y

m
rather than calculate these values from the prior

time adjusted phase values, φ̃p,m .

4. Direct Generation Of Prior Time Tip/Tilt Values

I now offer a final rephrasing of the statement concerning the essence of the RytovProp method,
saying:

If a set of statistically appropriate, randomly selected realization of the P values for φ̃
p,0 , as

well as a set of P values for ˜̀
p,0 (both sets for the current time) were available—along with

a set of M values for ϑ
X

m
, as well as a set of M values of ϑ

Y

m
(both sets for the prior times),

then the value of the Strehl ratio, S, could be calculated using Eq.’s (9).

Compared to the previous statements of the essence of the RytovProp method this version has the
advantage of requiring much fewer random variables be generated, making the covariance matrix
that will have to be worked with much smaller. But this covariance matrix contains elements for
which I have not yet given computational prescriptions.

The covariance matrix will now also contain elements relating the different components of tip/tilt at
different (or the same) prior times to each other, elements relating the tip/tilt components at prior
times to the current time adjusted phase, and elements relating the tip/tilt components at prior
times to the current time adjusted log-amplitude. These elements of the covariance matrix are

CXX (m; m′) =
〈
ϑ

X

m
ϑ

X

m′

〉
, CXY (m; m′) =

〈
ϑ

X

m
ϑ

Y

m′

〉
, and CYY (m; m′) =

〈
ϑ

Y

m
ϑ

Y

m′

〉
, (32)

C
φ̃X

(p, m; m′) =
〈
φ̃p,m ϑ

X

m′

〉
, and C

φ̃Y
(p, m; m′) =

〈
φ̃p,m ϑ

Y

m′

〉
, (33)

and

C ˜̀X
(p, m; m′) =

〈 ˜̀
p,m ϑ

X

m′

〉
, and C ˜̀Y

(p, m; m′) =
〈 ˜̀

p,m ϑ
Y

m′

〉
. (34)

Substituting Eq. (7) into Eq. (32) and carrying out fairly standard simplifications I can write

CXX (m; m′) = k−2

〈
P∑

p=1

x̃
p
φ̃

p,m

P∑

p′=1

x̃
p′ φ̃

p′,m′

〉
= −k−2

P∑

p,p′=1

x̃
p
x̃

p′ Dφφ
(p, m; p′, m′) , (35)

CXY (m; m′) = k−2

〈
P∑

p=1

x̃p φ̃p,m

P∑

p′=1

ỹ
p′ φ̃

p′,m′

〉
= −k−2

P∑

p,p′=1

x̃p ỹ
p′ Dφφ (p, m; p′, m′) , (36)

and

CYY (m; m′) = k−2

〈
P∑

p=1

ỹp φ̃p,m

P∑

p′=1

ỹ
p′ φ̃

p′,m′

〉
= −k−2

P∑

p,p′=1

ỹp ỹ
p′ Dφφ (p, m; p′, m′) , (37)

Substituting Eq. (7) into Eq. (33) and carrying out the same sort of simplifications I can write

C
φ̃X

(p, m; m′) = k−1

〈
φ̃p,m

P∑

p′=1

x̃
p′ φ̃

p′,m′

〉
= k−1

P∑

p′=1

x̃
p′

{
− Dφφ (p, m; p′, m′) + Dφφ (0, m; p′, m′)

}
, (38)

and

C
φ̃Y

(p, m; m′) = k−1

〈
φ̃

p,m

P∑

p′=1

ỹ
p′ φ̃

p′,m′

〉
= k−1

P∑

p′=1

ỹ
p′

{
− D

φφ
(p, m; p′, m′) + D

φφ
(0, m; p′, m′)

}
. (39)
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And finally, substituting Eq. (7) into Eq. (34) and again carrying out the same sort of simplifications
I can write

C ˜̀X
(p, m; m′) = k−1

〈
˜̀

p,m

P∑

p′=1

x̃
p′ φ̃

p′,m′

〉
= k−1

P∑

p′=1

x̃
p′ Cφ`

(p′, m′; p, m) , (40)

and

C ˜̀Y
(p, m; m′) = k−1

〈
˜̀

p,m

P∑

p′=1

ỹ
p′ φ̃

p′,m′

〉
= k−1

P∑

p′=1

ỹ
p′ Cφ`

(p′, m′; p, m) , (41)

With these formulas in hand I proceed to the presentation of sample results.

5. Sample Results: Testing/Validation Of RytovProp

A large set of (split-step, FFT based) wave optics propagation simulations were performed by Barry
Foucault, SAIC, simulating propagation from a ground based laser transmitter to a receiver on a
satellite in a circular orbit. Results were developed for all combinations of transmitter aperture
diameters of D = 0.1 m, 0.25 m, and 0.5 m; of laser wave lengths of λ = 0.5 µm and 1.5 µm,
and of tip/tilt tracking servo bandwidths of f3dB = 0 Hz, 3 Hz, and 10 Hz. Various engagement
conditions—the conditions being different with respect to satellite altitude, to propagation direction
zenith angle, and to optical strength of turbulence distributions along the propagation path—were
considered.

Cumulative probability distribution results were developed from these wave optics propagation sim-
ulation results. For about 6% of the cases only 2,100 frames of data (and Strehl ratio values) were
developed; for about another 6% of the cases only about 4,200 frames were developed. For another
21% of the cases no more than 16,800 frames of data were developed. For the remainder of the cases
no more than 42,000 frames of data were developed. As a consequence of the limited number of
frames of data the cumulative probability distributions are rather unreliable for small probabilities.
This is particularly so because there was a high degree of correlation between successive Strehl ratio
values—a correlation of 50% at a separation of about ten frames.

Working with all engagement cases and with all system parameters except the D = 0.5 m aperture
RytovProp results were developed, each with 100,000 statistically independent Strehl ratio values.
Cumulative probability distribution results were developed from these RytovProp Strehl ratio results
and compared with the cumulative probability distribution results obtained from the wave optics
propagation simulations. In Fig. 1 I show a few of these results. In Fig. 2 I show the frame-to-frame
(i.e. the temporal) correlation of the corresponding wave optics propagation simulation Strehl ratio
results. As can be seen there is very good agreement between the wave optics propagation and
the RytovProp simulation results, particularly for the higher probabilities, where the wave optics
simulation results are less statistically suspect. This agreement is characteristic of that found for all
the cases.
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Figure 1. Cumulative Probability Distribution For The First Engagement Scenario

Each of the four plots is for the combinations of aperture diameter, D, and optical wave length,
λ, indicated above that plot. The engagement parameters are such that for λ = 0.5 µm the rel-
evant turbulence parameters have values of Ry = 0.033 Np2, r0 = 0.103 m, and fT = 16.8 Hz,
while for λ = 1.5 µm the values are Ry = 0.009 Np2, r0 = 0.386 m, and fT = 5.6 Hz. The
dashed line curves show the results obtained using the split-step wave optics propagation simula-
tion method. The solid line curves show the results obtained using the RytovProp method. The
red line curves are for the case where the tilt tracking servo bandwidth was f3dB = 0 Hz, while
the green line and the red line curves are for f3dB = 3 Hz and f3dB = 10 Hz respectively. The
horizontal dotted lines indicate the 1% and the 0.1% cumulative probability levels.
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Figure 2. Normalized Correlation Of Successive Strehl Ratio Values

The three curves in each plot are to be associated with the similarly colored dashed line curves
in the corresponding plots of Fig. 1 —the curves based on the wave optics propagation method.
The normalized covariance is the covariance divided by the variance. The notation Num above
each plot indicates the number of Strehl ratio values used in producing the results shown in
Fig. 1. The value of Num divided by the Frame-to-Frame Separation at which the normalized
covariance curve crosses the 0.5 level can be taken as an estimate of the number of degrees-of-
freedom in the data used in forming the dashed line curves of Fig. 1.
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