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ABSTRACT 

 

RytovProp.m is a single file of Matlab Code which implements David Fried’s new RytovProp method.  The result is 

easy to use, flexible, and remarkably fast.  Results are compared with two different propagation codes. 

 

1. WHAT IS RYTOVPROP? 

 

RytovProp was invented by David Fried, who contributed a paper in this conference which goes into the theoretical 

details of this concept.  It predicts Strehls at a single point at altitude from a source aperture on the ground.  It uses 

Rytov theory to predict covariance of phases, log amplitudes and prior time tilts.  It is valid for Rytov (or log 

amplitude variance) < 0.2; it becomes unreliable as Rytov rise towards saturation.   

 

RytovProp is implemented in Matlab as a single function and is designed to be fast, easy to use and very flexible. 

 

 

2. THE ESSENCIAL CONCEPT 

 

For someone using RytovProp, the main thing to understand is that 

CM, the covariance matrix, holds the covariance of every pair of: 

phases and log amplitudes defined at each point in the aperture and 

prior time tilt estimates; the diagonal of the matrix holds the variances 

of each of these.  The CM matrix  is calculated from Rytov theory.  As 

Fig. 1 shows in detail, the square root of CM, i.e. Csr where Csr • Csr
t
 

= CM is calculated using the singular value decomposition.  Given a 

vector of Gaussian random numbers, “g”, a vector for one realization 

of phases, log-amplitudes, and prior time tilt estimates, “p”, is 

produced by matrix multiplication: 

  p = Csr • g 

 

 

 

3. USING RYTOVPROP IS EASY  

 

RytovProp.m is a single file of Matlab code which is called with one argument and which returns a vector of 

independent Strehl values.  This vector can then be used to generate, for example, a Cumulative Probability Density 

Function plot.  The RytovProp package includes code to generate such plots.  RytovProp runs much faster than 

traditional wave simulations (discussed in detail later). 

 

The one input argument is a structure which holds all the parameters which describe the optics, the turbulence, and 

the simulation.  A structure is a Matlab data type which has many fields, each of which has a name, and can point to 

any of Matlab’s other data types.  Examples of this are below in “Using RytovProp.” 

 

This approach makes it easier to have readable code since the parameters all have names and can be set one 

parameter per line.  It also makes it easy to duplicate a set of parameters, and to store results and parameters 

together, thus documenting what parameters values were used to generate the results.  

 

It also makes it easier for the developers to add features, which usually involves adding optional parameters.  Some 

examples of optional features are specifying a beam profile of intensity or phase (e.g. a tophat or Gaussian profile, 

or a diverging or focused beam, and an arbitrary aperture shape). 

Fig. 1.  How Phase and Log Variance 

Estimates Are Calculated 
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So: 

p = Csr • g 



 

Beyond the structure, RytovProp can take optional input and output argument pairs.  This allows internal variables 

in the code to be output.  For example, the Csr matrix can be output along with the Strehl values.  A further feature 

allows us to input such internal variables as part of the input structure.  This overrides them from being calculated.  

Thus we could, for example, get Csr out and add it to the input structure, which will then skip recalculating it, and 

go straight to generating more independent Strehls, by reusing this input Csr matrix. 

 

4. OUTLINE OF PROCESSING 

 

Once RytovProp is called, there are a number of internal steps in processing.  Understanding these might help the 

user tune it for his application. 

 

First the code checks to see that sufficient inputs have been provided.  Then it forms the grid of sample points for 

which the calculations will be performed.  If the divergent beam or other phase variation at launch is specified, the 

various functions needed to support that are calculated next. 

 

Next the sample times and weighting functions are calculated to support the tracker bandwidths specified.  Most of 

the time a single prior time will be sufficient and is set at one radian in the past at the tracker bandwidth.  So if 10 

Hz is requested, the single prior tilt estimate will be calculated at 1/(2π 10 Hz) = 0.159 seconds in the past, and it 

will be weighted 100% in applying a tilt correction. 

 

In the rare (and time consuming) case that detailed tracker behavior is being modeled, or more than one bandwidth 

(not counting zero or infinite Hz, i.e. no tracker or perfect tracking) is specified, then a series of times are calculated, 

with a geometrically increasing time between samples, and these are weighted to match the requested bandwidths. 

 

The Cn
2
 profile is then integrated into the specified number of layers.  The layers are spaced so that they contribute 

equal amounts of expected optical path difference.  The wind speed in each layer is also calculated, and then wind 

directions are added. 

 

Next, the correlation matrix is calculated.  This is one of the most time consuming steps.  The correlation of each 

element of phase, log-amplitude and prior full aperture tilt with each other element is calculated.  For example, if 

there are 100 phases and 100 log-amplitudes and 5 prior tilts being calculated, then a matrix 205×205 is formed 

holding all the cross correlations.  The matrix is built up from subarrays: all phases with other phases, all phases 

with log-amplitudes, all log-amplitudes with other log-amplitudes, tilts with tilts, phases with tilts, log-amplitudes 

with tilts.  This matrix is called CM, and can be requested as an output, as described below. 

 

Next the CM matrix is factored using singular value decomposition, and recombined to form the “square root” of the 

matrix, i.e. Csr such that Csr·Csr
t
 = CM.  Csr can also be requested as an output. 

 

Finally, realizations are calculated by multiplying Csr by a series of vectors of Gaussian random numbers.  The 

output of the multiplication is a vector of phases, log-amplitudes, and tilts.  These are combined to form phasors, 

with tracker tilt correction applied, and the phasors are averaged and the resulting amplitude squared to form a Strehl 

ratio estimate.  As many of these as requested are formed, and output in a large vector.  If a launch phase is 

requested, or an aperture mask, or a large divergence, then these other calculations are done, as appropriate. 

 

Once the vector of Strehls is returned, there are utilities provided with RytovProp to aid in analysis.  CDFplot.m will 

form a CDFplot with the X-axis in dB of Strehl (i.e. 10·log10(Strehl)) and the Y-axis showing probability with an 

axis scaled so that a log-normal distribution will show up as a straight line.  writehdf5complex.m and 

readhdf5complex.m are provided to save a structure of data out in HDF5 format.  Finally Print2LaTex.m is provided 

to allow a LaTex document to be built up showing the results of  many RytovProp runs. 

 

5. USING RYTOVPROP 

 

The first step is describing the path, as shown in Fig. 2.  Notice that each line starts with “d.” ; d is the structure of 

parameters we are building so that we can call RytovProp.  We describe the zenith angle to the target, the distance to 



the target, the slew rate, and point ahead angle.  The “h” and “z” fields hold a vector of heights and positions along 

the path where the turbulence will be described below. 

 

 

 
 

 

Next we describe the light source (see Fig. 3).  This includes the light’s wavelength, lambda, in meters, the 

telescope diameter (also in meters), and the various tracker bandwidths we would like to simulate.  To accomplish 

this, the system will estimate not only phase and log amplitude but also the tilt at various times in the past. 

 

 
 

 

Inf designates infinite bandwidth, i.e. perfect tracking, and 0 designates no track correction at all.  If only 0 and inf 

are requested, no prior time estimates are needed.  The number of prior times we must calculate has a large impact in 

processing time.  

 

 
 

It takes only a few lines to describe the turbulence.  We call a wind speed model, to get wind speed at each altitude 

specified in d.h.  We call TurbulenceModels.m to fill in Cn
2
 model, in this case Hufnagel-Valley 5/7.  This function 

has a number of models available; the “1” argument specifies which model is desired.  Here, in Fig. 4, we’ve chosen 

to reduce the turbulence strength by multiplying the Cn
2
’s by 0.1. Finally we specify a range of angles to be added to 

the wind model, giving direction to the speeds. 

 

 

Fig. 2.  Describe the Path 

% PATH 

d.psi=pi/4;   % zenith angle in radians 

d.Z=3e5*sec(d.psi);  % distance to target along path in meters 

d.theta_dot=[7e3*cos(d.psi)/d.Z 0];  % slew rate in radians/sec 

d.theta_PA=[2*(7e3*cos(d.psi))/3e8 0];   % point ahead angle  

     in radians, normally parallel to theta_dot  

dh=1;    % fine steps in height in meters 

d.h=1:dh:3e4;   % vector of heights in atmosphere 

d.z=d.h*sec(d.psi);  % distance along propagation direction 

Fig.  4. Describe the turbulence 

% TURBULENCE 

d.vel=Bufton(d.h);              % wind speed model 

d.CNsq=0.1*TurbulenceModels(1,d.h); % turbulence strength model 

     %(#1 is HV57, see function for others) 

d.anglerange=[0 pi/2];         % range of wind velocity angles  

      % to add to final layers 

 

% SOURCE AND LIGHT AND TRACKER 

d.lambda=0.5e-6;           % wavelength in meters 

d.D=0.1;                          % telescope diameter in meters 

d.bws=[0 3 10 30 100 inf];         % tracker bandwidth(s) in Hz 

 

% BEAM PROFILE: current options: 'tophat', 'gaussian' (needs eRad)  

d.profile.name='gaussian';        % profile   

d.profile.eRad=0.9*d.D/2;         % distance from center to  

  % where beam amplitude is 1/e of peak, intensity is 1/e^2  

 
Fig.  3. Describe the light source 



 
 

 

 

 

These parameters control how the simulation runs.  Realizations determines how many Strehl values to calculate.  

I n this case we’ve requested 100,000; enough to generate a pretty smooth CDF plot without taking too long.  A 

million realizations is not unworkable. 

 

The next parameter, K, sets how many atmospheric layers to use in calculating the correlation matrix (CM).  This is 

normally much smaller than the length of vector d.h.  The program integrates the Cn
2
data appropriately to form this 

number of layers.   

 

minCount sets the minimum number of points to use in defining the aperture.  Here we have specified (see Fig. 5) 

that we must use at least 100 points; when the code ran, it used 112, the best fit of a circular aperture on a square 

grid with at least 100 points. 

 

maxSpace similarly sets the maximum point spacing allowed.  This can also control the number of points in the 

aperture; the system will vary the point spacing to meet both criteria. 

 

 

 
 

Calling the function is a single line of code.  Two variations are shown in Fig. 6.  The first line takes only the 

structure, “d” as an argument, and returns only the vector of Strehls, “SR,” which is stored in the structure “d” thus 

documenting how they were calculated. 

 

The second variation also requests that three internal variables be returned.  The three are specified as strings in the 

function call, and are returned as matrices, and are here stored in the structure “d” along with “SR.”  The “Csr” 

matrix is the matrix which turns random numbers into atmospheric realizations.  “X” and “Y” hold the coordinates 

of the points used in the aperture, so we can see where they are and how numerous. 

 

There is support, as well, for a phase or intensity profile at the ground aperture, for example a Gaussian beam profile 

or a diverging beam.  These options require additional input parameters and are documented with the code.  

 

 

% SIMULATION 

d.Realizations=1e5;     % number of Strehl estimates  

     % to calculate for each bandwidth 

 

d.K=20;                 % number of atmosphere layers  

       

d.minCount=100;    % minimum number of points in aperture 

d.maxSpace=0.01;   % maximum distance between adjacent  

    % points in meters.  Can be calc’d from r0; 

    % D.Fried suggests 0.2074*r0 

d.NumTimeSteps=1;    % number of time steps to use in forming 

   % estimates of prior tilts for tracker simulation. 

% CALL FOR STREHL CALCULATION 

 

d.SR = RytovProp( d ); 

 

% OR 

 

[d.SR, d.Csr, d.X, d.Y] = RytovProp( d, ‘Csr’, ‘X’, ‘Y’ ); 

Fig.  6. Call the function 

Fig.  5. Set the Simulation Parameters 



6. PARAMETERS VS. PERFORMANCE 

 

The three key variables controlling runtimes are: 

 Points in the Aperture 

o This is affected by maxSpace and minCount as well as Diameter, and Aperture Shape 

o CM and Csr grow as the square of this value, plus the number of prior time estimates 

o It is displayed on the left in Fig. 7.  Note that the last point is half an hour; still not very long.  

 

 Number of Prior Time Estimates Required (center plot of Fig. 7) 

o For no tracking or perfect tracking cases, no prior time tilt estimates are required 

o For a single tracker bandwidth, a single prior time estimate is generally sufficient, at 

1/(2πbandwidth) seconds prior. 

o For detailed tracker modeling, many prior times can be generated.   

o It takes considerably longer to generate CM with prior time tilt estimates.   

o We got good agreement with Barry Foucault’s ACS simulation using 25 prior times, with log time 

steps.   

o All bandwidths were handled by weighting this set. 

 Number of Realizations Requested (right plot of Fig. 7) has the least impact.  Even 3 million points took 

around 5 minutes. 
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Fig.  7. Parameters vs. Runtime 

 

Fig. 8 shows the effect of repeating the same case repeatedly.  Case 39 is one of  the simulations the Barry Foucault 

had done which was reproduced with RytovProp.  Notice that the lower end of the plots is a bit ragged.  This would 

be lessened if more points were used.  For example, if 100,000 points are used (as is the case in the figure) then only 

10 points show up at or below 0.0001 probability.  These are random, so the standard deviation of the value 10 will 

be the square root of 10 or around 32%.  If a million points were used for this case, then 100 points would fall below 

0.0001 probability, having a standard deviation of only 10%, smoothing the curves and making them more 

reproducible.   
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Fig.  8. Reproducibility at 100,000 realizations.  More realizations would appear smoother 

 

7. APPLYING RYTOVPROP AND COMPARING RESULTS TO WAVE SIMULATIONS 

 

RytovProp was compared to two wave simulation results, a published study by Parenti et al [1] and an in house 

series run by Barry Foucault.  The process of running cases was quite straightforward.  I generated the structure 

holding the parameters for each case, ran RytovProp with that input, and plotted and stored the results.  Except for 

initializing the structure, which took a page of code, the loop to generate the results was on the order of a dozen 

lines. 

 

Fig. 9 is taken from Parenti [1] with RytovProp results overlaid.  These cases have diameters from 2mm to 2 meters, 

and are HV5/7 atmospheres with Geosynchronous orbits and 1.55 micron light.  The RytovProp runs used 100,000 

realizations.  The blue and green curves are from RytovProp and show remarkable agreement with Parenti’s black 

circles and triangles.  The curves end at around 2 meters diameter where the computer being used had insufficient 

memory to continue.  Fig. 10 shows the run times for these 31 cases run (four cases run are not shown, being to the 

left of the y-axis).  The first 26 took only ~15 seconds per case.  These were consistent, because they all used the 

specified minimum number of points in the aperture.  For the larger apertures, the number of points starts to climb, 

and the run times rise rapidly, with the last point taking more than half an hour.  The first 25 cases took 6 minutes 

total, the last 6 cases took 60 minutes.
1
 

                                                           
1
 Parenti, R; Sasiela, R. J..; Andrews, L.C..; Phillips, R L., Modeling the PDF for the irradiance of an uplink beam 

in the presence of beam wander, Atmospheric Propagation III. Edited by Young, C. Y.; Gilbreath, G. C. Proceedings 

of the SPIE, Volume 6215, pp. 621508 (2006). 



 
Fig.  9. Parenti et al simulations (black) and RytovProp (blue and green) 

 

 
Fig.  10. Runtimes vs. Aperture Diameter to run Parenti Cases in RytovProp 

 

Barry Foucault ran a series of cases using the ACS wavefront propagation simulation code.  He generated 66 cases 

with 0.5 and 1.5 micron wavelengths, three turbulence strengths, 10 and 25 cm apertures, 45 and 90 degree 



elevations and 400 km, 1500 km and Geosynchronous orbits.  The agreement was quite good in all these cases 

(discussed in more detail in Dr. Fried’s talk); Figs. 11 and 12 show a couple examples of this agreement with dashed 

curves being RytovProp (here labeled KL from an earlier name for this method) and the solid curves being the ACS 

wave simulation results.  Again there were 100,000 realizations in RytovProp.  The ACS runs had fewer points and 

these were correlated in time.  The discrepancies are largely the result of having few independent degrees of 

freedom in the ACS data. 

 

The times for the ACS runs were not recorded, but run over several months on a 24 node cluster, while the 

RytovProp cases were run overnight on a single PC with 4-10 times more points; thousands of times faster. 

 

 

 
Fig.  11 ACS/RytovProp Comparison at low altitude, small diameter and 5.2 cm r0 

 



 
Fig.  12. ACS/RytovProp Comparison at high altitude, large diameter and 19.5 cm r0 

 

8. SUMMARY 

 

 RytovProp is Easy to Use and Flexible 

 RytovProp Runs Fast 

 RytovProp Agrees Well with Wave Simulation, when Rytov Theory Holds 

 

9. DISTRIBUTION 

 

The RytovProp software package currently has limited distribution to U.S. Government agencies and their 

contractors.  Make requests to Air Force Research Laboratory/RDS, 3550 Aberdeen Ave SE, Kirtland AFB, NM 

87117-5776 
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