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Abstract

When a piece of space debris is observed by optical telescopes, angular and angular-rate information can be

preciesely estimated from the track using basic kinematics. However range and range-rate information is to a large

extent undetermined, other than by a few weak physical constraints. The standard approach in performing an

orbit determination between two separate tracks of data is the least squares approach. This approach, however,

presupposes a nominal estimation of the true orbit that is later corrected by the least squares algorithm. Since

such an initial estimate is not known a priori for a single pass, this approach is ill-suited to deal with the increase

in uncorrelated tracks expected as new telescopes come online within the next few years. The approach we

describe here takes a more global perspective. After computing the admissible region, the set of all points possible

belonging to a given track, for each of the two tracks, we then dynamically evolve or regress these two-dimensional

regions into a common coordinate system and finally search for possible intersections. By utilizing this process,

large reductions can be made to the uncertainty in the topocentric range, range-rate space. Once candidate

solutions are found a standard least squares approximation can refine the initial orbit produced by our method.

This paper discusses some of the complications and advantages associated with performing these intersections.

1 Introduction

A problem of recent interest to space-faring nations is the tracking, orbit determination, and cataloging of all pieces
of artificial space debris particles in low, medium, and high Earth orbits, a population of more than 300,000 particles
with diamter larger than 1 cm. The United States Air Force Space Command has installed a network of 25 radar
and optical sensors for this task, which make about 80,000 observations daily. For more background on observation
of space debris, see Rossi [1, 2].

Using optical measurements for particles in medium to high Earth orbit, the angles and angular rates of the
passing particles, as seen from an Earth-based telescope, can be measured to high precision, however the range
and range-rates are largely undetermined. The set of angles and angular rates of such a measurement is called an
attributable vector. Recent work has been done in outlining a precise mathematical description of the admissible region

of the range, range-rate plane given an attributable vector observed by radar or optical measurements, Tommei et

al. [3]. The admissible region is a two-dimensional surface that lives in the six-dimensional phase space surrounding
the Earth. This surface consists of all points in phase space where the true particle can possibly be found. For this
reason we will sometimes refer to it as the uncertainty surface. This uncertainty surface is then discretized by a
number of points called Virtual Debris particles, or VD particles. Each VD particle is an approximation to a possible
orbit for the observed particle of space debris. Viewed as a whole, the set of VD particles forms a virtual debris

field, or VD field, which approximates the macroscopic uncertainty distribution associated with a given attributable
vector. For optical measurements, the admissible region on the range/range-rate plane is restricted only by the fact
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Figure 1: The space debris particle D is observed by the point O on the surface of Earth. The center of Earth is C.

that the debris particle should be gravitationally bound to the Earth (negative geocentric energy), that it lie within
some region (2 and 20 Earth radii) of the observer, and that it not impact the Earth [3, 4].

Given this 2-dimensional region, we can assign each value of range and range-rate to a unique set of orbital
elements. In our work we use Delaunay elements for reasons outlined in [4]. Thus, each observation corresponds to
a 2-dimensional manifold mapped into a 6-dimensional space, with a dynamical evolution that is simply described
using standard orbit theory. Our approach uses these ideas, and some nice properties of the Delaunay elements, to
develop a conceptual algorithm where the intersection of these 2-D surfaces are computed. If the two observations
belong to the same object, they should intersect at a unique point. If they do not correspond to the same object,
their intersection should yield the null set.

In this paper we summarize the results from [4] related to our approach and discuss some challenges that we hope
to address in the future.

2 Admissible Region

In this section we review the admissible region for a space debris particle observed by a ground based optical sensor,
as presented in Tommei et al. [3], and offer an additional physical constraint that will further limit the size of this
region in the range range-rate plane.

2.1 Attributable Vectors

Let r be the geocentric position of a space debris particle and rO the geocentric position of the optical observer.
Let the position of the debris particle with respect to the observer be denoted rD = ρR̂, where R̂ is a unit vector
pointing from the observer to the particle. This gives us

r = rO + rD,

as shown in Fig. 1. Let
(ρ, α, δ) ∈ R

+ × [−π, π) × (−π/2, π/2)

be the spherical polar coordinates defining rD. Typically one can choose the J2000 coordinate systems so that α is
the right ascension and δ is the declination.

Definition 1 An optical attributable vector is a vector

A = (α, δ, α̇, δ̇) ∈ [−π, π) × (−π/2, π/2)× R
2

observed at time t.

The optical attributable vector is precisely the set of coordinates that can be measured from the observer’s frame on

the Earth’s surface at time t. Note that unless the debris particle is seen directly overhead, what we call a zenith
measurement, this will translate into uncertainty in the polar angles of the geocentric frame. Since the coordinate



transformation to the inertial geocentric frame depends on the position of the Earth, additional information must be
stored along with the attributable vector. The full set of data that should be tabulated with each observation is

x = (A, t, L) ∈ R
5 × N,

where A = (α, δ, α̇, δ̇) is the attributable vector, t is the time of observation, and L is observatory. A function can
then be defined as follows

ψ : (t, L) → (h,Θ,Φ),

where h is the altitude of the observatory (which we ignore in the current discussion), and (Θ,Φ) is the inertial angular
location of observatory L at time t. The observation data x and inertial orientation function of the observatory ψ
can then be unraveled to form the actual useable information for the coordinate transformations

X = (A, t, h,Θ,Φ) ∈ R
8.

For simplicity we will take h = 0 for the examples worked out in this paper.

2.2 Measuring Attributable Vectors

One of the technical difficulties in Space Situational Awareness (SSA) is the inability to accurately estimate the full
dynamical state of an object based on a single track of data. The usual standard for optical only orbit determination
is Gauss’ method, which requires three measurements of two angles that are sufficiently spread over time and allows
one to make a complete orbit determination. In the space debris tracking problem, however, optical search and
survey telescopes will observe objects for only very short durations (minutes at most) (Seitzer et al. [5]). This
track of data contains information on the angular location of the satellite, but in general does not have sufficient
information to allow for an accurate orbit determination of the object (e.g. using Gauss’ method). For meaningful
orbit characterization, the object must be observed again during a later pass. The problem, of course, is to discern
which uncorrelated tracks are the same object.

Our approach to this problem is two-fold. First is to extract the maximum amount of usable information from a
single track of a space object and to also bound the possible domain of the unmeasured state components. Second
is to use this information to correlate one observation track with another from a previous observation in order to
detect whether the two objects are the same. In the following we will focus specifically on optical observations of
space debris, although the theory and analysis can also apply to radar observations of space debris.

The challenge is to extract the maximum amount of usable information from a single track and also derive
meaningful constraints on the remaining uncertainty aspects of the state. Instead of determining an overall covariance
matrix for the object’s state, based on a single track, that contains all 6 dimensions, our approach is to use the track
observations to isolate those components of the object’s state that can be constrained. For an optical track consisting
of several angular observations over a time span of minutes these are the angular location and angular rate of the object
at a specific epoch, generally chosen to lie within the track. The idea is to use the multiple angular measurements to
develop an improved estimate of the angular location of the object and the angular rate of the object, and then use
these measurements to constrain the unmeasured states of the object. This approach was recently proposed in [3] by
Tommei et. al and is further extended in our research. This approach was also discussed in the context of computing
attributable vectors for asteroids from short arcs in Milani et al. and Milani & Knežević [6].

During an observation period, when a space object passes through the field of view of an optical telescope, the
optical telescope can take several measurements of that object, equivalent to a series of angles at specific times,
the total time span being a number of minutes. We assume that these angles can be identified with each other to
produce a single track of observable data for the space object. There is obviously more information in this pass of
data than just a single fix of the angular location of the space object relative to the observer, however there is not
enough information to provide an accurate orbit. To capture this additional information, we can estimate the space
object’s angular location, angular rate and angular acceleration at a fixed epoch, chosen within the tracking pass.
The additional information content goes into reducing the uncertainty of the angle, angle-rate and angle-acceleration
measurement at epoch. This approach recognizes that there is little information in one track related to the object
range and range-rate, and concentrates on fixing the angles, angle-rates, and angle-accelerations to a higher level
of precision. A similar approach has been taken to estimate the information content of a single pass of Doppler



data for an interplanetary spacecraft (Hamilton & Melbourne [7]). Estimates, based on published tracking data
characteristics for the MODEST space surveillance telescope which tracks GEO objects (Seitzer [5]) yields angular
location and angular rate measurement errors on the order of 1.5 × 10−4◦ and 1 × 10−6◦/s, respectively.

This approach combines the information from a track of observations spread out in time and transforms it into
a precise estimate of the partial state of the object at a specific epoch. This is a more convenient form in which to
transform the information from the track and makes it easier to discuss constraints on the unmeasured components
of the space object’s state. For an optical observation these unmeasured components are the object’s range and
range-rate at the epoch to and define the attributable vector A.

2.3 The Admissible Region

Given an optical attributable vector A, its corresponding admissible region is the set of points on the (ρ, ρ̇) plane that
have not been ruled out by physical considerations. We impose the following physical constraints on the possible
positions of the particle in the topocentric range/range-rate (ρ, ρ̇) plane:

• C1 = {(ρ, ρ̇) : E < 0}

• C2 = {(ρ, ρ̇) : 2 R⊕ < ρ < 20 R⊕}

• C3 = {(ρ, ρ̇) : 1.03 R⊕ < rp}

• C4 = {(ρ, ρ̇) : ra < 25 R⊕},

where E is the orbital energy, rp and ra are the periapsis and apoapsis (geocentric) radii of the orbit, respectively;
and where distance is measured in units of Earth-radii. These constraints are introduced in Tommei et al. [3],
though the majority of their work concentrates on analytical aspects of the first two constraints, C1 and C2. The
latter conditions C3 and C4 constrain the periapsis and apoapsis (geocentric) radii of the orbit to always lie within
some range. These latter constraints place a restriction on the possible eccentricities of the orbit, which rule out
impact orbits and orbits with an extremely high apoapsis. A periapsis of 1.03 R⊕ corresponds to a periapsis radius
at about 200 km above the surface of the Earth. The admissible region is then defined as a subset of the topocentric
range/range-rate plane by the condition:

C =

4
⋂

i=1

Ci. (1)

Given an optical attributable vector A, each point in the (ρ, ρ̇) plane corresponds to a unique physical orbit in
space that can be determined by a set of geometric and orbital element relations. We start by computing the vectors

R̂ = 〈cosα cos δ, sinα cos δ, sin δ〉, R̂α :=
∂R̂

∂α
, R̂δ :=

∂R̂

∂δ
.

The geocentric position and velocity of the a particle at (ρ, ρ̇) on the range and range-rate plane with attributable
vector A is therefore given by

r = rO + ρR̂ (2)

ṙ = ṙO + ρ̇R̂+ ρα̇R̂α + ρδ̇R̂δ. (3)

Given the position in inertial space, the orbital elements of that orbit are then given by standard relations. In order
to compute the admissible region, we begin by discretizing the strip given by C2 for a wide range of range-rates (e.g.
−10 R⊕ ≤ ρ̇ ≤ 10 R⊕). For each point in the discretization, we compute the physical orbit corresponding to that
point and the energy, periapsis radius, and apoapsis radius of that orbit. If the current point in the (ρ, ρ̇) plane
satisfies the constraints C1, C3, and C4, it is then stored in a separate list that generates the virtual debris field. This
second list is a discretization of the admissible region.

Fig. 2 shows the admissible region for a given optical observation. In this example, the optical observer’s
position in standard coordinates is polar angle Θ = π/3 rads (measured as the polar angle from the north pole)
and azimuthal angle Φ = 0 (measured from inertial x-axis), and the observer makes the following zenith observation
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Figure 2: Admissible Region for attributable vector A = (0 rads, π/6 rads, 0.1 rads/hr, 0.03 rads/hr), zenith mea-
surement

A = (0 rads, π/6 rads, 0.1 rads/hr, 0.03 rads/hr). The outlined region in Fig. 2 is what the admissible region
would look like if one choose only to incorporate the constraints C1 ∩ C2 (as primarily discussed in Tommei et al.

[3]). The inside dotted region is the (discretized) admissible region when all four constraints are considered, i.e.
C = C1 ∩ C2 ∩ C3 ∩ C4. As one can see, these additional constraints significantly reduce the area of the admissible
region that one must consider in making the orbit determination.

2.4 Delaunay Variables

In this subsection, we briefly define the set of canonical Delaunay variables that we use for mapping the admissible
region into orbit element space. The reasons for using these variables are discussed in more depth in [4].

One can transfer the uncertainty surface (admissible region) into geocentric cartesian coordinates and then let
each point of this surface evolve as a Keplerian orbit. If one does so, one sees that the surface spreads out fairly
quickly. As an alternative, we will transfer the surface into Delaunay variables. This is done in several steps. We
first transfer the topocentric spherical observation coordinates into geocentric cartesian coordinates using (2)-(3):

T1 : 〈ρ, ρ̇,X〉 → 〈x, y, z, ẋ, ẏ, ż〉.

This transformation depends on the full set of recorded data X = (A, t, h,Θ,Φ), as it depends on the location of the
observer at that time. As usual, A = 〈α, δ, α̇, δ̇〉 is the admissible vector associated with a given track of data. Next,
we transfer the cartesian coordinates into a set of orbital elements, using standard relations.

T2 : 〈x, y, z, ẋ, ẏ, ż〉 → 〈a, e, i, ω,Ω,M〉,

where a is the semi-major axis, e is the eccentricity, i is the inclination, ω is the argument of periapsis, Ω is the
longitude of the ascending node, and M is the mean anomaly. Lastly we transfer the orbital elements into Delaunay
variables,

T3 : 〈a, e, i, ω,Ω,M〉 → 〈L, l,G, g,H, h〉,



where the Delaunay variables are defined as in Ferraz-Mello [8]:

l = M, L =
√
µa,

g = ω, G = L
√

1 − e2, (4)

h = Ω, H = G cos i,

so that the total transformation from the observation space to Delaunay space at the initial time t0 is given by the
composition:

T (t0; t0) = T3 ◦ T2 ◦ T1. (5)

For the case of zero-eccentricity or zero-inclination orbits, the Delaunay variables become singular, and one could
instead choose Poincaré nonsingular canonical variables. In this work we will restrict our attention to cases where
singularities are not present and one can use Delaunay variables.

3 Intersection Theory Analysis (ITA)

In this section we describe how the Delaunay space can be used in performing an orbit determination between two
previously uncorrelated tracks (UCT’s).

3.1 Mapping the Admissible Region to Delaunay Space

Let D ∼= R
6 be the six-dimensional Delaunay space and C(X) the corresponding admissible region in the topocentric

range/range-rate plane for a fixed attributable vector and spatiotemporal observation location, as defined in (1). For
a fixed epoch time τ , we define the map F τ

X
: C → D as the map from the Admissible Region for a fixed X to the

Delaunay elements, where t is the time of the observation (one of the components of X), so that:

F τ
X

: 〈ρ, ρ̇〉 → 〈L, l,G, g,H, h〉.

Thus F τ
X
(C) ⊂ D is a two-dimensional submanifold of Delaunay space D ∼= R

6. We further define the three Delaunay

projective spaces DL
∼= DG

∼= DH
∼= R

2, so that the Delaunay space D has the direct sum decomposition D =
DL ⊕ DG ⊕ DH . These three projective spaces are the projections of Delaunay space onto the three symplectic
Delaunay planes. The map F τ

X
can be thought of in either of two ways, as a one-to-one mapping from the two-

dimensional admissible region C to the six-dimensional Delaunay space D or as a one-to-three mapping from the
two-dimensional admissible region C to the three two-dimensional Delaunay projective spaces DL, DG, and DH . While
at first glance, such a distinction seems pedantic, it is actually an important one, as intersections are inherently easier
to both visualize and carry out in two-dimensional spaces than they are in six-dimensional spaces.

3.2 Necessary Conditions for Correlation between Two UCT’s

Given two extended attributable vectors X1 and X2, one determines the corresponding admissible regions C1 and
C2, respectively. These admissible regions cannot be compared directly, as they are subsets of two different sets of
topocentric spherical coordinates, affixed to the Earth at different locations and different times. We now push the
admissible regions forward into Delaunay space, and dynamically evolve or regress both uncertainty distributions in
time to a common epoch τ , so that F τ

X1
(C1) and F τ

X2
(C2) are both two-dimensional submanifolds of six-dimensional

Delaunay space D, dynamically mapped to a common epoch time.
If X1 and X2 correspond to the same object, then F τ

X1
(C1) and F τ

X2
(C2) must necessarily intersect. Since X1 and

X2 each contain four pieces of information (two angles and two angle rates), the system is overdetermined. Unless
there is some redundancy in the information, if both tracks correspond to the same physical object, it is likely that
the uncertainty manifolds F τ

X1
(C1) and F τ

X2
(C2) will intersect at a single point ∆

∗.
On the other hand, suppose that it is still unknown whether both attributable vectors correspond to the same

physical object, but the surfaces F τ
X1

(C1) and F τ
X2

(C2) are found to intersect at a single point. Then we can then
conclude with a high confidence that both attributable vectors correspond to the same object. The reason is that
F τ

X1
(C1) and F τ

X2
(C2) are both two-dimensional manifolds embedded into the same six-dimensional Delaunay space



D. The probability that they, by accident, happen to touch tangentially at a single intersection point ∆
∗ is extremely

low, unless they are correlated and the orbit for both objects is given by that common intersection point ∆
∗. A

preliminary orbit determination is then given by the intersection point ∆
∗ and the two tracks may be considered

to be correlated. One then places this preliminary orbit determination into a separate holding catalog and awaits
confirmation by a third consistent track of data, at which time the orbit is added to the standard catalog.

3.3 Orbit Determination: Finding the Kepler Orbit with Two Observations

In the following we take one example from [4] and present it as an example of how this approach to orbit correlation
works. In this particular example we will study the case of two near-zenith observations. If the observation is not
made when the space debris particle is directly overhead, the projection of the uncertainty region on the (H,h) plane
will not be one-dimensional. The first attributable vector is given by A = (0 rads, π/6 rads, 0.1 rads/hr, 0.03 rads/hr),
made at time t = 0 hrs from a point on the Earth’s surface Θ = π/3 + 0.1 rads, Φ = 0.1 rads. Assuming particle
#1000 is the true space debris particle, a possible second observation (nonzenith) might be given by the attributable
vector A70 = (1.1516 rads, 0.4790 rads, 0.2262 rads/hr,−0.0809 rads/hr), made at time t = 70 from a point on the
Earth’s surface Θ = 1.2516 rads, Φ = 1.1918 rads. The intersections of the admissible regions, as projected onto
the Delaunay planes, is shown in Fig. 3. Because the true debris particle did not fly directly over zenith on either
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Figure 3: T (70; 0){A} (red) and T (70; 70){A70} (black) projected onto the Delaunay planes, nonzenith observations

of the measurements, the admissible regions now have two-dimensional projections on the (H,h) plane. Since we
are considering the Kepler case, the original uncertainty distribution’s projections on the (G, g) and (H,h) plane
are static. Our goal now is to systematically reduce the uncertainty region, by considering each Delaunay plane
in sequence, as much as possible until it is reduced to either a single point (complete orbit determination) or a
one-dimensional line.

By examination of the concurrent Delaunay plots of the uncertainty region projections (Fig. 3), we choose to
begin the orbit determination process by cutting off the non-overlap sections of the surface in the (H,h) plane. The
Delaunay projections of the remaining piece of surface is shown in Fig. 4. We see in Fig. 4 that there is again an
overlap and non-overlap region in the (G, g) plane. Removing the non-overlap region further reduces the admissible
region, as shown in Fig. 5. Interestingly, the (H,h) projection can be again used to cut out more of the uncertainty
surface, resulting in a third reduction, as shown in Fig. 6. We now turn to the projection of the thrice reduced
uncertainty region on the (L, l) plane. The first three reductions have eliminated all but three overlap regions on
the (L, l) plane. We consider each in term. The systematic projection of each overlap region onto each of the three
Delaunay planes is shown in Fig. 7. We see that the far right overlap region on the (L, l) plane (the overlap that is
almost confined to a single point) does not overlap on the (G, g) plane. This overlap region thus cannot correspond
to the actual debris particle and is now ruled out. The middle overlap region on the (L, l) plane does not overlap on
the (G, g) or (H,h) plane, so it is ruled out. Finally, the leftmost overlap region has a small intersection on both the
(G, g) and (H,h) plane. The orbit is thus determined to within a small uncertainty about a single point in Delaunay
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Figure 4: T (70; 0){Ar} (red) and T (70; 70){Ar
70} (black) projected onto the Delaunay planes, nonzenith observations
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Figure 5: T (70; 0){Arr} (red) and T (70; 70){Arr
70} (black) projected onto the Delaunay planes, nonzenith observations

space. It is possible that further reductions can be made by continuing this process: cut away the nonoverlap region
of the (G, g) plane, then do the same for the new nonoverlap region of the (H,h) plane, and continue to ping-pong
back and forth until the intersection is known to within the desired uncertainty. Alternatively, since the actual orbit
is now known to within a small neighborhood of a single point, a least squares solution can be carried out.

4 A Conceptual Algorithm

The purpose of this paper has been to introduce and illustrate the viability of this orbit determination technique. As
such, all surface intersection reductions were carried out by hand. Future research must be done on the development
of technology that efficiently automates this process. As intersections of two-dimensional surfaces must be performed,
and not higher-dimensional surfaces, it is feasible to develop computationally efficient approaches for this. In this
section we discuss an algorithm and indicate how one might use this technology in the orbit determination process
and the subsequent inclusion of these new orbits in the space debris catalog when faced with a large number of
observations per night. As was mentioned in §2.1, each observation should be recorded as an observation vector,

x = (A, t, L) ∈ R
5 × N,

that contains an attributable vector, the observation time, and the observatory’s location. Each new observation
should be checked against the catalog of known objects. If the observed attributable vector does not match any of
the orbital particles in the catalog, it will be saved as an uncorrelated observation. A rolling observation window
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Figure 6: T (70; 0){Arrr} (red) and T (70; 70){Arrr
70 } (black) projected onto the Delaunay planes, nonzenith observa-

tions

can be defined (for instance, one week) within which it is compared to all other uncorrelated observations. For these
comparisons, a standard epoch time can be defined and all uncorrelated observations made within the observation
window can then be mapped into the Delaunay planes and then dynamically evolved or regressed to the epoch time.
These uncertainty projections can then be stored and intersected with all other such observations to discover which
observations are correlated. For each orbit correlation that is found, the corresponding observations can then be
saved in a secondary catalog, which is a temporary holding catalog, until the orbit is confirmed, at which time the
data can be promoted to the primary catalog of correlated data.

The most difficult part of the routine is finding the common intersection point between the 2-D surfaces, or in
finding what their minimum separation is. While the above, graphical based technique can in principle find these
results, it is likely that a more analytical approach will ultimately be used. Such topics are currently being explored
by our group.

5 Conclusion

This work is a preliminary study in which we propose a new conceptual procedure for carrying out orbit determination
of space debris from two previously uncorrelated tracks observed with optical telescopes. We show how an optical
track can be reduced to a four dimensional estimate of the sub-state and how the mapping of the admissible region into
Delaunay space can be used to construct a notional algorithm for computing an orbit correlation and determination
between two uncorrelated tracks. Our approach reduces the orbit correlation and determination process to performing
intersections of two-dimensional laminas in the plane, a process we call Intersection Theory Analysis. For an example
attributable vector we carry out this process as a proof-of-concept computation.
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