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Abstract 
Phase diversity techniques infer wavefront phase aberrations of an imaging system 
directly from the image data by processing of a set of two or more images with 
deliberately induced additional aberrations (usually defocus).  This is a non-linear inverse 
problem that is typically solved by iteratively determining the aberration that maximizes 
an objective function or by iteratively applying a set of constraints.  The robustness of 
these techniques can be severely degraded by local minima that start to appear and 
increase in density with increasing wavefront aberration strength.  Local minima severely 
limit the dynamic range of wavefront aberration levels for which diversity techniques can 
serve as a reliable wavefront sensing method using the processing approaches currently in 
practice.  This paper explores mechanisms behind the local minima and characterizes 
their density and spacing as dependent on SNR and wavefront aberration level.  The 
performance of a global optimization method is compared to a single gradient search for 
robust WF estimation accuracy. 

 
 
 

1. Introduction 
 
The phase diversity concept, introduced by Gonsalves[1], measures two images of the same object through a  
common wavefront aberration that differ only in introduction of a deliberate change in the imaging system’s focus 
setting.  Using a variety of algorithmic methods, an estimate of the pristine object and the wavefront aberration are 
inferred.  The key enabling ingredient is the “diversity” of measurements with controlled changes to the optical 
system that induce corresponding changes in the optical transfer function (OTF) and that are interrelated to the 
common unknown component of the wavefront aberration.  The extra measurements provide constraints that 
improve the ability to determine a unique wavefront solution.  Several variations on this concept have been proposed 
including using multiple images with a sequence of defocus levels, diversity aberrations other than defocus, 
sequence of diversity measurements with time-evolving aberrations and common object (referred to as phase diverse 
speckle), diversity in the spatial distribution of the aperture transmission function, and differences in wavelength for 
each image (wavelength diversity)[2-4].  When the object is known and need not be estimated, for example a known 
point source target such as an isolated star, PD reduces to phase diverse phase retrieval (PDPR). 
 
Phase diversity methods offer many attractive advantages for wavefront sensing.  They can work with both point 
and extended objects and with broadband illumination.  The hardware design is simple, requiring only addition of a 
second defocused imaging channel in addition to the primary mission sensor.  Calibration requires just models or 
measurements of the pupil transmission function, spectral response, magnification, and defocus level, plus standard 
correction for focal plane array non-uniformity and bad pixels.  Because of these unique features, phase diversity has 
received strong attention for many applications most notably compensation for atmospheric turbulence for ground-
to-space imaging applications, and for measurement and correction of the misalignments and deformations of the 
mirror petals of segmented aperture telescopes[2-28]. 
 
A current major deficit of the general class of PD techniques is their limited dynamic range.  The most prominent 
methods for processing the data to infer the wavefront are based on iterative search techniques that seek the 
wavefront that maximizes agreement with the measured data in terms of a mathematical model of the optical system 
and the measurement noise properties in terms of a cost function[5,6,12,25].  Local minima in the cost function form 
traps leading the iterative techniques to converge to the wrong answer[18,23].  The subject of this paper is to better 



understand the nature of the local minima in terms of their relation to the image formation physics, and their 
quantity and distribution in the wavefront parameter space as related to SNR and true wavefront aberration level.  
The paper is organized as follows.  Section 2 presents the approach and describes methods of simulation and 
analysis.   Section 3 discusses the local minima phenomenology and cost function topology.  The final section 
summarizes the results of the paper and discusses areas for future research. 
 

2. Analysis Approach 
 
This research focuses on the restricted case of phase diversity phase retrieval (PDPR) in which the object is known 
to be a point source.   This eliminates additional local minima problems associated with unknown object parameters 
so as to focus solely on local minima associated with the relation of the wavefront (WF) to the in-focus and de-focus 
channel PSFs.  We can expect the phenomenology and trends to be similar for the more general case of PD.  
Characterization of the local minima problem was performed by application of PDPR processing algorithm to 
numerically simulated phase diversity image data generated over a range of strengths of the true aberration, SNR 
levels, and random realizations of the true WF structure and of sensor noise.  The nominal imaging system model 
used is as follows: 

• Monochromatic light 
• 80x80 pixel FPA 
• The focal plane array (FPA) pixels are spaced to provide Nyquist sampling of the PSF associated with 

1m diameter aperture: 
o D = 1m = aperture diameter 
o IFOV = l / (2 * D) 
o Q = (λ/D) / IFOV = 2 
o Fill factor = 100% 

• Telescope clear aperture comprised of 6 hexagonal segments 
o Nominal model assumes segments are perfectly optically aligned  

(e.g. no contribution to wavefront aberration) 
• In-focus + single de-focus diversity channel 

o 1 λ rms defocus 
o Boresight of all channels perfectly aligned 

• Noise consisted of mix of Photon shot noise (Poisson) plus Gaussian read noise of 10 e- rms 
• Exposure time scaled to achieve desired PSNR (as described below) 

SNR is defined as peak-SNR (PSNR) equal to the signal level for the brightest pixel in the image divided by the 
noise standard deviation (shot plus read noise).  Note that two WFs with same rms aberration level may produce 
PSFs with different peak levels, causing differences in PSNR, though the total signal (integrated over image) is the 
same.  For each individual wavefront draw, the exposure time and thus integrated signal was scaled to achieve the 
desired PSNR.  Random WF aberrations were generated as follows: 

• WFs were represented by Zernike modes 2-36 (e.g. through 8th order with zero piston) 
• Given a desired rms aberation level: 

o WF coefficients were randomly generated such that covariances matched Kolmogorov statistics[27] 
o Coefficients are scaled to produce specific desired wavefront aberration strength 
o This procedure is repeated until a coefficient vector is drawn such that all coefficients are less than 

2.5 times their variance under Kolmogorov statistics at the specified rms aberration strength 
(further constraining the space of possible wavefronts) 

Figure 1 illustrates the clear aperture, an example wavefront, and the diffraction limited PSF.  Figure 2 shows 
examples of the in-focus and de-focus images for different WF aberration and SNR levels. 
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Figure 1.  (left) Clear aperture function, (center) example random WF draw using Zernike modal 
decomposition with coefficient covariances matched to Kolmogorov turbulence statistics, and 



(right) the diffraction limited PSF (zero WF aberration) over a 32×32 sub-region of the FPA 
region. 
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Figure 2.  Example in-focus and de-focus images at different SNR and WF aberration levels (all 
use scaled version of same WF aberration) 

 
A few variations from these nominal settings were explored: 

• Defocus of .5 λ rms (deviation from nominal defocus = 1.0 λ rms) 
• A 4-channel diversity sensor with defocus levels of = { -0.5,  0.0,  0.5,  1.0 } λ rms 
• Panchromatic imaging 

o Modeled as sum of 5 monochromatic images 
o Wavelengths span .4-.6 μm  (Dλ/ λo = .77)  

• Wavefront aberration consists of piston/tip/tilt for each of 6 primary mirror segments (18 modes total) 
 
The PDPR algorithm is implemented as described in C. Luna [26] and D. R. Gerwe [28], with the modification that 
the object is considered to be a point source of known magnitude centered on the FPA for both channels and is not 
estimated.  The L-BFGS-B quasi-Newton algorithm is used to conduct the gradient-based descent[29].  The 
following  Log-Likelihood cost function was used that approximately matches the probability distribution function 
(PDF) for a combination of photon shot noise with Poisson statistics and additive read noise with Gaussian statistics 
[30-32].   
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Here the predicted image gc,x(α) (which is simply just the PSF for the restricted PDPR case considered here) is the 
square of the Fourier transform of the aperture coherent transmission function. 
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Iterations were terminated when the gradients or changes in cost value diminished to within a factor of 10 of 
numerical precision double-precision floating point math.  This typically took 20-80 iterations with the number of 
iterations tending to be larger for stronger WF aberrations and fewer for weaker WF aberrations. 
 
Only Zernike modes 2-21 (e.g. through 6th order) were estimated with the higher order coefficients fixed at zero.  
This provides realism to the analysis that a modal decomposition cannot cover the full space of possible physical 
wavefronts presented to the system and thus will suffer some inaccuracies as a result.  Noll [33] describes the 
residual wavefront error for Kolmorogov turbulence statistics after compensation for the 1st J Zernike modes, giving 
specific values for J=1-21 and the approximation of  0.2944 J-sqrt(3)/2(D/ro)5/3 rad2 for J>10.  For simplicity consider 
D= ro, then for piston compensation only the residual is 1.0299 rad2, for compensation of modes 1-21 the residual is 
0.0208 rad2, and for compensation of modesl 1-36 the residual is .0132 rad2.  Modes 1-36 then represent 1.0299 - 
.0132 = 1.0167 rad2 of aberrations while modes 1-21 cover 1.0299 - .0208 = 1.0091 rad2.  The fraction missed by  
estimating only the 1st 21 modes is thus (1.0167 - 1.0091) = .0076 rad2.  Thus if the 1st 21 modes are estimated 
perfectly the residual error is sqrt(.0076)=.0872 rad rms compared to a total rms aberration of sqrt(1.0167)= 1.0083 
rad rms.  This means that if PD perfectly estimates the 1st  21 modes, the rms residual error associated with the 
unestimated modes 22-36, is on average about 10% of the full aberration level. 
 
For each of the following combination of PSNR and WF aberration level 

• PSNR  = {10, 25, 50, 100, 100} 
• Wavefront aberration levels  = {. 05,  .01,  .15,  .20,  .25,  .35,  .50} λ rms 

four random true WF aberrations were randomly generated and corresponding noisy PDPR image pairs were 
generated.  PDPR was repeatedly applied to each pair with the initial WF estimate seeded to the following set of 
values: 

• WF coefficient vector initialized to true value 
• WF coefficient vector initialized to zero 
• WF coefficient vector initialized to 250 randomly drawn guesses generated as follows: 

o WFs coefficient vectors were randomly generated such that coefficient covariances matched the 
Kolmogorov statistics corresponding to 2.5× the rms aberration level of the true WF 

o Individual draws were repeated until one was found in which all elements of the coefficient 
vector were less than 2.5× their Kolmogorov variances. 

o These two restrictions served to focus the interogated region of the parameter space on values 
that are statistically likely (though it is possible a deep and wide local minima outside this 
constrained space could draw the search algorithm to it). 

The rational for the method of generating random starting guesses is that one may generally have a priori 
expectations of the strength of aberration likely to be encountered.  Assuming that the rms aberration level is known, 
it seems reasonable to limit the search space to a region in which captures covers the majority of WF possibilities 
that can statistically be expected to occur (the factor of 2.5 times used here being somewhat  arbitrary). 
 

3. Local Minima Phenomenology and Cost Function Topology 
 
As shown in Figure 3, local minima in the negative log-likelihood (-LL) function are associated with incorrect WFs 
that produce a similar speckle pattern to the true PSF.  When the relative difference between the predicted and 
measured PSF is small the –LL function approximately corresponds to the weighted mean-square-sum of the 
difference of the measured and predicted images, spatially weighted by the local pixel noise level.  Thus a good 
match can occur when the major PSF speckle lobes of the measured and predicted image align to each other well or 
when there is good alignment between regions of generally high energy (e.g. a complex composite of many closely 
positioned minor speckle lobes).  As illustrated in Figure 4, adjusting the wavefront coefficients to morph the 
associated PSF speckle pattern toward the true PSF requires first reducing the match to the true speckle pattern 
before it can improve again.  The phenomenology involved is nicely illustrated in Figure 5, by considering a 
telescope aperture consisting of two mirror segments and a WF aberration corresponding to an independent WF 
tip/tilt error on each of the individual segments.  A general qualitative trend that was observed in visually comparing 
the local minima wavefronts for many different true wavefront over a range of true aberration strengths and SNR 
levels is that the estimated WF matches the coarse global structure of the true WF quite well with the discrepancy 
tending to be strongly locally concentrated.  Examples of local concentration of the discrepancy are highlighted with 
dashed red circles in Figure 3.   This trend bodes well for use of phase diversity in closed loop systems.  If multiple 
phase diverse measurements associated with the same aberration can be made, it may be possible to exploit this 



phenomena to resolve ambiguities.  It was also noticed that in most cases the local minima produce a good match to 
the PSF in one channel but not the other.  In the two leftmost panels of Figure 3, the estimated WF associated with a 
local minima match the in-focus channel well but not the defocus.  In the 100 or so local minima cases visually 
investigated, this was almost always the situation.  However, there were a few rare instances in which the match was 
striking in the de-focus channel and weaker for the in-focus channel as illustrated in the rightmost panel of Figure 3. 
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Figure 3.  Local minima occur for incorrect WFs that produce a PSF speckle pattern that matches 
well to the true PSF.  A general trend that was observed was for the WF corresponding to the local 
minima to match the general global structure of the true WF well with the differences tending to 
be locally concentrated (as highlighted by dashed red circles in the figure). 
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Figure 4.  (left) True WF and corresponding in- and de-focus images.  (center) Local minima WF 
gradient searches can be trapped in.  (right) color-scale plot of –LL on a 2D plane that cuts 
through the global minima and 2 local minima with lowest –LL. Adjusting the WF coefficients 
from their values at E1 to morph the associated PSF speckle pattern toward the true PSF requires 
reducing the match to the true speckle pattern before it can improve again. 
 



 

Wavefront

True Local Minima

In-Focus
Image

Wavefront

True Local Minima

In-Focus
Image

 
Figure 5.  The phenomenology involved in how two WFs can produce similar PSFs is nicely 
illustrated by considering a telescope aperture consisting of two mirror segments and a WF 
aberration corresponding to an independent WF tip/tilt error on each of the individual segments.  
The tip/tilt error for a segment causes the reflected light to be directed at an angle from nominal 
and corresponding to a translational shift in the image speckle (coherent PSF)  it produces.  If the 
tip/tilts of each mirror differ enough, the two projected spots will not overlap and coherent 
interference will be negligible.  Swapping the tip/tilt tilt errors of the two segments, causes the 
position of their speckles to also swap producing a PSF pattern that is almost identical to the 
original.  Now consider a WF over a full aperture region decomposed into a composite of many 
small segments each with its own independent piston/tip/tilt aberration.  This is similar to the 
representation of atmospheric wavefront aberrations as composed of many ro size patches over 
which the piston/tip/tilt is relatively statistically independent and which each produces a PSF 
speckle with translational position related to the tip/tilt.  Swapping the tip/tilt values between 
various any two patches produces the same speckle projection but with switched relation between 
the speckles and source regions.  It is immediately evident that at large D/ro there will be many 
WFs that produce similar speckle patterns. 

 
One particular local minima frequently occurs as a result of  the fact that rotating a WF by  180° and flipping its sign 
produces the identical PSF as the original WF.  This can be easily shown using the PSF relation in Eq. (2).   For 
brevity this particular WF transformation will be referred to as the -Rot180 WF hereafter.  The defocus channel sees 
the common WF aberration plus an additional defocus, thus the image corresponding to the –Rot180 WF will not be 
the same as the true measured image (as illustrated in Figure 6).  However, since the LL function is the sum of the 
individual LL for each imaging channel, a good match in one channel can still often cause a local-minima.  
Examination of the Monte-Carlo simulation results showed that the –Rot180 issue was found to correspond to a 
local minima in the majority of cases at all WF aberration strengths and SNR levels considered.  Rank ordering the 
minima by their –LL values, in most cases the –Rot180 WF was 2nd after the global minima even at SNR ≥ 100. 
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Figure 6.  Rotating the wavefront aberration 180° and flipping its sign (-Rot180) produces the 
identical PSF.  However, the defocus channel sees the –Rot180 wavefront plus defocus which 
produces a different PSF than the original wavefront plus defocus.  Despite the mis-match in the 
defocus channel, the perfect match in the in-focus channel is still usually enough for the –Rot180 
WF to result in a local minima. 

 



As the SNR decreases such that the noise variance rises above the strength of weaker speckles, the match of these 
speckles becomes inconsequential and the density of local minima that occur tends to increase.  This phenomena is 
illustrated in Figure 7. 
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Figure 7.  At low SNR the match between the weaker speckles of the true and estimated PSF 
becomes inconsequential relative to noise level tending to produce a higher density of local 
minima and generally degrading PDPR WF estimation reliability and accuracy. 

 
To further understand the topological trends of the –LL function, color-scale plots of the –LL were examined on 
rectangular regions of planes cutting through the global minima and two lowest valued secondary minima.  A few 
examples are shown in Figure 8.  The structural characteristics had similar trends for all cases and suggested the 
following properties of the nature of the multi-dimensional –LL function (20 WF coefficient parameters): 

• Topology about local-minima is a simple well defined dip and was not typically strongly elongated in any 
direction. 

•  Complex convoluted canyons did not occur 
• On straight line connecting 2 minima the –LL typically varies smoothly up then back down without 

intermediate oscillations 
• Minima are generally distinct from each other, separated by at least several 1/100’s λ rms (and usually 

several 1/10’s of a λ) 
• Minima were fairly uniformly distributed in the space without obvious clustering patterns 
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Figure 8.  Examples of cuts through the 20-dimensional –LL function on planes passing through 
the global (G) and next two lowest valued local minima (E1 & E2). 



To further examine the statistics of the distributions of the local minima, for each random PDPR image draw 
histograms two histograms were generated.  The first was of the rms error for each local minima found for the 
particular PDPR image pair data.  The second histogram was of the rms WF distance between all pairs of local 
minima found.  This required identifying the set of unique local minima found for the 250 starting guesses tried for 
each case.  Two gradient search results initiated at different starting guesses may converge to essentially the same 
local-minima though the exact values will differ because of numerical precision issues. WF estimate vectors for 
which all Zernike coefficients were within 1/1000 λ rms of each other were attributed to the same local minima.  
The results were found to be insensitive to changes in this threshold by ± one order of magnitude.  Typical examples 
are shown in Figure 9 and graphs of the mean number of local minima vs. wavefront aberration level and SNR are 
shown in Figure 10.  The number of local minima increased strongly with increasing WF aberration level and to a 
lesser degree with decreasing SNR.  This may be in part due to the fact that for larger true WF aberrations levels the 
domain from which starting WF guesses for the iterative search were drawn was increased proportionally.  Several 
trends were observed.   

• At WF aberration levels ≤ .1 λ rms the majority of the time either no secondary minima occurred or a 
single secondary minima corresponding to the  –Rot180 WF occurred.  However there were certainly a 
non-trivial number of  exceptions in which multiple local minima occurred and/or the local minima was not 
the –Rot180 WF. 

• 1-2 minima in addition to –Rot180 ambiguity typically occur for aberration levels of .15 λ rms, even at 
SNR ≥ 100 

• At a wavefront aberration level of .2 λ rms,  ~10 minima typically occur within a .5 λ rms hyper-sphere. 
• For all cases tested the global minima corresponded to the lowest wavefront error of all identified minima. 

These statistics show that the local minima problem is an important challenge and will significantly reduce PDPR 
reliability if not addressed.  It does show, however, that the number of minima is closely related to the expected 
range of WF aberration levels that can be expected to occur for a particular situation and that it appears likely that 
this corresponds to a polynomial-type growth law (currently under investigation), and that restrictions may be placed 
on the required density of interrogation needed for a global search. 
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Figure 9.  (top) Example histograms of the WF estimate errors resulting from the 250 random 
search seeds for various SNR and WF aberration levels.  Arrows highlight local minima that only 
a few random starts converged to and which are thus hard to see.  (bottom) corresponding 
histograms of the separations between the resulting set of unique local minima found. 
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Figure 10.  Mean number of local minima found as function of wavefront aberration strength. 

 
 

4. Summary 
 
The non-linear relation between a WF and its corresponding PSF allows two WFs to produce PSFs with speckle 
lobe distributions that match well enough to cause local minima in a cost function.  This paper examined a Log-
Likelihood function that approximately models a mix of Poisson shot noise and additive Gaussian read noise, but the 
results can be expected to hold for other cost function models.  These local minima cause convergence of iterative 
PDPR approache to the correct global minima to be unreliable even at high SNR and for low WF aberration levels.  
The phenomenology of the problem is well illustrated by considering the fact that each patch of the WF forms a PSF 
speckle transversely positioned in proportion to the local WF tip/tilt and that swapping the tip/tilt values of two 
patches will direct speckles to the same location (just the source regions are switched) and thus produce similar PSF 
patterns.  An additional systematic local minima that occurs is related to the fact that rotating a WF 180° and 
flipping its sign produces an identical PSF to the original WF.  Examining the –LL function on 2D planes cutting 
through its higher dimensional space for many randomly drawn WF aberrations indicated that the structure of the  
–LL function was generally simple with a topology that was primarily related to the positions of the local minima 
and no other complex structures.  The local minima were found to be generally fairly evenly distributed across the 
WF coefficient space without any obvious clustering patterns and the number of local minima within a space 2.5 
times the true aberration level was found to grow rapidly with increasing aberration level.  Local minima often 
occured even at low aberration levels and high SNR showing that unless addressed this presents a major issue to 
reliable use of phase diversity techniques for wavefront estimation.  Though this paper focused on the restricted case 
of PDPR in which the object is known and not estimated, we can expect the issues and trends to be similar for the 
more general PD WF sensing case. 
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