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ABSTRACT 

We describe a system that computes the three-dimensional (3D) shape of a spacecraft from a sequence of 

uncalibrated, two-dimensional images. While the mathematics of multi-view geometry is well understood, building 

a system that accurately recovers 3D shape from real imagery remains an art. A novel aspect of our approach is the 

combination of algorithms from computer vision, photogrammetry, and computer graphics. We demonstrate our 

system by computing spacecraft models from imagery taken by the Air Force Research Laboratory’s XSS-10 

satellite and DARPA’s Orbital Express satellite. 

Using feature tie points (each identified in two or more images), we compute the relative motion of each frame and 

the 3D location of each feature using iterative linear factorization followed by non-linear bundle adjustment. The 

“point cloud” that results from this traditional shape-from-motion approach is typically too sparse to generate a 

detailed 3D model. Therefore, we use the computed motion solution as input to a volumetric silhouette-carving 

algorithm, which constructs a solid 3D model based on viewpoint consistency with the image frames. The resulting 

voxel model is then converted to a facet-based surface representation and is texture-mapped, yielding realistic 

images from arbitrary viewpoints. We also illustrate other applications of the algorithm, including 3D mensuration 

and stereoscopic 3D movie generation. 

1. MOTIVATION 

This research investigates the feasibility of applying computer vision “structure from motion” algorithms to the 

domain of space situational awareness (SSA). The research goal is to automatically compute the three-dimensional 

(3D) shape, attitude, and motion of a satellite from a sequence of uncalibrated images of it. This capability could aid 

SSA by automatically processing imagery taken from ground-based telescopes and alerting operators to any 

unexpected changes in spacecraft configuration. The automatic recovery of 3D shape from imagery has other 

applications as well, including object identification, generating virtual “walk-throughs” of buildings and urban 

environments, and autonomous robot navigation. 

2. BACKGROUND 

As an object moves relative to a camera or telescope, the sequence of images captured by the camera reveals 

fundamental geometric shape information about the object or scene (see Fig. 1). Nearer parts of the object move in 

the image differently than distant parts, portions of the object may become hidden by other parts, the intensity of 

reflected light changes as the viewing angle changes, and so forth. The task of recovering the shape of the object, 

generally without specific knowledge of the relative motion, is referred to as the “structure from motion” (SFM) 

problem. 

 
Fig. 1: A subset of the images of a rocket body taken from the XSS-10 satellite. The full sequence has 25 images 

and depicts over 720 degrees of rotation primarily about the rocket body’s main axis. 



The SFM problem has been studied since the early 1980s. While mathematical techniques for computing 3D 

geometry from multiple, uncalibrated cameras are well documented [1], there remain a number of issues that make 

implementing a 3D software system tricky in practice: 

 accurately locating and tracking object features whose appearance can vary widely with differences in 

viewing angle and illumination, and which may disappear from view 

 discounting erroneous feature tracks 

 handling multiple moving parts 

 transforming a 3D “point cloud” into a more rich model of shape. 

The purpose of this project is to address these problems, specifically as applied to imagery of on-orbit satellites. 

3. ALGORITHM OVERVIEW 

Our 3D shape and motion reconstruction process combines a number of algorithms from computer vision and 

graphics, and is depicted in Fig. 2. The process can be organized into two main stages: first, computing a sparse 

representation of shape along with the object motion relative to the camera, and second, computing a more detailed, 

rich shape representation. In the next few sections, we describe the computation of each shape representation and 

some applications of each. 

 
Fig. 2. Overview of 3D shape reconstruction algorithm 

4. COMPUTING SPARSE SHAPE 

4.1 Feature Finding and Tracking 

The “structure from motion” approach is based on tracking the projected location of features on a rigid 3D object 

among multiple images taken from different viewpoints, as shown in Fig. 3. In the examples shown here, features 

are located and matched in each frame by a person. We have implemented a number of techniques described in the 

computer vision literature [2,3,4] as well as novel approaches to automatically detect and match or track features. To 

date these techniques have had some success, but the fact that the appearance of a physical point on the object 

changes significantly as the image rotates relative to the camera and light source, combined with the often large 

displacements from one image to the next, have limited our ability to automatically and precisely track physical 

points on the object. Therefore manual intervention was applied to feature finding and matching in the sequences 

illustrated in this report. 

 

4.2 Linear Factorization 

In the point-based SFM problem, we are given the image point locations, called “observations”, of n different object 

feature points in m different image frames, which we denote as 𝑜𝑗
𝑖  =  [𝑢𝑗

𝑖  𝑣𝑗
𝑖]𝑇 , where i ranges from 1 to m and j 

ranges from 1 to n. We denote each object point’s unknown 3D location as 𝐬𝑗 = [𝑥𝑗  𝑦𝑗  𝑧𝑗  ]T , and denote the camera’s 

unknown position and orientation as the 2 × 4 affine transformation matrix 𝑀𝒊 = [𝑠1,1
𝑖  𝑠1,2

𝑖  𝑠1,3
𝑖  𝑡𝑥

𝑖 ;  𝑠2,1
𝑖  𝑠2,2

𝑖  𝑠2,3
𝑖  𝑡𝑦

𝑖 ]. 



 

Fig. 3: Manually specified feature tracks for four frames of the Orbital Express test scenario 

 

When the object is relatively far from the camera, perspective effects can be approximated with scaled orthographic 

or paraperspective projection models, and the projection of feature j onto image i as pictured in Fig. 4 can be 

modeled by the equation 𝒐𝑖𝑗 = 𝑀𝑖𝒔𝑗  [5,6]. 

 

Fig. 4. An object feature with corresponding image features (adapted from [5]) 

We can formulate these equations, for all n points and m image frames, into a single linear system, 
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     (1) 

or, using matrix notation, 𝑂 = 𝑀𝑆. Matrix O contains the known parameters (the observed feature locations), matrix 

M contains the unknown “motion” parameters (camera pose and projection parameters), and matrix S contains the 

unknown 3D “shape” parameters. For large numbers of points and images, there are more known parameters than 

unknown, and the best-fit least-squares solution can be computed robustly and efficiently using the “factorization 

method” [2]. This method uses singular value decomposition (SVD) to yield estimates of the shape and motion, 𝑆  
and 𝑀 , which are specified up to an unknown affine transformation. 

In practice, it is unreasonable to require that every feature be visible in every frame. As the object rotates in 3D 

space relative to the camera, features may disappear from view due to self-occlusion, and new features may appear 

in subsequent frames. This yields a sparse observation matrix, and SVD cannot be applied to matrices with missing 

values. To handle this case, our algorithm finds columns and rows that form the largest dense submatrix and applies 

SVD to it, yielding the shape and motion values of the corresponding points and frames. Then the remaining rows 

and columns are iteratively folded into the solution to compute the remaining values of 𝑆  and 𝑀 . 

Finally the actual shape and motion are computed from the affine estimates of shape and motion by imposing 

normalization constraints on the camera projection matrix. Rather than being general affine transforms, which can 

introduce stretching and skewing effects, we incorporate the knowledge that the camera’s horizontal and vertical 

projection axes are orthogonal to each other and equally scaled, or scaled by a known aspect ratio. 

While the factorization method is quite robust, it should be noted that the computed solution may be imperfect for a 

number of reasons: First, some feature tracks may be incorrect. Second, errors may accumulate during the iterative 

process of adding rows and columns to the solution. Third, converting affine motion to a rigid-body motion may 

have introduced errors. And fourth, if the camera is near the object, then scaled orthography may not be an accurate 

projection model. Therefore we refine these shape and motion estimates with a non-linear optimization step, 

described next.  

4.3 Nonlinear Optimization 

Like the “bundle adjustment” technique from photogrammetry, the nonlinear shape and motion optimizer attempts 

to find an optimal shape and motion solution for the given data. We minimize the sum-of-squares error between the 

original observations and the projections of the computed features 𝜒2 =    𝒐𝑖𝑗 − 𝒐 𝑖𝑗   2
𝑖𝑗 . Here 𝒐𝑖𝑗  are the observed 

feature locations, and 𝒐 𝑖𝑗  are the feature locations predicted by the current shape and motion solution (𝑆  and 𝑀 ), 

where a more general non-linear camera model now can be used to correctly model perspective effects. 

Our nonlinear shape and motion optimizer is based on the Levenberg-Marquardt optimization algorithm that 

involves repeatedly solving a linear matrix equation 𝐻𝑥 = 𝑏 involving the Hessian matrix 𝐻. When large numbers 

of feature points and/or large numbers of images are used, the problem size becomes very large. Each feature point 

adds three unknowns to the system of equations (the x, y, and z locations of the point), and each image frame adds 

six unknowns to the system (the x, y, and z location of the camera as well as the roll, pitch, and yaw that describe 

the camera orientation). Thus a problem that has 𝑛 feature points in 𝑚 image frames requires solving for a total of 

𝑢 = 3𝑛 + 6𝑚 unknowns, and each step of the iterative optimization requires the solution of a 𝑢 × 𝑢 matrix 

equation. 

Fortunately, we can take advantage of the sparse, symmetric form of matrix H to solve the large matrix equation 

efficiently. The matrix is diagonally dominant, meaning that the majority of the large values lie in small blocks laid 

out along the diagonal of the matrix, and most other elements of the matrix are zero or very small. This layout lends 

itself to faster inversion using the biconjugate gradient method [7].  



4.4 Outlier Rejection 

Before refining the solution, as described above, it may be necessary to discount outliers, i.e., poorly tracked 

features, which would corrupt the solution. To do this, we identify the observation (i,j) whose removal would result 

in the greatest reduction of 𝜒2error. If the reduction is significant, we remove that observation from consideration, 

and look for the next outlier, repeating the process until the error is relatively stable, or a maximum number of 

outliers have been removed.  

To test each observation for potential removal, we re-solve for 𝑆  and 𝑀  without including the candidate outlier. 

Experimentation has shown that we cannot assume that the observation with the largest individual error contribution 

  𝒐𝑖𝑗 − 𝒐 𝑖𝑗   2 is the outlier, which would be a much quicker test, because adding an outlier to a data set can bias the 

solution to fit the outlier better than another (inlying) observation.  

4.5 Track Partitioning 

Equation 1 assumes that the all features lie on a single, rigid object. If the object has moving parts whose articulation 

varies among the images being processed, such as moving solar panels, then we must solve for the shape and motion 

of each such part independently. While components may not typically move significantly during a single image 

collection, such motion is common when imagery collections acquired at different times are combined to build the 

model. We have demonstrated a technique applied to synthetic data that finds such parts by using the Random 

Sample Consensus (RANSAC) algorithm [4] to find subsets of feature tracks that are consistent with rigid body 

motion. However, such techniques were not required for any of the image sequences analyzed here. 

5. APPLICATIONS OF SPARSE SHAPE MODELS 

The shape solution 𝑆  computed by the linear and nonlinear solve steps is a 3D “point cloud” that does not specify 

the surface shape between the feature points. Despite its sparseness, the point cloud is useful for certain applications 

as described below. 

5.1   3D Mensuration 

Mensuration can be performed using the point cloud model, particularly if features are defined at the ends of items 

to be measured. We have developed a 3D mensuration tool called Caliper that uses this approach to obtain accurate 

measurement from real imagery, using user-defined feature points. Because SFM techniques can only compute 

shape up to a relative scale factor (images alone cannot distinguish between a house and a scale model of a house), 

the tool must obtain one additional piece of information in order to properly scale the points. The scale factor may 

be automatically determined from image metadata, or it can be determined from a single known measurement 

provided by the user. A mensuration example is shown in Fig. 5. The grid on the right shows the distances between 

every pair of points that are superimposed on the image on the left. 

  

Fig. 5. Image with computed point cloud (left) over which measurements are computed (right) 



5.2   Coarse Textured Models 

If only a coarse description of shape is needed, then the points can be used to define a triangulated surface model, as 

shown in Fig. 6. Corresponding triangles of the input imagery can be used to texture map the facets (as described in 

Section 6.4), yielding a textured, coarse 3D model. While such a model may not be an accurate representation of 

shape due to the sparseness of feature points, it is often adequate for rendering animations or visualization. 

 

 

Fig. 6: Triangulated 3D surface (upper right) generated from the point cloud, which is also shown over one of the 

images used to create it (upper left). The texture mapped 3D surface displayed at a novel angle (lower image). 

6. COMPUTING RICH SHAPE 

In order to compute a more detailed and realistic representation of 3D shape, we employ a pair of related computer 

vision techniques known as silhouette carving and space carving. The carving algorithms require an accurate 

measure of the camera position and orientation in each frame, so the motion computed by the nonlinear solver is a 

required input for carving, while the sparse shape computed by the previous steps will be replaced with the richer 

shape. 

6.1   Silhouette Carving 

The first technique, silhouette carving, is based on the principle that the 3D shape of an object must be consistent 

with the silhouettes of it imaged by each camera. Silhouette carving requires segmenting each input image into 



foreground and background. Although the segmentation can be computed automatically in certain cases [8] due the 

dark background of space, space surveillance images sometimes contain a “halo” around space objects, causing their 

boundaries to be indistinct. In such cases user assistance is needed to define an accurate silhouette. Once the 

silhouettes are defined, the silhouette carving automatically computes a discretized, solid model of the 3D shape. 

A 3D volumetric voxel model of the shape is initialized to a cube large enough to fill each image. The model is 

projected onto the image plane according to the computed camera motion (position and orientation) parameters. 

Voxels in the model that project to the image background are removed. After processing the first image, the model 

will resemble an extrusion of the image silhouette. The process is repeated for each image, with the model 

positioned and rotated according to the corresponding camera pose. At the end of the process, the shape model is the 

most convex shape that is consistent with each image silhouette. 

6.2   Space Carving 

The second technique, space carving, is used to carve away concavities of the shape and to color the voxels [9,10]. It 

is based on the assumption that the color of a point on the surface should remain relatively consistent from different 

viewpoints. The algorithm computes the color of each voxel as predicted by each image in which that voxel is 

visible. If the measures are inconsistent, it is presumed that the rays that project those colors onto the image 

originate from different surface points, so the voxel is removed. For example, in Fig. 7 the voxel under consideration 

appears to cameras 1 and 2 to have different colors because the cameras are imaging different surface points at 

greater depths than the voxel; therefore, the voxel will be removed from the shape model. When computing voxel 

color, the algorithm must disregard viewpoints where the voxel under consideration is occluded by other parts of the 

model, as is the case with camera 3 in the figure, and care must be taken to choose an appropriate order for 

processing voxels [11]. While the technique works best on color imagery, for monochrome imagery a texture 

measure can be used instead. 

 
Fig. 7. Color consistency example 

With high quality imagery from different views, a fairly detailed volumetric model of shape can be constructed, as 

shown in Fig. 8.  

  

Fig. 8. Computed voxel model of rocket body (left), shown with image-based texture (right) 

 



6.3   Surface Generation 

The output of space carving is a three-dimensional matrix of voxels that comprise a discretized, solid model of the 

sensed object. Ultimately, we would like to represent the model using higher-level shape elements that provide a 

more accurate representation of the object’s surfaces, and if possible, involve fewer elements. A first step towards 

meeting these goals is to transform the voxel model into a faceted representation of the object’s surfaces. 

We have implemented a transformation known as “alpha shape” computation. An alpha shape is generalization of 

the convex hull that corresponds to an intuitive notion of shape at varying levels of detail [12]. Given a dense 3D 

point cloud, the alpha shape is a triangulated surface whose vertexes are a subset of the point cloud, such that a 

sphere of a specified radius connects adjacent points. In this case, the centers of the exterior voxels (or their vertices) 

define the dense point cloud that the alpha shape is fit to. This system is able to replace a complex voxel model with 

a simpler model composed of surface facets, which can then be texture mapped for a more accurate and smoother 

visual appearance.  

 

6.4   Texture Mapping 

The final step of shape processing is to apply texture to the geometric model. We have developed a hardware-

accelerated implementation to accomplish this task, and the technique can be applied to any of the model 

representations previously described: triangulated point clouds, voxels, or alpha-shape facets. The technique can use 

up to four of the input images as textures and can operate on bit depths of up to 32 bits per pixel. Typically, the 

system will select input textures in a way that provides good coverage on all sides of the model. Each fragment in 

the output image is automatically textured based on the input image whose camera direction most closely matches 

the fragment’s surface normal. The implementation correctly handles occlusion and can even handle cases where 

none of the four images provides good texture information. Provided that the computed 3D shape is accurate, the 

algorithm will correctly map the proper texture to each image fragment. The algorithm accounts for occlusion and 

can detect and handle areas of the model where none of the four images provides good texture information. As 

shown in Fig. 8, texture mapping can improve the visual appearance of a model even when the underlying solid 

model voxel resolution is relatively low. 

7. APPLICATIONS OF RICH SHAPE MODELS 

7.1   Novel View Generation 

Using our computed rich shape model, we can synthesize views of object at orientations that were not originally 

imaged. By generating intermediate frames synthetically, we are able to create smoothly varying movies of an object 

from more coarsely spaced frames. In Fig. 9, the left and right frames are original images, while the center frame is 

rendered from the computed model of the rocket body, at an orientation halfway between that of the images. 

 

Fig. 9. Two images of the rocket body test sequence (right and left) with a synthetic image rendered using the 

computed model (center) 

It is also possible to render the model at poses that are outside the imaging baseline, as shown in Fig. 10. Note that 

in the upper rendering, some texture is missing from sides of the model that were not seen in any of the input 

images. The base of the rocket nozzle is slightly convex, because it was not directly seen; however, its shape is 

consistent with all of the input images. 



 

Fig. 10. Rendering of Rocket body at novel orientations 

7.2   Stereoscopic Image and Movie Generation 

We have developed techniques to create stereoscopic images and movies of 3D models for 3D viewing. Typically, 

these images are rendered in two colors and are viewable using anaglyph stereo glasses. For a person to perceive 

depth in a stereo image pair, the object must undergo a small rotation about the vertical axis between the left image 

and the right. Natural image sequences may not have any two frames with such a rotation, but our generated model 

can be used to synthesize a second image with exactly the required rotation. Fig. 11 shows a red and cyan 

stereoscopic image rendered using the computed mesh model of the Orbital Express satellite. 

 

Fig. 11: An anaglyph stereo image created from Orbital Express collection. This image was created by rendering 

image textures onto a triangulated shape model. Anaglyph glasses are required to achieve a stereo effect. 



8. CONCLUSION 

We have applied a number of techniques from computer vision and computer graphics to compute 3D models of 

satellites that are suitable for intermediate frame generation, stereo image visualization, and mensuration. A novel 

aspect of our approach is the combination of traditional structure-from-motion algorithms with space-carving. This 

innovation is important for two reasons: First, because we run SFM primarily to compute motion rather than shape, 

we can accept the relatively small number of features that are detectable in typical SSA imagery. Second, by using 

the motion solution as an input to silhouette and space carving, we extend the applicability of volumetric carving 

techniques to uncalibrated imagery. This combination makes it possible to compute a detailed 3D model from 

uncalibrated imagery with sparse features. 

Although we have obtained good results on a number of real data sets, the process is not fully automated, and 

number of areas could benefit from additional research and development. While we have obtained promising results 

with automated feature matching and tracking, the examples shown here all required manual intervention to properly 

identify and match features between images. Other areas that merit further work include automating the background 

segmentation step of silhouette carving, further development and testing of multi-part finding, and the automatic 

setting of algorithm parameters. 

Despite these limitations, the technology is mature and capable enough to aid in satellite mensuration and model 

building. Unlike current approaches that use single images for mensuration, the SFM system performs “multi-bundle 

adjustment” automatically, potentially resulting in more accurate measurements, and enabling analysts to more 

easily incorporate imagery from multiple views. 
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