
Differential Photometry in Adaptive Optics Imaging 
 
 

Szymon Gladysz 
European Organisation for Astronomical Research in the Southern Hemisphere (ESO), 

Garching B. München, Germany 
 

Roberto Baena Gallé 
Department of Astronomy and Meteorology, University of Barcelona, Spain 

 
Julian C. Christou 

Gemini Observatory1, Hilo Base Facility, Hilo, HI, USA 
 

Lewis C. Roberts, Jr. 
Jet Propulsion Laboratory2, California Institute of Technology, Pasadena, CA, USA 

 
 

ABSTRACT 
 

One application of adaptive optics (AO) is high-resolution imaging of closely-spaced objects. Determining 
differential photometry between the two or more components of a system is essential for deducing their physical 
properties such as mass and/or internal structure. The task has implications for (i) Space Situational Awareness, such 
as the monitoring of fainter microsatellites or debris nearby a larger object, and (ii) astronomy such as the 
observations of close stellar faint companions. We have applied several algorithms to the task of determining the 
relative photometry of point sources with overlapping point spread functions in images collected with adaptive 
optics. These algorithms cover a wide range of approaches in the field of image processing. Specifically we have 
tested: PSF-fitting, multi-frame and single-frame blind deconvolution, maximum-likelihood approach combined 
with wavelet decomposition, and a novel one-dimensional deconvolution technique which separates signal and 
speckle statistics rather than integrated intensities. We present results from applying these algorithms to synthetic 
close binary stars for different observing conditions. 
 

1. INTRODUCTION 
 
Atmospheric turbulence imposes a limit on angular resolution which could be reached by ground-based telescopes. 
The application of astronomical adaptive optics (AO) during the last couple of decades has allowed diffraction-
limited images, rather than seeing-limited, to be obtained with large ground-based telescopes. One of the uses of AO 
is high-resolution imaging of closely-spaced objects, e.g. binary stars or faint companions such as exoplanets. 
Determining the differential photometry and astrometry between the two components of the system is essential for 
deducing the physical properties of the components such as mass or internal structure [1]. AO, with a suitably bright 
guide star, improves the detectability and photometric accuracy but also introduces problems which are not usually 
encountered in conventional seeing-limited photometry [2]: 
 

1. The structure of the PSF has temporal variation due to seeing variability. These morphological changes are 
difficult to model.  

2. The AO long-exposure point spread function (PSF) in the medium- and high-correction regime shows long-
lived quasi-static speckles. These diffraction-limited “lumps” are due to residual aberrations not sensed by 
AO (for example non-common-path errors) and lie in the halo surrounding the core of the PSF. 
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3. The AO corrected PSF, and the associated angular resolution on the sky, depend on the position of the 
science object relative to the AO guide star. AO compensates for the turbulence in the direction of the 
guide star and when the science object is well separated from the AO line of sight, the compensation suffers 
due to a different atmospheric volume. This effect is called angular anisoplanatism. 

 
Because of these factors, extracting quantitative information from AO images is challenging. AO improves the 
detectability of faint companions over seeing-limited observations for a given telescope. When the companion is 
well separated with a non-overlapping PSF, aperture photometry takes care of all the problems mentioned above. 
The problems occur when the PSFs from each target overlap.  
 
Esslinger and Edmunds [2] provide an excellent introduction to the problem of AO photometry. One of the issues 
discussed is the precision of photometry on deconvolved images compared with the PSF-fitting on the “raw” AO 
data. Two of the most-widely used deconvolution algorithms were tested, namely maximum entropy [3] and 
Richardson-Lucy [4,5]. For PSF-fitting the DAOPHOT package [6] was employed. Extensive testing on simulated 
faint companions showed that DAOPHOT performed consistently better than the deconvolution methods, i.e. its 
photometric precision was higher compared to precision of aperture photometry on the deconvolved images. 
 
It has been suggested that AO observations should be processed with “myopic” deconvolution methods because the 
PSF is not well known for most AO observations [7]. For myopic deconvolution, it is assumed that the PSF is only 
partially known. In some cases the PSF is unknown and this is the regime for “blind” deconvolution. Typically these 
algorithms require an initial PSF estimate. This estimate is assumed to be close to the truth and the algorithm iterates 
this estimate until a common solution for both the object and the PSF is found. Myopic and blind deconvolution 
techniques often use regularization, e.g. by imposing object priors and PSF constraints [8]. Jefferies and Christou [9] 
developed an iterative blind deconvolution method guided by the minimization of a penalty functional. An important 
component for AO observations is the penalization of spatial-frequencies beyond the diffraction-limit of the 
observations. This package (IDAC) restores a “clean” image from which relative photometry and astrometry can be 
obtained by using aperture photometry with a very small aperture [2], or by model fitting. IDAC is one of the 
algorithms we have tested in our work. 
 
PSF-fitting algorithms are applicable for crowded fields where the target comprises only point sources. In this 
approach an analytic or empirical PSF is used together with a fitting algorithm to match scaled-and-shifted copies of 
the PSF to the data. One such package suitable for AO imaging is StarFinder [10] which yields relative photometry 
and astrometry in AO-corrected crowded stellar fields. A PSF model is constructed from the brightest stellar images 
in the field. The algorithm iteratively uses this model to locate fainter sources which it then fits to extract the relative 
photometry and astrometry. There are three degrees of freedom: the total flux, and x and y positions for each 
component. The photometric and astrometric precision of StarFinder applied to crowded fields has been compared 
to results from blind deconvolution with the IDAC algorithm by Christou et al. [11]. We also test StarFinder’s 
photometric accuracy in this paper.  
 
A recent review of modern approaches to AO photometry [12] has demonstrated that methods utilizing static, 
deterministic PSF should not be dismissed against more modern algorithms like iterative blind deconvolution [13]. 
Thus in our set of methods to test we have included a new implementation of a Richardson-Lucy type 
deconvolution. This algorithm, Adaptive Wavelets Maximum Likelihood Estimator (AWMLE) [14], calculates an 
image that maximizes the compound Poisson and Gaussian likelihood of the data. It also performs wavelet 
decomposition that helps distinguish signal from noise which is important for improving the stopping rule. Unlike 
myopic or blind deconvolution AWMLE does not update the PSF so that it could be more dependent upon the initial 
PSF estimate. 
 
A novel approach for measuring photometry of faint companions in AO imaging has been recently proposed 
[15,16]. In this method traditional 2-D image deconvolution is replaced by a 1-D time-series deconvolution. The 
algorithm is based on the observation that the statistical distribution of the peak of AO-corrected PSF is 
morphologically different from that of the off-axis light, i.e. the quasi-static speckles. This morphological difference 
between the two probability density functions (PDF) is used to constrain a one-dimensional, “blind,” iterative 
deconvolution at the position of a faint companion to a star. Separation of the signal and speckle PDFs yields the 
differential photometry. The method (“PDF deconvolution”), has been successfully applied to medium-, and very-
high-resolution AO observations [15,16]. We note that this PDF deconvolution has a rather narrow range of 



applications as opposed to the other algorithms discussed here – it only produces photometry for AO observations of 
companions which lie within the uncorrected halo structure of the AO PSF. This algorithm requires the companion’s 
location to be known. This can be obtained with a matching reference-less astrometric method [15] which then takes 
full-advantage of the self-calibrating nature of PDF deconvolution. 
 
The goal of this paper is to focus on the description and usage of existing codes, and to compare their photometric 
precision after application to AO data in a “blind” test. We do not discuss all the issues pertaining to computing 
photometry in AO observations. Discussions which go into great depth on these subjects can be found in the 
literature [2,17].  
 

2. METHODS 
 
In this paper we compare results from the following algorithms, all of which were discussed above: 
 

1. StarFinder: A PSF-fitting algorithm where the user-supplied PSF is iteratively fitted to the data assuming a 
double-delta object. 

2. AWMLE: A Richardson-Lucy type approach with a static PSF. 
3. IDAC: Multi-frame blind deconvolution. 
4. FITSTARS: A single-frame iterative blind deconvolution. 
5. PDF deconvolution: Using speckle statistics. 

 
We have analyzed these algorithms for different AO correction scenarios. The AO correction is typically described 
by the Strehl ratio (SR). This is the peak of the AO-corrected PSF normalized to that of an ideal PSF for the same 
pupil. There are four scenarios: low vs. medium SR and “matched” vs. “mismatched” PSF. For the matched cases, 
the initial PSF has a similar SR to that of the observation and for the mismatched cases the initial PSF has SR with a 
difference of 6%. A detailed description of the data is given in Section 3.  
 
2.1. StarFinder 
 
StarFinder was developed to measure astrometry and photometry in crowded fields imaged with AO [10]. The 
algorithm operates as follows. Firstly, it derives a PSF template from the brightest isolated field stars and generates a 
catalogue of presumed objects by searching for the relative intensity maxima in the frame. Secondly, the images of 
the candidate stars are analyzed in order of decreasing peak intensity and each candidate is accepted on the basis of 
its correlation coefficient with the PSF template. The relative astrometry and photometry of each source are 
determined by means of a least-squares fit, taking into account the contribution of the local non-uniform background 
and of the already detected stars. These steps are repeated until no sources can be reliably found in the residuals. A 
thorough description of the algorithm, the IDL routines, GUI interface and excellent documentation can be found on 
the StarFinder’s website3. For the results presented here, we used neither the graphical interface nor the capability of 
StarFinder to extract PSF from the data. Instead the algorithm was supplied with the observation, a “known” PSF (a 
single star observed after the target) and approximate positions of the two sources in the image via the 
FITSTARS.pro subroutine4.  
 
2.2. AWMLE 
 
AWMLE [14,18] uses (i) Bayesian maximum-likelihood approach, (ii) wavelet transform (WT) [19], and (iii) multi-
resolution support. The first maximizes the likelihood between the dataset and a possible solution by considering a 
combination of the intrinsic Poisson noise of the signal and the read-out Gaussian noise of the detector as well as 
describing the optical path by a static PSF that remains constant throughout the reconstruction process. The second 
decomposes the dataset into wavelet scales by means of the à trous algorithm [20]. The WT lets any signal or image 
be represented in N scales. This leads to simultaneous representation in both the measurement and frequency spaces. 
In general, the noise will mainly appear in the high spatial-frequency wavelet plane while broad shapes will appear 
in the low spatial-frequency planes. For AO observations, this permits differentiation between the diffraction-limited 
features (given by λ/D) and the seeing-limited scale (given by λ/r0). An example of wavelet decomposition applied to 
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an AO PSF is shown in Figure 1. The third analyzes each wavelet scale in order to find significant WT coefficients 
that can be associated with real signal in an image. The standard deviation of intensity within a local window (whose 
size depends on the wavelet scale we are analyzing) is compared with the standard deviation of the whole plane. 
Their difference allows one to deduce the presence of a real source. This also helps to automatically stop 
reconstruction of the image at each wavelet scale independently. 

Fig. 1. Wavelet decomposition of the AO PSF. Left-to-right: AO PSF; three wavelet planes with decreasing spatial frequency and the lowest-
frequency wavelet plane (the wavelet residual). (Displayed on a logarithmic scale.) 

 
AWMLE was applied to the datasets using one wavelet scale plus a residual wavelet scale. A maximum number of 
100 iterations were enough to achieve convergence in both scales. Note that AWMLE is not a photometric package. 
It produces a deconvolved image which can be subsequently analyzed by an observer. After reconstruction, aperture 
photometry, with a circle of five pixels in diameter, was used to extract the brightness of each component.  
 
2.3. IDAC 
 
IDAC is a multi-frame blind deconvolution (MFBD) algorithm5. Basically, it is an iterative least squares algorithm 
using a number of constraints to solve for both the common object (target) intensity distribution and also the 
corresponding PSFs for multiple observations of the same target [9,11]. MFBD algorithms are very successful in the 
case of strongly varying PSFs such as the pure speckle imaging case so that the target is easily distinguished from 
the PSFs. For AO data, the goal is to stabilize the PSF. This implies less PSF diversity from one observation to 
another so that other constraints become more useful. 
 
In general, the algorithm makes no assumption of the target’s intensity distribution and extent and the deconvolved 
image is computed for the full image plane. However, for the synthetic observations described in this paper, we have 
the prior knowledge that the target comprises two point sources and we also know their locations. What we do not 
know is the relative brightness between the two. In order to constrain the target to a binary star model, the initial 
target estimate comprises two narrow symmetric Gaussians centered on the pixel locations of the two targets, each 
having a FWHM = 1.75 pixels. This takes into account potential sub-pixel locations of the components and permits 
the algorithm to “shift” the component locations in order to obtain the best common fit. The initial intensity ratio of 
the two Gaussians is estimated from the corresponding pixel values in the observations and the initial PSF estimate 
was the “known” PSF described in Section 3. The PSF band-limit is typically measured from the data and read-noise 
limit was determined from “sky” regions of the observations. For this application ten independent observations were 
used for the multi-frame constraint. The algorithm was allowed to converge for ~100 iterations from the initial start-
ups sharpening the Gaussian distributions of the two components and, more importantly, adjusting the relative 
amplitudes of both to allow the reconstructed target to match the ten individual data frames.  
 
Like AWMLE, IDAC produces a final image from which photometric and astrometric measurements are made. For 
the binary cases here, the reconstructed object was fit by two Gaussians using a least squares method after a further 
Gaussian smoothing. This smoothing reduced the pixelation allowing for an improved fit. The free parameters for 
the fits were the amplitudes, elliptical Gaussian widths σx and σy, the position angle orientation of the ellipse and the 
x & y locations of each Gaussian - a total of 12 parameters in all. The intensity ratio was obtained from the ratio of 
the Gaussian volumes, (i.e. Vn = In σx σy). The advantage of the fitting is that it allows an uncertainty measurement 
for each of the intensity ratio.  
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2.4. FITSTARS 
 
FITSTARS [13] is a single-frame iterative blind deconvolution algorithm optimized for binary stars by defining the 
object distribution as two δ-functions: 
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where (xi , yi) is the location of the ith component and Ai its intensity so that there are a total of six object variables to 
fit. These binary parameters are solved for by using least squares fitting to the observations using the initial target 
and PSF estimates. Once an initial estimate of these variables is obtained, an updated PSF estimate for each 
component is computed by differencing the measurement to the model for the other component and a new PSF 
estimate is then computed from the weighted average of these two individual component estimates [21]. This 
process is repeated until the results converge. Results using this algorithm have been compared to those obtained by 
speckle interferometry [22] and are in good agreement. 
 
2.5. PDF deconvolution 
 
PDF deconvolution uses the analytical forms of the PDFs of the on-axis and off-axis intensity in an AO PSF [16]. 
The instantaneous Strehl ratio has a distribution characterized by two parameters (i) number of independent cells in 
the AO-corrected wavefront, and (ii) the theoretical long-exposure Strehl ratio, which is related to the statistical 
phase variance via the extended Maréchal approximation ( )2expSR φσ−=  [23]. When the companion is located 
within the isoplanatic patch, both components of a binary star are produced by almost the same wavefront. Thus, the 
two parameters mentioned above are common for the PDFs of the peak intensity of the star and its companion. 
However, at the location of the companion, the speckle and signal intensities add, and their PDFs are convolved. 
The distribution of the signal (i.e. the “raw” peak intensity) has the same form as the Strehl ratio PDF [16] but is 
“blurred” by the speckle kernel. PDF deconvolution blindly estimates both the signal and the speckle PDFs from a 
vector of intensity measurements at the location of the companion. 
 
This 1-D deconvolution problem has five parameters to solve for but can be very easily constrained by observing 
that two parameters are common for both objects, i.e. those of the instantaneous SR. These are obtained from a least-
squares fit of the theoretical PDF to the on-axis statistics for the bright star so that, at the location of the companion, 
the algorithm only searches for the three remaining parameters. After successful separation of signal from speckle 
statistics differential photometry can be obtained by comparing flux parameters estimated for the two objects. 
 

 
Fig. 2. PDF deconvolution. Left: fit of the theoretical on-axis PDF to the measured histogram. Right: separation of the PDFs at location of a 
companion. PDFon is the on-axis distribution; PDFoff is the speckle distribution. Symbol “*” denotes convolution. This plot corresponds to a 
typical case encountered in tests on the Lick data, as described in Section 3.  
 
PDF deconvolution relies on multi-frame observations of the object. The other inputs are the estimated Strehl ratio 
of the observations, and the position of the companion (assumed to be known from astrometry). Figure 2 illustrates 



how the method works. First, the theoretical on-axis PDF is fit to the measured on-axis histogram (left panel), and 
then the convolution of two PDFs is fit to the measured histogram at the location of the companion (right panel). 
The ratio of the widths of the two distributions of interest (red curve in the first panel and green curve in the second 
panel) can be converted to brightness ratio of the two objects. 
 
In this work the PDF deconvolution algorithm is supplied with the known positions of the companions which it does 
not update. When the peak of the companion’s PSF is at a sub-pixel location, the method is given a non-integer 
location of the companion and it spatially interpolates the measured pixel values to extract the intensity time series 
for the PDF. 
 

3. DESCRIPTION OF THE DATA 
 
We used single-star data sets, obtained with the Lick Observatory AO system on the 3m Shane telescope to generate 
synthetic binary stars. AO images of bright stars were obtained using the high-speed sub-array mode (64 × 64 
pixels), for the 256 × 256 pixels IRCAL camera, which corresponds to a field size of 4.8 × 4.8 arcsec. The sub-array 
measurements were captured with typical exposure time of 22ms. Each data set comprised 10,000 images. All data 
were obtained in K band (2.2μm) where the diffraction limit is 151mas and the data were effectively Nyquist 
sampled (two pixels per λ /D). The individual short exposures were registered with sub-pixel accuracy to produce 
shift-and-add (SAA) images. The average Strehl ratio of these SAA images was ~ 40%. All data were sky-
subtracted and the residual background was then subtracted too.  
 

    
 
Fig. 3. SAA image of a synthetic binary star with separation of 4λ/D. Left: High SR (~50%) showing the eight locations for the artificial 
companion. The companion is located within the larger circle. Right: SAA image of the synthetic binary star for SR ~ 30%. Note the presence of 
significantly greater residual speckle structure for SR~50% whereas the SR~30% shows a more uniform halo structure. (The images are 
displayed on logarithmic scale). 
 
Simulated binary star data sets were created by scaling and shifting the PSF datacubes yielding synthetic 
observations of a binary star with a brightness ratio of 25 (magnitude difference, Δm = 3.5) which was chosen to 
create challenging scenarios, with 5 < SNR < 15 for the companion. We placed the companion at one of eight 
different positions in order to minimize variations in results due to possible anisotropies in the PSF. The positions 
were ~ 0.6 arcsec (4λ/D) from the center of an image (see Figure 3) with four positions in a cross 8 pixels away 
horizontally or vertically from the bright star, and four diagonally – 7 pixels horizontally and 4 pixels vertically. The 
difference between the “straight” and “diagonal” separations is 0.062 pixel. The mean photometric error was 
computed based on the results from these eight positions. 
 
All algorithms were supplied with re-centered images. PDF deconvolution used a 10,000 frame datacube, IDAC 
used 10 data cubes, each comprising 1000 co-added frames, while the other codes used single SAA images of all 
10,000 frames. All methods, except PDF deconvolution, rely on a PSF estimate. For the matched-PSF cases we used 
the same stars observed ten minutes later (Strehl ratio mismatch = 2 or 3%). For the mismatched-PSF cases we used 
stars of similar brightness observed the same night, and also close to zenith (Strehl ratio mismatch = 6%; for the 
case of ~30% SR the calibrator had higher SR than the target while the reverse situation was tested for 50% SR). 
Variability of the Strehl ratio between the science and calibration PSF is a direct consequence of either non-



stationarity of turbulence (if the same star was used for target and calibration datasets), or change in response of the 
AO system due to lower or higher photon flux coming from the calibrator, as compared to the target. Table 1 
summarizes the grid of scenarios we have investigated. 
 
Table 1. PSFs used to simulate images of binary stars. The SR = 29% data refers to the 30% Strehl ratio case, and the SR = 54% data to the 
Strehl ratio = 50% case in the text. 
 

 Science PSF Strehl 
ratio 

mV mK Reference PSF Strehl 
ratio 

mV mK 

 
Matched PSF NOMAD1 1297-0510182 29% 12.1 5.93 –– 32% –– –– 
Mismatched PSF –– –– –– –– HD 18009 35% 8.23 5.02 
 
Matched PSF HD 143209 54% 6.3 3.92 –– 52% –– –– 
Mismatched PSF –– –– –– –– HD 153832 48% 7.25 4.78 

 
 

4. RESULTS 
 
 

 
Fig. 4. Mean relative intensity ratio error for the five algorithms (equation 3). Left: PSF well-matched to the observations. Right: mismatched 
PSF. The results for PDF deconvolution are identical in both panels because this method does not rely on a PSF estimate. The p2 value for 
FITSTARS in the 50% SR, matched-PSF case was very high (~ 10 000) and we omitted it from the plot in order to have the y-axis scale which 
better shows differences between the other methods.  
 
In order to determine the efficacy of each algorithm we used a metric of photometric precision which measured the 
mean absolute deviation from the truth [12]: 
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where Ij are the individual intensity ratio measurements and the truth was equal to 25. This metric was then 
converted to percent relative error: 
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This metric shows the relative strength of the average departure from the true intensity ratio. In Figure 4 we plot p2 
for the scenarios of well matched and mismatched PSF and in Table 2 we give numerical values of this metric. 
 



Figure 4 illustrates relative precision of various algorithms. In order to discuss possible biases (systematic over-, or 
under-estimation of the truth) and dispersions of results, we plot means and standard deviations in Figure 5 and we 
give numerical values of these metrics in Table 3. 
 

 
Fig. 5. Means and standard deviations of the measured brightness ratios. The dashed line corresponds to the true value of 25. The values for 
FITSTARS in the matched-, and mismatched-PSF cases for 50% SR were very high and we omitted them from the plots in order to emphasize 
differences between the other methods. The PDF deconvolution, being self-calibrating was independent of the PSF and therefore it produced the 
same results for the matched and mismatched PSFs. (Note the differences in the vertical scales). 
 
 

Table 2. Percentage photometric precision of the algorithms, as quantified by the metric p2. 
 

 FITSTARS AWMLE IDAC StarFinder PDF deconvolution 
30% SR, matched PSF 116 20 21 31 4 
50% SR, matched PSF 10848 5 6 5 7 
30% SR, mismatched PSF 80 75 77 25 4 
50% SR, mismatched PSF 284 14 8 22 7 

 
 

Table 3. Means and standard deviations of brightness ratios obtained with the discussed methods. 
 

 FITSTARS AWMLE IDAC StarFinder PDF deconvolution 
30% SR, matched PSF 54.0 ± 10.0 20.6 ± 4.7 21.9 ± 6.5 17.1 ± 0.9 24.4 ± 1.8 
50% SR, matched PSF 2737 ± 4275 26.1 ± 1.0 26.4 ± 1.0 26.2 ± 0.5 24.1 ± 2.1 
30% SR, mismatched PSF 38.9 ± 34.5 36.1 ± 22.6 34.6 ± 29.6 25.0 ± 8.6 24.4 ± 1.8 
50% SR, mismatched PSF 96.0 ± 124.2 28.6 ± 2.5 27.1 ± 1.3 30.5 ± 2.1 24.1 ± 2.1 



5. SUMMARY & DISCUSSION  
 

We compared photometric measurements of various algorithms for a case of a very close binary star with a 
relatively large intensity ratio. This is a particularly challenging case in that the companion is 25x fainter than the 
primary and lies well within the PSF morphology of the primary (~4 λ/D). This is where the speckle contribution is 
non-negligible and the best photometric precision (Fig. 4) is on the order of couple of percent relative to the truth. 
For each observing case there were eight different realizations with the companion located in a different region of 
the primary’s PSF and the dispersion in the results reflect the sensitivity of the algorithms to measure the 
photometry with differing speckle backgrounds and morphology.  
 
 
Looking at the results in Fig. 5 and Table 3, one notices that for the SR=50% case, the mean IDAC, StarFinder and 
AWMLE results are very similar to each other and consistently give a larger intensity ratio by ~ 4% for the matched 
PSF and by ~ 7% for the mismatched PSF. Note the overlap of the standard deviations. For the PDF deconvolution, 
which is independent of any separate PSF information, the results are < 4% smaller than the true intensity ratio. 
However, for FITSTARS, the results are ~ 100x and 4x larger. For these data, FITSTARS had problems. For the 
SR=30% data, IDAC, StarFinder and AWMLE underestimate the intensity ratio ~ 20% for the matched PSF, and 
IDAC and AWMLE overestimate by ~ 40%, whereas StarFinder yields the correct value, for the mismatched PSFs. 
PDF deconvolution underestimates the truth by ~ 4% in both cases. It is interesting to note that FITSTARS yields 
significantly improved results for these data overestimating by ~ 1.5x. Finally we note that the dispersions increase 
in the majority of mismatched PSF cases. 
 
So, why do these algorithms differ so much in their results? Non-linear deconvolution algorithms, such as AWMLE 
and IDAC, have a tendency to overestimate intensity ratios when the intensity ratio is large to begin with. This has 
been shown by Christou et al. [11] and in presentations by various authors in the proceedings of the HST workshop 
[24]. This is essentially due to the reduced SNR of the fainter sources. Also some of the algorithms compute the 
astrometry of the target jointly with the photometry and when the astrometric errors are large, so are the photometric 
errors. For example, StarFinder converged for only four of the eight realizations for the SR=30% mismatched PSF 
case and FITSTARS converged for six of the eight realizations for the SR=30%, matched PSF case. PDF 
deconvolution is not influenced by astrometric errors as the true binary component locations are used. In addition, 
not all algorithms are well matched to these data. For example FITSTARS assumes that the reconstructed PSF is 
symmetric after a certain radius which could well affect the results here, because of the binary star separation 
relative to the size of the extended PSF. The different algorithms also use the data in different ways. FITSTARS, 
StarFinder and AWMLE used a single SAA image obtained from the original 104 data frames while IDAC used ten 
103 SAA images to take advantage of the MFBD approach and PDF deconvolution used the 104 frames for the 
statistical distributions. We have not yet investigated the repeatability of these algorithms by breaking the data into 
smaller subsets to investigate how that affects the mean results.  
 
Another difference to note is that the binary parameters themselves are estimated differently for each of the PSF 
calibration algorithms. Aperture photometry, centered on the component locations, is used for the AWMLE result. 
For the SR=30% case there is greater speckle contamination of the companion thus affecting the results. The 
presence of a deterministic mask using the component locations should improve the results by rejecting the speckles. 
StarFinder jointly estimates the relative astrometry and photometry parametrically and it was found that if the initial 
estimate of the companion’s location was more than 0.5 pixels away from its true location, then the algorithm would 
not converge. FITSTARS also jointly estimates the binary parameters directly and is sensitive to the astrometric 
positions. IDAC estimates an object intensity distribution and the use of an initial Gaussian model centered on the 
component locations ensured that this was limited to the correct locations. The binary parameters were obtained by 
fitting the final Gaussian result where the formal error of the least squares fit for the intensity ratio was ~ 2%, 
substantially smaller than the results for the eight different realizations. For the SR=30% mismatched PSF case, the 
asymmetric nature of the PSF led to increased speckle contamination in the results for a couple of the realizations so 
that the mean was skewed and the standard deviation was increased.  
 
By comparison to the PSF calibration algorithms, PDF deconvolution is self-calibrating and relies on how well the 
speckle statistics are determined in order to estimate the relative intensities. The ability to determine the statistics of 
the intensity is directly related to the number of samples, i.e. the number of frames. How well such an algorithm will 



work with a small number of frames is yet to be determined as is the maximum exposure time per frame before the 
central-limit theorem dominates producing indistinguishable Gaussian statistics.  
 
We have presented preliminary results of the algorithms’ application to these challenging data. Future studies will 
investigate the sensitivity of the PSF calibration methods to different initial PSF estimates, the repeatability of all 
techniques and the sensitivity of the multi-frame algorithms, IDAC and PDF deconvolution, to the number of 
frames.  
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