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Situational awareness of Earth-orbiting particles is highly important for future human activities in space. For optical
observations of debris, multiple observations must be combined in order to determine the orbit of the observed
object. It is generally uncertain, however, whether two arbitrary tracks are of the same object, and solving this
problem can be computationally intensive. In this paper, we propose a technique of correlating multiple optical
observations by means of probability distributions in Poincaré orbit element space.

1. INTRODUCTION

Situational awareness of Earth-orbiting particles such as active satellites and space debris is highly important for
future human activities in space. Presently, over 300,000 particles have been estimated to exist, and over 80,000
observations are made per day [5]. Observations are made either by radar or optical sensors. For optical
observations, which are usually made for objects in medium Earth orbit (MEO) and geostationary orbit (GEO), only
the angles and angular rates of the track can be determined. That is, the range and range-rate remain largely
unknown. Therefore, in order to determine the orbit of the observed object, multiple observations must be
combined. It is generally uncertain, however, whether two arbitrary tracks are of the same object, and solving this
problem can be computationally intensive. This is the crux of the zoo short arc (TSA) problem. Milani et al. have
proposed a solution for heliocentric orbits where each track is expressed in a 4-dimensional quantity called the
attributable vector, and by placing a few physical constraints, they restrict the range and range-rate to a region
called the admissible region [4]. Discretized points on the admissible region are referred to as Virtual Debris (VD)
particles. Tommei et al. expanded this method to Earth orbiting objects [6]. Maruskin et al. introduced another
method that uses maps of the admissible region in Delaunay orbit element space [3].

In this paper, we propose a technique of correlating multiple optical observations by means of probability
distributions in Poincaré orbit element space. We first define the admissible region mathematically, as well as
introduce other necessary concepts (Section 2). We then explain our method and how we incorporate observation
data (Section 3). An admissible region for an observation is mapped to the 6-D Poincaré space, which is discretized
into many hypercubes or bins. At each bin, the density of VD's is determined, and its distribution over the Poincaré
space can be regarded as a probability density function (pdf) as to where the observed object may exist. We
combine pdf's from multiple observations using Bayes' theorem. A significant computational bottleneck in this
proposed method arises from the very large number of VD's that must be mapped non-linearly in order to
completely represent the admissible region in 6-D space. We avoid this problem by approximating the admissible
region as a conglomerate of smaller subsets, and linearly mapping these regions. Finally, we discuss a MATLAB
implementation of our method (Section 4). We simulated correlating 996 error-free optical observations for 8
objects in MEO and GEO over the course of approximately 24 hours. All observations were correctly correlated
with no false positives. Even in the presence of observation error, Monte Carlo-like test results suggest that the
method will perform well. We also tested the code in more difficult observation geometries to ascertain its limits
(Section 5). Namely, we considered the case where 2 objects lie within a discretization unit, where 1 object is
observed simultaneously at 2 observatories, and where a satellite constellation is observed at 1 observatory.

2. BACKGROUND

In this section, we introduce the mathematical definition of the attributable vector and the admissible region, and
both the exact (non-linear) and linearized transformations from topocentric spherical coordinates to Poincaré orbit
elements. We also discuss the topology of admissible regions, which are 2-dimensional manifolds embedded in 6-
dimensional state space. Unless otherwise stated, all length units in this paper are in Earth radii rg, time units in
hours, mass units in kilograms, and angles in radians.



2.1 The Attributable Vector

For optical-only observations, which are usually made for objects in medium Earth orbit (MEO) and geostationary
orbit (GEO), only the angles and angular rates of the track can be determined [3]. That is, the range and range rate
remains largely unconstrained, except for a few physical restrictions which can be used to constrain their values.
Thus, each track can be mathematically expressed in terms of an attributable vector A at epoch ¢ of the observation

[6]:

A= (a,8,&,0) € [-r,7) X (-1/2,71/2) x R, e

where a and J specify the topocentric angular position of the debris particle. A discussion of how one may estimate
an attributable vector from a given track of data can be found in Maruskin, et al [3]. We use J2000 as our coordinate
system so that a is the right ascension and ¢ is the declination. In addition, information regarding time and the
location of the observer should be stored for a more complete description of the track, leading to an extended set X:

X = (A to, h, ¢, ©) @)

where £, is the time of the observation, /4 is the altitude of location of observation, and ® and ¢ are the angular
position of observation for a geocentric spherical coordinate system. We chose a coordinate system such that © is
the latitude and ¢ is the longitude of the observation point. In the following discussion, we will ignore 4.

2.2 The Admissible Region

For some attributable vector X, we can take different values of range and range-rate (p, p) to complete the topocentric
coordinates of the particle and thus obtain different physical orbits. Visually, we can imagine taking different points
in the topocentric range / range-rate plane. However, not all of these orbits are relevant for any given application.
Rather, a closed region of the (o, p) plane can be defined such that all of the physically relevant orbits are contained
within the interior of this region. We define this region as the admissible region, and each discretized point on the
admissible region as virtual debris particles (VD's). A set of criteria C defining the admissible region has been
proposed by Tommei, et al, and later refined by Maruskin, et al. [3] [6]. This set assumes radar observations for
objects in low and medium Earth orbits (LEO, MEO):
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where E is the specific geocentric energy of the debris particle, pyy and pyax are bounds for the physical range of
the particle chosen “a priori,” and r, and r, are the apoapsis and periapsis radii of the orbit in units of Earth radii,
respectively. In this paper, we set (pyvin, Pmax)=(0.3,20) Earth radii as we are interested in all objects observable by
optical sensors but outside of the range of radar sensors, corresponding to an altitude of 2000 kilometers (0.3 Earth
radii) to 130,000 kilometers (20 Earth radii). Fig. 1 is an example of an admissible region.

2.3 Transformation of VD's

Let us consider the transformation of VD's from topocentric spherical coordinates (i.e. @,0,d,0,0,0) into Poincaré
variables. Poincaré variables are the non-singular canonical counterpart to the equinoctial orbit elements [7]. Their
main advantage is that the variables can be naturally grouped into coordinate-momenta symplectic pairs.
Furthermore, they are defined and nonsingular even for circular and zero-inclination orbits. The Poincaré elements
with respect to the classical orbit elements are given as:




Fig. 1. An admissible region for ¥ = (@, 6, &, 8, ¢, ©) = (2.064, -0.2378, 0.5072, 0.0654, 0.1, 4.8). The different
shadings represent the different regions which satisfy each criterion in set C; thus, the admissible region is where all
types of shading overlap, or the region outlined by the black line.
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A detailed discussion is given in Fujimoto and Scheeres [8].

2.4 The Geometry of Admissible Region Maps

Since the transformation from topocentric range / range-rate to Poincaré element space is one-to-one and invertible,
the map of the admissible region is a 2-dimensional bounded submanifold, or a disk, in 6-dimensional Poincaré
space [3] [8]. Suppose we have maps from two observations which have been dynamically evolved or regressed to a
common epoch 7: F's; and F's,. From the theory of general position, the dimension of intersection d between a pair
of disks of dimension k and / in n-dimensional space is given as:

d=(k+1)-n, (6)

where if d < 0, the two disks do not intersect randomly [2]. For our problem, d = (2 + 2) — 6 = -2, so if two
admissible region maps intersect at all, it is extremely unlikely that they are two separate objects. In addition,
equation (6) indicates that if we are to embed these disks in 5-dimensional Poincaré space such as the (£, ®, g, 9, b)
space, they will still not intersect randomly. Similarly, for 4-dimensional Poincaré space they intersect at a point,
for 3-dimensions a line, and for 2-dimensions an area.

3. THE CORRELATION OF OBSERVATIONS AND PROBABILITY DISTRIBUTIONS

In this section, we outline how to use probability density functions of multiple data sets that characterize the debris
population and combine them in some standard comparison space. Usually, this comparison space is the Poincaré
element space described in Section 2.3 or some space derived from it. A direct application of this process is
determining whether a number of observations are of the same object, and if they are, what the approximate orbital
characteristics are.

Ultimately, we would like to know the probability of an optically observed object, characterized by attributable
vector X, being in the vicinity of some coordinate X in a standard comparison space such as the Poincaré orbit



element space. This probability can be calculated for various values of X across the comparison space, so it is
beneficial to think of it as an element of a probability distribution function (pdf). We cannot rationally determine to
any level of useful accuracy, however, neither this probability nor its distribution based on one optical observation,
since X only contains 4 variables (,d,&,0) regarding the observed object's position and velocity, whereas 6 are
required to fully describe the object's orbit. Therefore, it is necessary to combine multiple observations of the object.
Here we face another problem. In a real-world setting, there is no guarantee that two or any number of arbitrary
observations are of the same object; that is, that they are correlated. We would then like to know if some incoming
data, such as a new observation, is related with the aforementioned pdf, and if so, how it affects the pdf.

In this paper, we consider the following data sets regarding Earth-orbiting objects and their observations:
Set S;: Past observation data and debris distribution models. The United States Air Force Space Command
(AFSPC) compiles and publicly distributes Two Line Element sets (TLEs) for all known objects that are in Earth

orbit [1] [5]. Currently, the catalog consists of approximately 14,000 objects. Fig. 2 shows a scatter plot of the
objects in orbit over a-e and a-i space.
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Fig. 2. Distribution of known objects in Earth orbit over a-e (left) and a-i (right) space.

Debris models incorporate computer simulations to account for objects too small to be observed (generally smaller
than 1 meter for optical observations). MASTER-2005 by ESA is an example of such a model. The data in this
category are discrete, and are independent of X.

Set S,(X): The distribution of virtual debris (VD) particles over the standard comparison space. Although VD's are,
by definition, uniformly distributed in the admissible region (i.e. range / range-rate space), for common choices for
the comparison space such as orbit element and Poincaré space, the distribution of VD's in such spaces is non-
uniform due to the non-linearity of the mapping. As a consequence, certain values of X become more likely than
others. The data in this category are continuous, and are a function of ¥. Computationally, however, a large and
discrete sample set (S,) is used instead.

We discretize the standard comparison space into M (= H?: M) 6-dimensional hypercubes (or “bins”), which we

index with vector i. By doing so, we rationally group TLE objects, modeled debris, and VD's with similar orbital
characteristics. In the comparison space, objects in a particular bin are spatially indistinguishable; i.e. we treat their
coordinates as being the same as those that define the position of the bin. The discretization makes up for
deficiencies in S; data and undersampling of S, as well as speed up computational turnaround. Note that M is an
important parameter, as if it is too small, we lose too much of the spacial resolution of the data sets. If M is too large,
then the aforementioned data deficiencies and undersampling can negatively influence our results.

With this discretization, it is natural to consider the data in sets S; and S, as discrete pdf's spanning the comparison
space rather than a set of countable elements. We refer to these pdf's as s,(i) and s,(i, X), respectively. Practical
definitions for s; and s, are given by first defining the following sets:

A; ={a:a €S and is mapped to bin i}
- - 7
Bi(X) = {b : b € §,(X) and is mapped to bin i}. @



Then,

A;
ﬁm=2&3
i 1) = "B ®)
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where n(4;) is the number of elements in set 4; and so on.

Suppose we have some prior discrete pdf g,(i,r) that describes the probability that a particular object of interest O is
consistent with bin i at epoch 7. That is, if P is a probability measure and E(i, 7) is an event where O is consistent
with i at time 7, then:

PEo(i, 7)] = go(i, 7). (€)]

g can originate from the TLE catalog or a debris distribution model (), one observation or a set of observations that
we believe are correlated a priori with O (S,), or any combination of S| and S,. Here, we treat i as a random variable
that spans the bin index space. Also, all information has been propagated to 7.

Now, let us consider a new series of information {r} that has come in from S; or S,, such as uncorrelated
observations. We would like to calculate a posterior pdf 4,(i, ) on whether O is consistent with bin i and is related
to {r}. Itis obvious that hy(i, 7) = 0 if the new information does not regard O. In order to filter out such trivial cases,
we let event x2 be one where the series {r} is related with O and add this event as a condition to 4. Using Bayes'
theorem:

. . Jin(i, 7)goi, 7)

PIEo(, DIxP] = holi, 1) = <o 10
53 JinG 180G ), (10)

where the sum in the denominator is over all bins, and fi;(i, 7) is a pdf that describes the probability that {r} is

consistent with bin i:

PLEy(, D] = finG, 7). (11)

E(i, 7) is an event where {r} is consistent with i assuming all information has been dynamically evolved to 7.
Again, i is treated as a random variable. If the information in {r} are observations, fis the admissible region of that
observation mapped to the comparison space and to epoch z: = s,(i, X). Similarly, if the information is the TLE set,
then f=s,(i). Note that from (6), if /> 0 and g > 0 at some bin i regardless of discretization size, then {r} and O are
most likely related. Therefore, given O is consistent with i, whether {r} and O are related depends only on whether
{r} is consistent with i:

PIOEo(i, 7)] = fiy(i, 7). (12)

Furthermore, the converse of the above argument ensures that as long as {r} and O are related, then 25 f - & > 0, so
(10) is well-defined.

In a graphical sense, pdf Z is a *“cut out" of the region where fand g intersect; # > 0 for any bins where both /> 0
and g > 0, and the probability expressed by / is one that is evaluated over this overlap region. Based on (6), we can
look at whether /2 > 0 for some bin i to deduce with confidence whether or not the new information is related to the
object of interest.

4. NUMERICAL SIMULATIONS
In this section, we discuss results from an implementation of our method in MATLAB. Note that our goal is to

show that our method is able to correlate objects and give an initial orbit estimate by giving it only angle and angle-
rate information from the observations. Determining its robustness in real-world situations is future work.



We extracted 8 objects from the two-line element (TLE) catalog to obtain a sample set, and refer to them as follows

[1]:

3 objects in GEO (GEO1~3),

1 object in a Molniya orbit (MOL1),

2 object in an eccentric MEO orbit (EM1,EM2),
1 object in a circular MEO orbit (CM1), and

1 GPS satellite (GPS1).

The orbital parameters of each object is given in Appendix A.

We simulated 996 zero-error observations of right ascension, declination, and their time derivatives made from 4
observatories for all 8 objects over the course of 24 hours. Thus, X = (a, d, @, 5, t, ©, ¢), where £, is the observation
epoch and (0, ¢) is the inertial angular position of the observation point. We can assume zero-error in the
observations because the uncertainty in the angular information is generally much less than the uncertainty in the
range and range-rate; refer to Fujimoto and Scheeres for a discussion on the effects of observation error to the
outcome of our method [8]. The 4 observations points were located at:

Socorro, New Mexico (33.8172°N 106.6599°W)

Maui, Hawaii (20.7088°N 156.2578°W)

Diego Garcia, British Indian Ocean Territory (7.41173°S 72.45222°E)
Moro6n Air Base, Spain (37.170°N 5.609°W)

Approximately every 15 minutes, the code generates attributable vectors (i.e. simulated observations) for all objects
that are above the local horizon at any given observation point.

We assumed no a priori information regarding the observed objects, and thus used a uniform initial pdf. The
discretization of the Poincaré space was such that:

4.4621 12.6206
0 6.2832
-5.0241 5.0241
Xmin =1 _5.0041 | Xmax = | 50041 (13)
~5.0241 5.0241
~5.0241 5.0241 |,

and (100,77,123,123,123,123) bins in each coordinate direction for a total of 1.7624%10" bins. All dynamics were
two-body.

Fig. 3 is a graphical representation of the process explained in Section 3 for 2 observations. The red and green
regions each represent pdf's based on observations that have been dynamically evolved to a common epoch (i.e.
pdfs fand g). The propagation has “shredded” the red pdf in the £-I plane [3]. The blue region is the combined
distribution (i.e. pdf #). The yellow asterisk is the true state of the observed object. The distributions have been
projected onto 2-dimensional subspaces using their coordinate-conjugate momentum pairs; note, however, that the
correlation was conducted in the full 6-dimensional Poicaré space. When correlating two observations of the same
object (top), we see that 4 > 0 for a very small region of the state space; for this particular example, # > 0 for 11
bins. Furthermore, the true state is included in the region in state space where 4 > 0. Therefore, the state estimate is
good. On the other hand, when two observations are of different objects (bottom), # = 0 for the entire state space,
which allows us to conclude that the two observations are unrelated.
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Fig. 3. Projections of probability distributions when correlating observations of the same object (top; EM1-EM1)
and a different object (bottom; EM1-EM?2). Length units in Earth radii, time units in hours, mass units in kilograms,
angle units in radians.

Our correlation process performed well for all 996 observations: all observations were correctly correlated to the 8
objects and their states were correctly estimated down to a region of at most 4 bins. Thus, there were no “false
positive” results. We developed a linearization technique in which the pdf’s are mapped linearly, reducing the
computational time while attaining good accuracy [8]. On a dual-core Xeon server with 32-bit numerics, each
correlation run took approximately 10 minutes. If we wish to further reduce the region over /# > 0 as well as reduce
computation time, we can assume a priori that all observed objects were included in either the TLE catalog or some
debris distribution model instead of the uniform distribution assumption we made for Fig. 3. Then, the admissible
region maps are “pre-conditioned” to exclude unrealistic objects. Correlation times were reduced to 1 to 2 minutes.
Table 1 lists the number of overlap bins for each correlated object.

Uniform Preconditioned
{r} Overlap bins Contains true state Overlap bins Contains true state
GEO1 4 YES 2 YES
GEO2 3 YES 2 YES
GEO3 4 YES 2 YES
MOL1 1 YES 1 YES
EM1 2 YES 1 YES
EM2 3 YES 1 YES
CM1 2 YES 1 YES
GPS1 3 YES 1 YES

Table 1. The estimation accuracy of each observed object when using a uniform initial pdf (left) and the TLE as the
initial pdf (right).

5. LIMITING CASES

In this section, we investigate special observations cases where we expect the method to have difficulty in
calculating an accurate initial orbit estimate; namely, when two objects lie within a bin size, when an object is
observed simultaneously at two observation points, and when objects in a satellite constellation are observed over
long periods of time.



5.1 Limitation of Bin Resolution

Recall from Section 3 that all objects within a bin are regarded as having the same state parameters. Therefore,
there may be cases where two satellites that are close in state space are falsely correlated. We can always overcome
this limitation by increasing the fidelity of the discretization; one efficient way is to implement a recursive algorithm
where the bin size is decreased in the vicinity of overlapping region. Moreover, we can be smart about how we
initially discretize the space. For instance, we expect that a finer grid is necessary in the [ direction (i.e. mean
anomaly) compared to the £ direction (i.e. semi-major axis).

5.2 Simultaneous Observations of an Object

The proposed method may run into difficulties computing a precise state estimate when the two pdf's are near
parallel. Although such pdf's would still most likely intersect at a single point, they may appear to occupy the same
bins in the discretized state space (i.e. overlap) over a large region. One case where pdf's become near parallel is
when an object is observed simultaneously at 2 different observations points, as seen in Fig. 4. Here, pdf / spans
over 688 bins using the nominal discretization in Section 4. This result, however, does not imply that the two pdf's
intersect over a large planar region; from (6), 2-dimensional intersections of pdf's are extremely unlikely. Indeed, as
we refine the discretization by 20%, then 50%, the overlap region begins to converge upon the coordinate of the true
object state. Note that compared to the method proposed by Maruskin, et al. which evaluates intersections of
manifolds within their 2-dimensional projections, the new method converges faster as the intersections are evaluated
in the full 6-dimensional space [3].
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Fig. 4. Combined pdf 4 of two near-parallel pdf's (CM1 observed simultaneously at (®,p) = (1,1) and (1.5,2) at time
t =26.36 hours) as the discretization is refined from M=1.7624x10" (top) to 1.2M (middle) and 1.5M (bottom).



5.3 Observations of Satellite Constellations

Suppose we make two observations separated by, say, 4 hours, which are consistent to the same orbit plane. We can
either conclude that we observed 1 object with an orbital period that is any divisor of 4, or that we observed 2
different objects in a satellite constellation with an orbit period that is any divisor or multiple of 4. For this
particular example, most of the solutions in the former set will have a semi-major axes that are too small to be
included in the admissible region. If the temporal separation of the observations were larger, however, then single-
object solutions may become viable. The long-term propagation “dilutes” information regarding the object's angular
position that we can extract from the observation separation time.

Mathematically, let two object be on an orbit with period 7 separated by mean anomaly AM. In two-body motion, z
is related to semi-major axis as 7 = 27 N Suppose we observe one of the objects at time 0, and then the other at
time Nz + (AM/n), where N € N and n is the mean motion; i.e. we observe the second object after NV revolutions.
Now, if we were to wrongly assume that we observed the same object twice, then the true anomaly a + Aa of this
ficticious object is:

3 3
2N |+ BY oy [l A
n
u u 14
Aa ( AM)M
o= 1+ -
a 27N

Therefore, N = co = Aa/a — 0. If the first observation generated a non-empty admissible region, then it is likely
that the proposed method will mistakenly relate the two observations given they are temporally well-separated.

Fig. 5 is a graphical representation of the above scenario. We simulated observing 2 separate objects in a
constellation from one observatory with different observation separation times. When the separation is 14.85 hours,
the combined pdf is null at all bins, meaning the method successfully recognizes the observations as that of different
objects. When the separation is increased to 60.61 hours, however, we see that the 2 pdf's overlap, and thus we
obtain a “false positive” result.
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Fig. 5. Correlation of observations of 2 different objects separated by a mean anomaly of 2/3w on the same orbital
plane as EM2. Observations are separated by 14.85 hours (top) and 60.61 hours (bottom). All observations are
made at (0O, ¢) = (2,4).



6. CONCLUSIONS

In this paper, we discussed methods of correlating multiple optical observations as well as providing initial state
estimates using pdf's in the Poincaré orbit element space. We outlined the method that incorporates Bayes' rule. An
implementation of the method in MATLAB successfully correlated 996 optical observations and provided good
initial orbit estimates. Finally, some limiting cases were examined.

Future work will be incorporate more accurate dynamics, and to apply our method to different observation scenarios
such as space-based observations and observations of objects in heliocentric orbit.

7. APPENDIX A: ORBITAL ELEMENTS FOR OBJECTS IN THE NUMERICAL EXAMPLE
The classical and Poincaré¢ orbital elements of all 8 objects in our simulation sample set are listed below as:
(alrgl, e, i [rad], Q [rad], w [rad], M [rad]), (¢ [rg?/hour], | [rad], ® [rg/hour'/?], g [rg/hour'/?], § [re/hour'/? |, b [rg/hour’/2]),
where r is Earth radius.

e GEO

GEO1 (6.6102,0.0003,0.0002,3.1274,2.3294,5.7226) (11.4721,4.8962,0.0006,0.0006,-0.0000,-0.0006)
GEO2 (6.6109,0.0003,0.0009,5.9501,2.9681,5.8729), (11.4727,2.2247,-0.0005,-0.0009,0.0010,0.0029)
GEO3 (6.6109,0.0001,0.0001,3.0902,4.2464,6.1176), (11.4727, 0.8879,-0.0003,0.0001,-0.0000,-0.0002)
e Molniya

MOL1 (4.1971,0.7154,1.1204,0.8126,5.1137,0.1671), (9.1414,6.0934,0.8200,2.1991,-1.9501,1.8469)
e Eccentric MEO

EM1 (3.6573,0.7123,0.3106,1.0976,1.6080,5.9942), (8.5333, 2.4166,-0.9526,-2.0447,-0.6739,0.3451)
EM2 (4.1472,0.5529,1.2347,5.5811,2.4137,4.8996), (9.0868,0.3281,-1.7237,-0.2444,2.0573,2.4323)

e  Circular MEO

CM1 (3.9994,0.0006,1.1284,4.9148,4.2128,2.9461), (8.9234,5.7905,-0.0005,-0.0017,3.1297,0.6421)

e  GPS satellite

GPS1 (4.1645,0.0048,0.9599,2.7242,3.6934,2.5851), (9.1057,2.7195,-0.0019,0.0143,-1.1296,-2.5474)
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