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Abstract

Object correlation and maneuver detection are persistent problems in space surveillance and space
object catalog maintenance. This paper demonstrates the utility of using quadratic trajectory control
cost, an analog to the trajectory L2-norm in control, as a distance metric with which to both correlate
object tracks and detect maneuvers using Uncorrelated Tracks (UCTs), real-time sensor measurement
residuals, and prior state uncertainty. State and measurement uncertainty are incorporated into the
computation, and distributions of optimal control usage are computed. Both UCT correlation as well
as maneuver detection are demonstrated in several scenarios Potential avenues for future research and
contributions are summarized.

1 INTRODUCTION

The problem of properly correlating on-orbit object observations and detecting object maneuvers is a chal-
lenging and persistent endeavor. There are currently at least 19,000 trackable on-orbit objects, 1,300 of which
are active [1], and these numbers are expected to grow significantly due to increasing tracking capabilities
and new launches [2]. Predicting conjunction events is a difficult task [3], however recent events highlight
the mutual interest that national and private operators share for accurate object correlation and maneuver
detection capability [4].

Object track correlation in space operations is distinct from real-time track correlation, as in Resident
Space Object (RSO) track correlation there are large gaps in observations (hours to weeks), with each
observation track being relatively dense in terms of measurements. This is contrasted with multi-target,
multi-sensor tracking and target association commonly encountered in real-time applications [5], where
measurements are made much faster than the system dynamics change.

The problem of correlating Uncorrelated Tracks (UCTs) over large time periods is particularly difficult
when objects maneuver during gaps in observations. Even relatively small stationkeeping maneuvers at
Geostationary Earth Orbit (GEO) can result in position discrepancies of many kilometers after an observation
gap of several days. UCT correlation is further confounded by state estimate uncertainties. Because both
the initial and final UCTs are best estimates and possess associated uncertainty distributions, the question
of correlation becomes inherently difficult to answer in operational settings, particularly in regions of space
that have particularly dense spacecraft populations.

Given a propagated best estimate and associated distribution, correlating UCTs essentially asks whether
a newly observed object (with an associated distribution) can possibly be a previously observed object, and
if not, what the ‘distance’ discrepancy is. There are many distance- or pseudo-distance metrics that may be
used to measure the distance between two state distributions. These include the Mahalonobis (M)-Distance,
the Kullback-Leibler (KL)-Distance [6], the Bhattacharyya (B)-Distance [7], and the Maximum a Posteriori
(MaP)-Distance (also known as Baysean) . All of these measures quantify a distance- or pseudo-distance
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metric in the presence of uncertainty, and are typically applied to the state difference between a predicted
object state and the best estimate of the newly observed object state.

Problematically, it remains that none of the M-, KL-, B-, or MaP-distance metrics, when applied to state
distributions, directly quantifies the level of propulsive effort required to effect the state change given a gap
in observation. This difference is critical as very small fuel expenditures at specific points in an orbit can
produce outsized state discrepancies. Further, as on-board fuel remains a scarce commodity for operational
spacecraft, satellite operators are likely to execute optimal or near-optimal maneuvers.

This paper applies a previously developed approach [8] to compute control distance metric distributions,
analogous to ∆V distributions, for both UCT correlation as well as maneuver detection. In particular,
several example scenarios are generated to emphasize the applicability of the approach to Space Situational
Awareness (SSA).

Organization of the paper is as follows: the approaches for both object correlation and maneuver detection
are summarized from previous work and their applicability is discussed. Several scenarios are motivated
based on GEO object cross-tagging and maneuver detection applications. The described methodology is
then applied to the scenarios, illustrating how control distance metrics may be used to correlate objects
and detect maneuvers, as well as potentially characterize objects. Finally conclusions and future work are
discussed.

2 THEORY

The background theory for both control-effort based object correlation and maneuver detection is largely
developed in [8]. The authors suggest a thorough reading of [8] for the interested reader. The results for
object correlation and maneuver detection are summarized individually in the following subsections. While
the focus of this effort is on orbit dynamics, generality is maintained in the derivations making the approach
valid for systems with dynamics ẋ = f(x,u, t) with x ∈ Rn, u ∈ Rm, and t ∈ [t0, tf ], t0 < tf .

2.1 Control Effort as a Metric

As mentioned in the introduction, satellite operators are loathe to expend unnecessary quantities of fuel
to effect maneuvers. Both the UCT correlation and maneuver detection approaches are posed in terms of
optimal control problems, so it is sensible to determine an appropriate performance function P . The function
chosen is

P =
1
2 ∫

tf

t0
Lu(x(τ),u(τ), τ)dτ =

1
2 ∫

tf

t0
u(τ)T u(τ)dτ (1)

Subject to dynamics ẋ = f(x,u, t) with x ∈ Rn, u ∈ Rm, and t ∈ [t0, tf ]. This performance function is similar
to an energy measure and is analogous to the L2 control distance norm

PL2 =
√

2P = ∥u(t)∥L2 = (∫

tf

t0
u(τ)T u(τ)dτ)

1
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which is a classic example of an L2 norm [9]. By inspection it is clear that any optimal trajectory (x∗,u∗)
that minimizes P also minimizes the L2-norm PL2 =

√
2P . Minimum P∆V (fuel) problems are much more

involved to solve than minimum energy analogs such as P as they necessarily involve periods of maximum
thrust and drifting. This introduces significant complication when the boundary conditions of the problem
are considered random variables, so for this present work the L2-analog performance function P is used. It
can be shown using the Cauchy-Schwartz inequality [10] that the performance functions P and PL2 bound
∆VLQ from above:

∆VLQ ≤
√
tf − t0PL2 =

√
tf − t0

√
2P (2)

Thus, the performance function P , an energy cost analog, can produce an upper conservative bound on the
possible fuel cost distribution. Using P defined in (1) as the performance function metric has the additional
benefit that the control authority um of the object in question need not be known.



2.2 Object Correlation Using Minimum Control Effort Distributions

The problem under consideration is illustrated in Fig. 1. An initial object track consisting of a sequence of
observations ultimately produces a state estimate x0 and an associated estimate covariance P0 (corresponding
to some arbitrary time t0). We define this track UCT0 as the triplet (t0,x0,P0). At some later time tf , a
new object track is initiated based on new observations. After all of the new observations are collected an
estimate of the state and covariance from when the new track was first started (at time tf ) can be generated,
creating the new UCTf triplet (tf ,xf , Pf). Estimation theory typically used in to generate UCTs can be
found in Tapley [11].

Supposing now that multiple initial and final UCTs exist, we are faced with the problem of determining
which UCTs should be associated (or ‘paired’) with one another. One way to do this is do compute a measure
of how ‘expensive’ a maneuver between UCTs would be. A logical assumption would be that UCTs with
the smallest required connecting control effort should be paired to one another, as on-orbit fuel is such a
scarce commodity. This concept is very similar to comparing differences in propagated homogeneous states
xf,p to new UCT states xf , as if xf,p ≈ xf , the minimum optimal control is necessarily u∗(t) ≈ 0. Because
the approach essentially solves the Two-Point Boundary Value Problem (TPBVP) with uncertain boundary
conditions, it is also called the Uncertain Two-Point Boundary Value Problem (UTPBVP).
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Figure 1: Problem Illustration
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Figure 2: Trajectory variations in the UTPBVP

After an optimal connecting trajectory (x∗,u∗) is found, the surrounding region is linearized and vari-
ations of the boundary condition are considered, as shown in Fig. 2. The boundary conditions are then



treated as random variables where δZT
= [δXT

0 δXT
f ] ∈ R2n,

E [δZ] = 0 (3)

E [δZδZT
] = Pz = [

P0 0
0 Pf

] (4)

With Gaussian boundary condition distributions the distribution of the performance metric P may be written
as

P = Pn + ω(tf , t0)
T δZ + δZT Ω(tf , t0)δZ (5)

The parameter Pn > 0 ∈ R is the nominal value of the performance function in the absence of uncertainty and
ω(tf , t0) ∈ R2n and Ω(tf , t0) ∈ R2n×2n are linear and quadratic terms with respect to δZ that capture the
optimal control policy and linearized dynamics about the nominal connecting trajectory (x∗(t),u∗(t)). With
(5) it is clear that if there is no uncertainty in the system, P → Pn is deterministic. Conversely, if Pn = 0, then
P will always have some positive control distance distribution comensurate to the level of uncertainty in the
boundary conditions. In other words, even for nominal homogeneous connecting trajectories, the boundary
condition uncertainty means the probability of the actual connecting trajectory being exactly homogeneous
is precisely zero.

2.3 Maneuver Detection Using Minimum Control Effort Distributions

Fig. 3 describes elements composing the Measurement Residual Boundary Value Problem (MRBVP) ap-
proach. At time t0 the previous observation ends and an observation gap begins. The nominal state x0 = x(t0)
and uncertainty P0 = P(t0) is propagated over the interval t ∈ [t0, tf ] to time tf , generating the homoge-
neous state xh and uncertainty Ph. The expected measurement is computed using the sensor measurement
model to be y = h(xh). The sensor measurement ym is taken, and the measurement residual is defined as
δy = ym −y = ym −h(xh). The space surrounding the nominal connecting trajectory xh(t) is linearized, and
the measurement residual is decomposed into three constituent residuals due to 1) state uncertainty in δxh,
2) sensor uncertainty ηm, and 3) state deviations due to active control δxu,f . The linearization is written as

ym ≈ y + δy = h(xh) +
∂h
∂xh

δxh +
∂h
∂xh

δxu,f + ηm

For homogeneous trajectories about the trajectory linearization without process noise the final state deviation
δxh may be written in terms of the initial state deviation as δxh = Φxx(tf , t0)δx0. Defining H = ∂h/∂xh

and observing that y = h(xh), the residual is defined in the local linearization about xh as

δy = HΦxx(tf , t0)δx0 +Hδxu,f + ηm (6)

Note that in traditional applications without a state deviation due to control (δxu,f = 0), the expected
variance of the measurement residual is

Var[δyh] = Py,h = E [δyhδy
T
h −E [δyh]E [δyh]

T
]

= E [HΦxx(tf , t0)δx0δxT
0 Φxx(tf , t0)

T HT
+HΦxx(tf , t0)δx0η

T
m + ηmη

T
m]

= HΦxx(tf , t0)P0Φxx(tf , t0)
T HT

+R

where E [δx0δxT
0 ] = P0 and E [ηmη

T
m] = R. Py,h is the Kalman filter pre-update measurement residual

covariance, and is often used in conjunction with the Mahalanobis distance to determine whether a new
measurement is statistically probable given the filters measurement and dynamic models.

In the case of optical measurements (azimuth β and elevation γ), Fig. 3 can be viewed in the measurement
space as shown in Fig. 4

In this formulation the performance metric distribution under optimal control is

P = δyT Gyyδy + δyT GywδW + δWT GwwδW (7)
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Figure 3: Problem Definition and Measurement Model
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Figure 4: MRBVP Illistration for an optical sensor using azimuth (β) and elevation (γ).

where δy = ym − h(xh) is the measurement residual (consistent with standard nonlinear batch and EKF
definitions), δWT

= [δXT
0 ηT

m] captures the inital state and measurement uncertainty, and Gyy, Gyw, and
Gww are linear and quadratic coupling terms. In a manner similar to the UTPBVP performance metric
distribution (5), the MRBVP control metric distribution (7) contains both deterministic elements (δy) and
random variables (δW). As δy → 0, the observation occurs exactly where it is expected, however (7)
captures the effective additional control effort necessitated by the initial state and measurement uncertainty
(δW). Similarly, if δW → 0, the system becomes completely deterministic and is purely a function of the
measurement residual.

2.4 UTPBVP and MRBVP Utility

Both the UTPBVP approach to object correlation and MRBVP approach to maneuver detection are funda-
mentally derived using optimal control to minimize the control distance metric P shown in (1). Further, due
to the calculus of variations approach, boundary condition uncertainty is directly accounted for. Despite the
similarities in their derivations, the utility of either approach is very different.

For the purposes of object correlation, the UTPBVP approach in §2.2 allows operators to select sets



of inital and final UCTs and compute corresponding connecting trajectory control distance distributins.
Once these are computed, the operator may make decisions concerning which candidate UCT pairing is
most likely. Further, because the distributions have a basis in rigorous optimal control theory and the
performance function serves as an upper bound on ∆V expenditures, realistic distributions of ∆V usage
may be inferred.

The utility of the MRBVP problem is somewhat different. Instead of being used to correlate objects, the
MRBVP approach in §2.3 may be used after an observation gap to immediately determine the distribution
of possible optimal maneuvers occurring during the observation gap. This computation also benefits from
having a rigorous optimal control-based derivation and control distance metric bounding, allowing the result-
ing conservative distribution of ∆V usage to supply object characterization data. It should also be further
stressed that this algorithm is used with the first new measurement after an observation gap, providing
maneuver characterization immediately upon track acquisition.

The utility of the approaches is now demonstrated in the following Scenario section.

3 SCENARIOS

3.1 Scenario 1: Geostationary Cluster Cross-Tagging

This example is inspired by Intelsat constellation TLE cross-tagging [14]. The scenario involves a two-
spacecraft cluster in GEO in which the first spacecraft executes a small maneuver (UCT0,1 executes a 5 m/s
impulsive maneuver in the inertial z direction). It is assumed that each spacecraft has been tracked long
enough before the maneuver so that they have nominal pre-maneuver ephemeris estimates. Because changes
in observation angles may not be significant during or immediately after an orbit maintenance maneuver at
GEO, this scenario assumes that the maneuver occurs late in the observation period. New observations are
made starting the next available observation period, approximately 14 hours later and continue over the next
several days. Collected observations are used to generate post-maneuver UCTs for both spacecraft. After
both the initial and final UCTs are formed the objective is then to compute the control distance distributions
for each individual association as well as the combined control distance distributions for mutually exclusive
cases.

Table 1 shows the initial orbit elements, Table 2 shows the uncertainties for each UCT, and Table 3
describes the mutually exclusive association combinations to be examined. Note that the velocity uncertain-
ties in all of the UCTs are nearly the same size as the magnitude of the maneuver. The nominal adjoints
pn(t) were found using a shooting-based Newton-method descent and the control distance distributions were
computed using Pearson’s Approximation. Fig. 5 depicts the optimal connecting trajectories between each
combination of initial and final UCTs. Fig. 6(a) shows the associated control distance metric distribution for
each combination and Fig. 6(b) shows the combined control metric distributions for each mutually exclusive
case.

Table 1: Initial orbit elements for both satellites for Example 1
œ œ0,1 œ0,2

a (km) 42,086 42,086
e () 0.0005 0.0005
i (deg) 0.05 0.05
Ω (deg) 0 0
ω (deg) 0 0
f (deg) 0 -0.05

Examining Fig. 6(a) it is clear that connecting either UCT0,1 or UCT0,2 to UCTf,1 (the final state follow-
ing the 5 m/s ∆V inclination maneuver) pushes the control distance distributions right by approximately 5
m/s, as well as further diffuses the distribution. This is as expected as UCTf,1 possesses larger uncertainties
in both position and velocity. There is no large difference due to changes in the along-track direction when



Table 2: Geostationary cluster Initial and final UCT Uncertainties for Example 1
ECI Std. Dev. UCT0,1 UCT0,2 UCTf,1 UCTf,2

σx (m) 100 100 100 100
σy (m) 100 100 150 100
σz (m) 100 100 150 100
σẋ (m/s) 1.0 1.0 2.0 1.0
σẏ (m/s) 2.0 2.0 2.5 2.0
σż (m/s) 2.0 2.0 2.5 2.0

Table 3: Object association case descriptions for Example 1
Case Associations

1
UCT0,1 → UCTf,1

UCT0,2 → UCTf,2

2
UCT0,1 → UCTf,2

UCT0,2 → UCTf,1

Figure 5: Candidate optimal connecting trajectories in a rotating Hill frame (circular reference orbit, a =
42,086 km, i = 0 deg)

compared to the rather large inclination maneuver. However, the control distance metric differential due
to the combined along-track maneuver is large enough for Fig. 6(b) to exhibit a lower cost for Case 1 (as
found by applying Stochastic Dominance [13]), which we know to be the truth. Examining the CDF shown
in Fig. 6(b) also indications that mean ∆V distance is slightly less than 14 m/s. While at first this seems
large with respect to the known size of the impulse (5 m/s), it is important to realize that the mean control
metric distance of 14 m/s is for all possible combinations of boundary conditions, each of which has a 1-σ
magnitude of 3 to 3.8 m/s. In this context the mean control metric distance of 14 m/s matches our intuition.



(a) Individual control distances in terms of ∆V (b) Mutually exclusive control distances for cases 1 and 2 in
terms of ∆V .

Figure 6: Control distance distributions for candidate connecting trajectories and mutually exclusive asso-
ciation cases

3.2 Scenario 2: Geostationary Maneuver Detection

Real-time maneuver detection is illustrated in this example by examining scenario in which a GEO spacecraft
executes a small North-South maneuver to correct for an inclination error of 0.5 degrees. Simultaneously
an observer is assumed to be filtering optical measurements of the object and propagating an estimate and
covariance in real-time. To correct the spacecraft inclination error an impulsive maneuver immediately after
time t0 of ∆V = 26.8 m/s is executed, unknown the observer. The maneuver occurs immediately after the
observer’s filter processes its last measurement. The time between the initial maneuver (which is also the
time of the previous measurement and filter update) and the next measurement is ∆t = tf − t0 = 14 hours.
The satellite initial orbit elements are œ0 = [a, e, i,Ω, ω, f] = [42086 km, 0, 0.5 deg, 0 deg, 0 deg, 0 deg].
The state uncertainty of the geostationary satellite at time t0 is σx = 40 m, σy = 20 m, σz = 20 m, σẋ =
3.0 m/s, σẏ = 1.5 m/s, and σż = 1.5 m/s. The optical measurement uncertainty at the final time tf is σm

= 10 arcseconds. The observing ground station is located where the inertial x axis intersects the surface of
the earth at time tf . The measurement equation for the optical boresight azimuth β and elevation γ is then

[
β
γ

] = y = h(x) =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

tan−1 (
y√

(x−Re)2+y2+z2
)

tan−1 ( z√
(x−Re)2+y2+z2

)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(8)

Because the measurement residual δy = ym − h(x) is a random variable that is realized for each measure-
ment (it is considered constant for each measurement and control metric distrubtion computation cycle),
distributions corresponding to several residuals must be computed. To visualize this effect an approach
from Unscented Kalman Filtering is adapted. The 1-sigma-points in the residual space are sampled and the
corresponding control distance distribution is determined. The measurement residuals at time tf are given
in Table 4.

Table 4: Measurement residuals at tf = 14 hours with maneuver (∆V = 26.8 m/s)
nominal σ-point 1 σ-point 2 σ-point 3 σ-point 4

δβ (rad) 0.000333 0.000333 0.000333 0.000382 0.000285
δγ (rad) 0.00393 0.00398 0.00388 0.00393 0.00393

Fig. 7 plots Pearson’s Approximation for both nominal and sigma-point residuals. The control distance
distributions exhibit good control distance distributions, with the nominal residual generating a mean control



distance of E [∆Vnom] = 28.4 m/s. This is only marginally larger than the actual maneuver magnitude of
∆V = 26.8 m/s.

There are several reasons that the control distance distribution is conservative. First, the control distance
distribution uses a quadratic cost and not a total ∆V performance index. As shown in (2), the ∆V plotted in
Fig. 7 for the MRBVP is an upper bound for the true ∆V , so given a full state measurement the distribution
will always be larger on average than the observable optimal impulsive maneuver. It is important to bear in
mind that the new measurement does not measure the full state-space of the spacecraft, so while (2) suggests

The traditional approach to maneuver detection would compute the Mahalanobis distance of the pre-
update residual. In the absence of process noise the covariance used to compute the Mahalanobis distance is
Var [δy] = HΦxx(tf , t0)P0Φxx(tf , t0)

T HT
+R. In the nominal case with the ∆V maneuver, the Mahalanobis

distance also exceedingly large, well into the region in which existing methods would detect the maneuver.

Figure 7: Control distance distribution Cumulative Distribution Functions (CDFs) in terms of ∆V . The
vertical black line is the true maneuver magnitude. The red line is the distribution generated by the nominal
residual, the blue lines are the 1-σ point distributions about the nominal residual, and the vertical grey line
is the minimum connecting ∆V derived from the nominal residual (without accounting for measurement or
state uncertainty.

4 CONCLUSION

In this paper the Uncertain Two Point Boundary Value Problem (UTPBVP) and the Measurement Residual
Boundary Value Problem (MRBVP) are applied to object correlation and maneuver detection / characteri-
zation, respectively. The control distance metric P is introduced and it’s property as an upper bound on the
∆V cost of an optimal maneuver is established. The UTPBVP and MRBVP approaches are summarized and
the resulting control distance distributions are discussed. The utility and applications of each approach is
emphasized. Two scenarios are introduced to illustrate how object correlation or maneuver detection may be
used operationally. The first scenario examines a GEO spacecraft cross-tagging problem and demonstrates
how control metric distances may be used to correlate UCTs. The second scenario accurately generates a
control distance distribution given a single measurement after an observation gap. Future work includes



further improvement on the current performance metric distribution approximation and explicit use of ∆V
performance metrics (rather than upper bounds or analogs).
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