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1. ABSTRACT 

Space situational awareness (SSA) is an essential and integral piece of space operations.  Although the U.S. 

military's Space Surveillance Network (SSN) is currently the single best source of SSA in the world, it does not 

provide the level of SSA currently needed to support space operations.  The lack of geographical sensor distribution 

and coverage outside of the continental U.S., particularly in the Southern Hemisphere, is a significant limitation of 

the SSN.  There exist a large number of individual sensors across the globe and smaller sensor networks which 

already provide some level of SSA data to various users, and could also provide data to support the U.S. need for 

SSA.  These sensors are being developed for a variety of missions, including space surveillance, missile warning, 

missile defense and testing, and scientific applications. 

 

This paper summarizes the work currently underway as a joint project by the Secure World Foundation and the 

Center for International and Security Studies at Maryland (CISSM), University of Maryland, to document these 

global sensors including networks from Europe, Russia, and China.  This information will be collated in a publicly-

accessible database which will serve as the foundation for future analyses to assess the utility of these sensors as 

complements to the existing plans by the U.S. military to acquire new sensors to enhance SSA.  It is also part of a 

broader project which includes development of an open source software suite for SSA analysis. 

2. THE RATIONALE AND SCOPE FOR THIS PROJECT 

The launch of Sputnik in 1957 created the need for space surveillance, the ability to track human-created objects in 

Earth orbit, calculate their orbital position and velocity, and be able to predict their location in the future (known as 

metric data).  During the Cold War, the advent of intercontinental ballistic missiles (ICBMs), which could deliver 

their nuclear payloads on ballistic arcs through space, and their deployment in massive numbers prompted both the 

United States and Soviet Union to develop networks of phased array warning radars.  The development of space-

based capabilities using deep space orbits, primarily for intelligence gathering and communications, added 

incentives for the deployment of optical telescopes to augment the space track capabilities of the phased arrays.  

More exotic and specialized sensors were added to the inventory to collect technical intelligence on missile testing. 

 

This initial collection of space surveillance sensors was largely under military control, and many of them had a 

primary mission other than tracking satellites.  However, over time space surveillance gradually became their 

primary day-to-day activity.  Using this data, both the U.S. and U.S.S.R developed catalogs of human-created 

objects in Earth orbit, primarily for intelligence and battle planning.  In recent years, the term space surveillance has 

been subsumed by the broader term space situational awareness, which adds additional types of information to 

metric data with the goal of characterizing objects in space and the space environment. 
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Today, the world has changed significantly.  Instead of two superpowers conducting and controlling much of the 

activity in space, an increasing number of nations are using space for civil, commercial, and military benefits.  Ten 

nations have developed the capability to place objects into Earth orbit.  More than seventy nations and international 

organizations currently operate satellites [1].  The number of human-created objects in Earth orbit has gone from 

zero in 1956 to more than 21,000 larger than 10 centimeters in diameter currently being tracked.  Several hundred 

thousand additional pieces between 1 and 10 centimeters are largely untracked [2].  Approximately 1,000 of these 

objects are functioning satellites, which represent hundreds of billions of dollars in investment and revenue [3]. 

 

Space Situational Awareness (SSA) capabilities have not kept pace with these changes.  The national SSA 

capabilities operated by the U.S. and Russia still have by far the most capability, but they are struggling to meet 

today's demands.  The huge leaps in computer hardware performance, drops in cost, and modern software 

techniques are largely unutilized. More importantly, both the U.S. and Russian systems are still controlled by their 

respective militaries and rely largely on the premise that national security is their only customer.   

 

The vast majority of satellite owner-operators conduct their activities in orbit without knowledge of the objects 

around them or the space environment.  Although space is by definition vast, certain regions of Earth orbit provide 

unique utility, and those regions are becoming increasingly congested.  This combination of congestion and lack of 

information can lead to incidents in space, such as the February 2009 collision between the American Iridium 33 and 

Russian COSMOS 2251 [4].  The thousands of pieces of debris created by this event increased the risk of collision 

for other satellites in the same region.  A similar catastrophic collision in geostationary Earth orbit (GEO) that 

generates a large amount of debris is one of the worst-case scenarios for the long-term sustainability of Earth orbit. 

 

This paper outlines a project initiated and funded by Secure World Foundation to develop a publicly-accessible 

database of global SSA sensors based on open source information.  This paper discusses the efforts to date and 

outlines futures plans for the project.  In addition to fostering awareness of non-traditional SSA capabilities, the goal 

of the project is to establish a crowd-sourced data set which can be used for future analysis of combinations of 

various sensor and architectures for shared or collaborative SSA. 

 

This paper is part of set of papers which have the overall goals of fostering SSA capabilities to support civil and 

commercial spaceflight safety and promote the long-term sustainability of the space environment.  The authors 

believe that providing all space actors basic SSA data and analytical tools is essential to accomplishing these goals.  

The authors' approach to developing these analytical tools is summarized in two other papers, “Computer Systems 

and Algorithms for Space Situational Awareness: History and Future Development” [5], and “Open Source Software 

Suite for Space Situational Awareness and Space Object Catalog Work” [6].  

3. SSA TO SUPPORT CIVIL AND COMMERCIAL SAFETY 

SSA can broadly be defined as characterizing the space environment and its effects on activities in space.  This 

paper and project specifically focuses on SSA to enhance the safety of civil and commercial activities in space.  The 

primary consideration is ensuring that all space actors have the basic SSA information and analytical tools necessary 

to operate in a safe and efficient manner, including avoiding catastrophic collisions with other space objects. 

 

Under this definition and within these requirements, SSA for civil and commercial safety requires fusing at least 

three data sets: positional data on space debris, positional data on active satellites, and space weather.  Building a 

catalog of accurate positional data for space debris requires a network of radar, optical, and other sensors that are 

geographically distributed around the Earth and in orbit.  Observations from these sensors need to be combined 

using a mathematical process which incorporates accurate models for perturbations.  A continuous feedback loop of 

observation, data association, propagation, tasking, and observing is required to maintain an accurate catalog.  This 

process in general is called catalog maintenance [7]. 

 

Active satellites can also be tracked using the same sensors and procedures.  However, in most cases a satellite 

owner-operator is able to determine the location of their own satellite much more precisely than anyone else.  

Satellite owner-operators can use a variety of techniques, including satellite laser ranging (SLR) to on-board global 

positioning system (GPS) receivers that report the satellite's position and velocity vectors via telemetry.  Active 

satellites also present an additional complication in that they maneuver, and doing so disrupts the catalog 



maintenance process.  Using a periodic track-and-revisit approach could result in a satellite which has maneuvered 

being untracked for a period of time, particularly if it is conducting a series of significant maneuvers such as 

transitioning from a GEO transfer orbit to its final slot in the operational GEO belt.  Thus, positional data from 

satellite owner-operators is complementary to that collected by sensor networks. 

 

Although it is feasible for one state to build the network of sensors required to accomplish this SSA task, the 

economic cost of doing so is prohibitive.  Such a network would also be constrained to geographic locations owned 

by that state or by states that are amenable to entering into basing or other agreements.  It is likely that the political 

issues stemming from these basing requirements would result in a set of suboptimal choices for sensor locations. 

Operations at geographically remote sites require complicated logistics, imposing additional costs and complexities. 

 

Characterizing space weather, and in particular its effects on satellites, is a relatively new and still emerging field.  

Space weather can have a variety of effects on satellites and the space environment from subtle to catastrophic.  The 

interplay between the Earth's magnetosphere and particle and field emissions from the Sun are the source of much of 

these effects.  Periodic variations in the Sun's output causes changes in the density of the Earth's upper atmosphere, 

which in turn changes the amount of drag the upper atmosphere imparts on satellites in low Earth orbit (LEO).  

Coronal mass ejections (CMEs) and Solar flares release massive amounts of charged particles and electromagnetic 

(EM) energy that can damage or disrupt spacecraft operations. 

 

Successful monitoring and prediction of space weather requires instruments to be placed where they can monitor the 

Sun.  The L1 Lagrangian point between the Earth and the Sun is a prime location for this, as satellites in this 

location can continuously observe the Sun without being occluded by the Earth or the Moon.  NASA's Solar 

Heliospheric Observatory (SOHO) and Advanced Composition Explorer (ACE) satellites are already at the Earth-

Sun L1 point monitoring space weather, and there are plans for other nations to send additional spacecraft. 

 

Taken in aggregate, the preceding requirements of a geographically distributed sensor network, owner-operator data, 

and space weather monitoring necessary for effective SSA lead strongly to the conclusion that international 

cooperation and data sharing among all space actors is beneficial, if not required.  Combining or sharing data from 

existing sensors could alleviate the need to build new ones.  Two-way data sharing between governments that 

operate sensors and satellite owner-operators provides both parties with a much more complete data set.  And 

international cooperation on space weather detection and prediction can make more efficient use of limited budgets 

and long spacecraft design times. 

4. GLOBAL RADAR SSA SENSORS 

Radars form the backbone of an SSA system.  Radar consists of at least one transmitter and receiver; the transmitter 

emits radio waves at a specific frequency.  Some of these waves reflect off the target and are measured by the 

receiver, which is then able to calculate location of the target in relation to the radar.  The primary advantages of 

radars are that they can actively measure the range and range rate to a target, and that some types of radars can 

accurately track many objects at once.  The main disadvantages of radars are their cost, in initial construction and 

operations and maintenance, size, and complexity. 

 

At the beginning of the space era, two radar concepts were available for space object tracking.  The first is an 

interferometer-based system, also known as a bi-static or multi-static system, where the receiver and transmitter(s) 

were separated by a specific distance.  Bistatic radar systems are especially well suited to so-called "fence" 

applications, where a continuous amount of energy is emitted in a certain direction.  All objects passing through this 

"radar fence" will thus be tracked.  The bistatic concept is illustrated in Fig. 1. 

 



 
Fig. 1: Bistatic Radar [8] 

The second initial radar concept was a monostatic radar which had collocated transmitting and receiving antennas, 

usually mounted on a parabolic dish that could be rotated and elevated.  Monostatic radars mounted in this fashion 

are also known as mechanical trackers and are especially well suited to precision tracking of one or a few objects.  

With enough power, monostatic radars can also be used to track space objects in the GEO belt at more than 36,000 

kilometers away.  In regions with inclement weather, mechanical tracking radars are usually mounted inside domes 

which are made of a material that is transparent to EM radiation at their operating frequency.  Fig. 2 demonstrates 

the monostatic radar concept. 

 

 
Fig. 2: Monostatic radar [8] 

During the space era, two additional radar paradigms have evolved: monostatic and bi-static radars employing 

phased array antennas.  A phased array is a collection of small, identical antennas, usually mounted on a fixed 

"face", which can vary the phases of their respective signals.  By doing so, the effective radiated energy can be 

"steered" or focused in a specific direction, and in many cases multiple independent "beams" of energy can be 

individually steered to multiple targets at once.  Phased arrays tend to have more complicated supporting systems 

than mechanical radars [9].   Fig. 3 shows an example of a monostatic phased array with two separate faces operated 

by the U.S. military. 

 



 
Fig. 3: PAVE PAWS phased array at Clear AFS, Alaska 

 

United States 

The United States military operates the most capable set of radars for SSA as part of its Space Surveillance Network 

(SSN), and it is also the most documented system with many technical details in the open literature.  The SSN 

utilizes phased arrays, dish-type mechanical trackers, and multistatic fences.  Most of the phased array radars were 

originally built for the missile warning mission and thus were built on the periphery of the United States and the 

Northern Polar Region.  Although some of the original sites have been shut down, several still remain active and 

today perform both space surveillance and missile warning missions. 

 

These radars provide excellent overall coverage in LEO and good coverage in GEO, and allow the U.S. to maintain 

the most accurate and complete catalog of objects in LEO.  However, their concentration in the Northern 

Hemisphere and the lack of any radars sensors in the Southern Hemisphere, Africa, South America, and Asia creates 

significant gaps in coverage.  In particular, objects in highly eccentric, rapidly decaying orbit present a difficult 

problem.  When their perigee is in the Northern Hemisphere, these objects are easily tracked by the radars.  

However, when perigee rotates south, the SSN must rely on attempts by optical telescopes to track the object at or 

near apogee.  The rapid decay means that the altitude of apogee is changing significantly with every orbit. 

 

The United States operates a host of other radars that are not part of the traditional SSN but could provide SSA data.  

The Missile Defense Agency operates a number of radars, including the Sea-Based X-Band Radar, which are 

currently dedicated to missile defense operations and testing but could provide SSA data.  The U.S. Navy also 

operates 56 Arleigh Burke-class destroyers, which are equipped with the AN/SPY-1radar system.  Primarily 

designed for tracking airborne threats, the AN/SPY-1 system is also part of the Aegis Ballistic Missile Defense 

System and has been used to successfully track space objects [11].  Other potential assets include the USNS 

Observation Island, which carries an AN/SPQ-11 phased array radar and is used for collecting technical intelligence 

on missile launches. 

 

Russia (Commonwealth of Independent States) 

Russia currently operates the second most capable network of SSA radars, after the U.S.  As with the U.S., the 

Russian system is based largely on missile warning systems.  Several of the original systems are no longer 

functional or were dismantled, and the remaining radars are spread out across the former Soviet Union; 

approximately half are located outside of Russian territory [12].  Russia has a series of bilateral agreements with the 

host countries to continue to operate these facilities [12].   

 

Russia operates two Daryal-type bistatic phased array radars in Pechora, Russia, and Gabala, Azerbaijan, although 

the Azerbaijan system's receiver and transmitter are closely related [12].  Each site consists of a receiver and 

transmitter operating in the VHF range.  The Volga-type radar in Baranovichi, Belarus, is another bistatic phased 

array operating near 3 GHz.  The Don-2N radar, known in the West as Pill Box, is a four-face phased array which is 

part of the ABM system protecting Moscow.  Russia also maintains older Dnestr-M/Dnepr radars at Olenegork, 



Balkhash (Kazakhstan), and Mishelevka.  Fig. 4 shows the location and coverage of the Russian early warning radar 

network. 

 

 
Fig. 4: Russian early warning radars [12] 

 

Europe 

Europe does not currently possess an SSA sensor network, although individual states operate a handful of significant 

radar installations.  The French military owns the Grande Réseau Adapté a la Veille Spatiale (GRAVES) radar, 

which is a continuous wave bistatic fence.  While bistatic radars have not been favored in recent years [10], 

GRAVES uses a radar concept which joins the bistatic and phased-array concepts in a useful way [13].  The 

GRAVES concept involves a compromise concept which cover a “volume” rather than the very thin “envelops” 

distributed according to the optimal observation elevations.  Instead, azimuths sweep with a beam which is wide in 

elevation and relatively narrow in azimuth.  The GRAVES concept increases the frequency of observations and 

improves the responsiveness of the orbit determination process. 

 

Another significant European radar is the German Tracking and Imaging Radar (TIRA) system operated by the 

FGAN Research Institute for High Frequency Physics and Radar Techniques.  TIRA is a monostatic mechanical 

tracker that can track objects as small as 2cm at 1,000 kilometers altitude [14].  TIRA can also be used in a bistatic 

mode with the 100m receiver antenna of the Effelsberg radio telescope, which can increase its sensitivity to 1 cm.  

TIRA also has the capability to image objects in LEO using a higher frequency of 16.7 GHz imaging radar, with a 

resolution of 15 cm [14].    

 

Norway also maintains the GLOBUS II tracking radar in cooperation with the U.S. government.  GLOBUS II is a 

deep space mechanical tracking radar that can both track and image objects in the GEO belt.  Norway is also home 

for part of the European Incoherent Scatter (EISCAT) radar system which is used primarily for scientific research on 

the interaction between the Sun and the Earth through disturbances in the magnetosphere [15].  EISCAT radars used 

for space debris research consist of UHF and VHF mechanical trackers located in Tromsø, Norway and two more 

mechanical trackers in Longyearbyen, Svalbard.  The EISCAT radars are typically used for beam park experiments, 

which track all the objects passing through a particular region of orbit over a fixed time period [16]. 

 

People's Republic of China (PRC) 

It is assumed by many observers that China possesses radars that are used for SSA, although this is not officially 

acknowledged by the PRC and little information is available publicly.  The same physics and strategic, political, and 

geographic considerations that govern the location of U.S., Russian, and European SSA sensors will govern the 

location of Chinese SSA sensors and the technology used.  China is believed to have a network of phased array 

radars, each likely to have 3,000 km range and 120 degree of azimuth coverage.  Some of the possible locations and 

capabilities for Chinese phased array radars are discussed in Ref. Error! Reference source not found. and Ref. 17 



and summarized in Table 1.  Additionally, there is evidence that China has a long-range precision mechanical 

tracking radar [19]. 

Table 1:  Postulated Chinese phased array radar network for LEO space object tracking 

Location Coordinates Maximum Range Sector in Azimuth 

NW China 87.5 E, 43.0 N 3000 km -60 to + 60 deg 

Kashi 76.02 E, 39.54 N 3000 km 180 to 359 deg 

Kunming 102.74 E, 24.99 N 3000 km 200 to 320 deg 

Hainan 109.4 E, 19.0 N 3000 km 120 to 240 deg 

Jiangxi 114.93 E, 26.8 N 3000 km 60 to 180 deg 

Changchun 125.69 E, 44.0 N 3000 km 0 to 120 deg 

Xuanhua,Hebei Prov. 115.04 E, 40.61 N 3000 km -60 to +60 deg 

Henan, Province 112.97 E, 34.76 N 2500 km 30 to 150 deg 

 

China does not possess radars outside of its borders and thus lacks radar coverage outside of eastern Asia.  However, 

China also operates two Yuanwang tracking ships which can be deployed to broaden its coverage [20].  These ships 

are primarily used to support China's human spaceflight activities, and could be deployed to provide SSA for other 

activities. 

5. GLOBAL OPTICAL SSA SENSORS 

Optical telescopes form the second major type of sensor used to track space objects.  They operate in the same 

fashion as telescopes used for astronomy applications: electromagnetic radiation emitted by an object is gathered 

and focused to form an image.  Refracting telescopes use lenses, while reflecting telescopes use mirrors.  

Catadioptric telescopes used a combination of mirrors and lenses.  Although telescopes can be designed for many 

different parts of the EM spectrum, the visible portion is most often used for SSA.  Fig. 5 shows the European Space 

Agency's (ESA) Space Debris Telescope, located on the island of Tenerife, Spain. 

 

 
Fig. 5: ESA Space Debris Telescope, Tenerife, Spain [14] 



The capabilities of optical telescopes are usually measured by the size of their aperture and field of view (FOV).  

The size of the aperture determines the amount of light that is collected and the depth of field over which the 

telescope can focus.  The FOV determines how much area can be seen by the telescope any given moment.  

Traditionally, there is an engineering tradeoff between the ability for a telescope to quickly search a wide area and 

the ability to detect very faint objects. 

 

An increasing number of optical telescopes are being developed with adaptive optics (AO) for SSA applications.  

AO systems work by measuring distortions in a wavefront and compensating for them in the light detection system.  

In SSA applications, this typically involves using a laser to create a temporary guide star near the object being 

imaged.  The laser's distortion due to the Earth's atmosphere is measured and used to correct the image of the target 

object. 

 

The main advantage of optical telescopes for SSA is their range.  Above 5,000 km altitude, it becomes very time 

consuming and difficult for radars to search for objects.  Optical telescopes can perform this function much faster 

and easier.  The main disadvantage of optical telescopes is that they can only operate under certain conditions.  

Those that rely on the Sun to illuminate their targets can only work when the target is illuminated and the telescope 

is in darkness.  Clouds and light pollution from cities and human activities are also an issue.  The best locations for 

telescopes are where the air is thin, dry, and free from contaminants, and these locations are usually only found at 

high elevations or in remote desert areas. 

 

United States 

The U.S. SSN has fewer optical telescopes than radars, but the telescopes have better geographical distribution.  The 

main U.S. optical system is the Ground Based Electro-Optical Deep Space Surveillance (GEODSS) system.  It 

consists of three separate sensors sites:  Socorro, New Mexico, Maui, Hawaii, and Diego Garcia in the Indian Ocean.  

Each site operates a cluster of three telescopes, each of which can be operated independently from the others.  An 

additional mobile site with one telescope is located at Morón, Spain.  Several other optical instruments located on 

Maui are also used, for both tracking and imaging of space objects.  Together, the GEODSS system provides global 

coverage of the GEO belt, although weather can cause gaps in the coverage. 

 

Russia (Commonwealth of Independent States) 

The Russian military operates a significant optical tracking facility in northern Tajikistan.  Known as Okno or 

"window", the facility includes a number of optical telescopes that can track objects in all orbital regimes, including 

LEO.  The Okno facility provides the Russian military with coverage of the GEO belt over Russia only. 

 

 
Fig. 6: Russian Okno facility[21] 

The Russian Academy of Sciences manages a network of optical telescopes around the world known as the 

International Scientific Optical Network (ISON) which does provide global coverage of the GEO belt. ISON is a 

partnership of between many academic and scientific institutions, currently including 30 telescopes in 20 

observatories in 10 countries [22].  Most of these facilities are located in Europe and Asia, with one being located in 

South America and off the coast of Africa.  ISON is a heterogeneous mix of telescopes of various sizes and 

capabilities, but as a network it can track a wide range of object sizes throughout deep space and provide a 

significant number of observations. 

 



People's Republic of China (PRC) 

More information is known about China's optical telescope capabilities for SSA than radars, in part because of 

China's participation in the Inter-Agency Debris Coordination Committee (IADC).  China's main optical SSA 

capabilities are operated by the Purple Mountain Observatory, which operates multiple telescopes in four separate 

locations that can track satellites throughout all orbital regimes.  However, like Russia, China lacks coverage outside 

of its borders and thus does not have global coverage of the GEO belt. 

 

Space-Based 

Space-based optical telescopes provide a number of advantages over ground-based, primarily the absence of weather 

and an atmosphere, and are increasingly being seen as an important part of an SSA system.  The U.S. military 

launched the Midcourse Space Experiment (MSX) satellite in 1996 which became the first dedicated space-based 

optical telescope for SSA.  Until its end-of-life in 2006, MSX used its optical sensors to contribute to the SSN, 

primarily by finding lost objects in the GEO belt.  MSX is due to be replaced by a more advanced constellation of 

dedicated SSA sensors known as the Space-Based Space Surveillance System (SBSS).   

 

Canada is also planning on launching space-based optical satellites to support SSA.  It's Near Earth Object 

Surveillance Satellite (NEOSSat) will have the mission to detect and track both asteroids in orbit around the Sun and 

objects in high altitude orbits around the Earth.  NEOSSat will be followed by Sapphire, an autonomous, dedicated 

satellite for SSA that will contribute to the U.S. SSN [23]. 

6. CONCLUSIONS 

The initial research done for this project indicates that the world does not suffer from a lack of SSA sensors.  Rather, 

there is a global deficit in knowledge about the sensors that are currently available and their capabilities for SSA, 

and more importantly a lack of capability to share or combine data between sensors and networks.  Such sharing or 

collaboration is not a trivial matter – there are significant technical obstacles to overcome in dealing with data 

formats, tasking, calibration, authentication, and data validity.  Significant policy obstacles also surround data 

sharing policy and ensuring that security and privacy concerns are met. 

 

However, none of these obstacles are insurmountable, and the value of improving SSA globally for all space actors 

likely outweighs the political and economic cost of overcoming these issues.  Enhancing global SSA capabilities 

through collaboration and sharing will improve the long-term sustainability of the space environment by providing 

all space actors with the information necessary to act safety, efficiently, and responsibly.  Global SSA can also act as 

a transparency and confidence building measure (TCBM) to reduce mistrust and misperceptions in space, thereby 

reducing the risk of conflict and degradation of the space environment. 

7. FUTURE WORK 

The future work on this project can be divided up into three phases.  The first is to compile a database of global SSA 

sensors using existing sources and information.  The primary information in this database will be name, location, 

type, and capabilities.  Phase two will create an Internet-accessible version of that database.  Once online, the 

information will be publicly accessible.  Members of the global SSA community will be able to add or correct 

information, and it is hoped that states will use the database to showcase the SSA resources they can offer.  

Consideration is being given for the creation of a Google Earth layer from this database. This will allow linking of 

actual satellite imagery of locations with the sensor characteristics and visualizations of sensor coverage within 

Google Earth.  This database will then be available for anyone to access and retrieve information.  Phase three will 

include analysis based on this data set of global SSA capabilities, and in particular the advantages and disadvantages 

of various sensor combinations.  Consideration is also being given to offering of a prize to the best analysis.   

 

Additional research is needed in a number of areas, including quantifying the types of data and accuracy needed to 

support civil SSA, as separate from the requirements for military SSA, and in quantifying the operational 

capabilities of global SSA sensors. 
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