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Abstract

In recent years there as been a lot of interest in using the time history of re�ected solar light (light
curves) from satellites and space debris as a means of determining shape and material composition.
Most of these studies used time series analysis in an attempt to classify objects while some have used
multi-spectral or spectroscopic approaches. One of the di�culties that most of these approaches had
was the lack of high �delity shape and material modeling. Here we present a high �delity modeling
approach that correctly describes the shape, material and dynamics of space objects. Furthermore,
this model, in real time, correctly models re�ection, emission, glint and polarization e�ects. We use
this model to show how detection of polarization e�ects can help characterize both satellites and space
debris. Polarization approaches have an advantage over spectroscopic or intensity based method because
polarization is una�ected by the atmosphere. We present a comparison of polarization approaches for the
analysis of space debris and satellites and discuss the advantages of being able to do these calculations
in real time.

Introduction

The time variation of re�ected sunlight from a satellite or space debris is referred as a �light curve�. Light
curves have been used for many years [15, 20, 13, 14, 18, 19]to characterize both satellites and space debris.
Most of these investigations attempt to deduce satellite material and orientation by measuring the total
re�ected intensity of the sunlight measured as a function of the solar-observer angle. One of the main
limitations of these approaches is that without some a priori knowledge of the space object's shape, it is
di�cult to draw any conclusions about the orientation. Some studies attempted to determine material
properties from multi-spectral observation of light curves. These studies were also inconclusive because
satellites and debris are rarely composed of a single material. What is need is an approach that can measure
material propertied independent from shape. If that is possible, then it is likely that orientation and can be
inferred from changes in the material composition as viewing aspect changes. Once material composition
and orientation are known then shape determination may be possible.

In this paper we present one possible approach to determining, simultaneously, the material composition (and
surface �nish), orientation and shape of satellites and space debris. Our approach relies on measurements
of the polarization of the re�ected sunlight (polarization light curves) and on a sophisticated real-time,
dynamic model of satellites and space debris. As we will show in this paper, the polarization signature for
a space object provides a shape independent measure of material composition. The high �delity dynamic,
polarized, light scattering model we use here is based on the approach we presented at the 2009 AMOSTECH
Conference[16]. The model presented in the 2009 paper was designed to study polarization e�ects for active
(laser) illumination of LEO satellites. For this paper we have extended the model to also include the e�ects
of solar illumination.

In addition to the presentation of the high resolution model. we will investigate the e�cacy of using polar-
ization light curves to determine satellite or space debris properties using simulations. Lastly, we will discuss
the utility of this approach to several real time applications including: space object ID veri�cations, satellite
aging and health studies, and real time pose estimation.

Polarization Signatures

When light is scattered from a surface a �at (specular) surface, the intensity of the re�ected light depends
on only the index of refraction of the material and is given by the Fresnel Equations1:

1These equations assume the light is incident from vacuum



rs =

√
n2 − sin(θ)2 − cos(θ)√
n2 − sin(θ)2 + cos(θ)

(1)

rp =
n2cos(θ)−

√
n2 − sin(θ)2

n2cos(θ) +
√
n2 − sin(θ)2

(2)

Here, n is the index of refraction of the material, rs and rp are the re�ection coe�cients for the S and P
polarization Fields respectively and θ is the angle the incident ray makes with the normal. For dielectrics
the transmission through the surface is simply 1− r . For metals (more than a few wavelengths in thickness)
there is no transmission but there is absorption. This absorption is usually taken into account by making
the index of refraction complex.

nmetal = n+ ik (3)

Figure 1 show the Fresnel coe�cients for gold and BK7 (glass). The middle subplots show the intensity

Figure 1: The Fresnel re�ection coe�cients for gold (left) and for bk7 glass (right). The top subplot is the
�eld coe�cients, the middle is the intensity coe�cients and the bottom is the phase delay (red line is the
relative phase delay).

re�ection coe�cients or re�ectivities for the S and P polarizations. The graphs on the left are for gold at
0.5micons and the graphs on the right are for BK7 glass. Two features are important to note. First, for bk7,
a dielectric, the S-polarization is completely attenuated when the incident angle is approximately 57°; This is
the well known Brewster angle. Second, above 25° incident angle there is a signi�cant di�erence between the
S and P re�ectivities for both gold (conductor) and BK7 (dielectric). This last point is important because,
in solar scattering from Low Earth Orbit (LEO) Satellites , the incident angles are generally greater than 20°
and we would therefore expect a strong polarization signature. For high orbits (geosynchronous) the solar
incident angles will still be larger than 20° for most of the orbit. For the rest of this paper we will discuss
scattering in terms of the total angle between incident and re�ected rays, or twice the incident angle (see
Figure 2).

Figure 2: The phase angle (θ), the angle between the
sun and the observer.

For partially polarized or unpolarized light, it is best
to describe scattering not in terms of the incident
and re�ected S and P polarizations but, in terms of
the Stokes parameters:

I = S0 = EsE
∗
s + EpE

∗
p

Q = S1 = EsE
∗
s + EpE

∗
p (4)

U = S2 = 2Re(EsE
∗
p)

V = S3 = 2Re(EsE
∗
p)

Where E is the electric �eld and the S and P sub-
scripts refer to the S and P polarizations. In this
notation the Degree of Polarization (DOP) of the
light is de�ned as:

DOP =
Q2 + U2 + V 2

I2
(5)

Since sunlight is unpolarized, the incident light on the space object is described by the Stokes parameters
I ≥ 0, Q = U = V = 0 . or equivalently by the Stoked Vector:

−→
S =


I
Q
U
V

 =


I
0
0
0

 (6)



After re�ection from from the satellite, the Stokes vector will, in general, be

−→
S =


I ′

Q′

U ′

V ′

 =


I ′ < I
Q′ 6= 0
U ′ 6= 0
V ′ 6= 0

 (7)

For scattering that exhibits polarization e�ects, the re�ection may be described by the Mueller matrix8:


S′0
S′1
S′2
S′3

 =


M00 M01 M02 M03

M10 M11 M12 M13

M20 M21 M22 M23

M30 M31 M32 M33

 ·

S0

S1

S2

S3

 (8)

Where S′ is the stokes vector which describes the polarization state of the re�ected light. While the Mueller
matrix can be used to describe the change in polarization when light re�ects from a uniform, �at surface,
it is not restricted to describing specular re�ections and in general is a function of both incident light angle
and output light angle. Furthermore if the material is anisotropic, the Mueller matrix will also depend on
material orientation.

For the special case of unpolarized incident light however, the only matrix elements that are important are:


S′0
S′1
S′2
S′3

 =


M00 0 0 0
M10 0 0 0
M20 0 0 0
M30 0 0 0

 ·

S0

0
0
0

 (9)

The elements:

 M10

M20

M30

 (10)

are referred to as the polarizance. The Mueller matrix approach makes no assumption about the underlying
scattering mechanism and if we are to calculate it from theory we must use a microscopic description of
surface scattering.

Figure 3: Surface scattering geometries used in this study.

Figure 3 shows the cases of interest for this paper. The simplest case, shown in the upper left, is specular
scattering from a surface interface, such as would occur from a piece of shiny metal or a dielectric that is
a volumetric absorber. The upper right case would apply for metals with rough surface �nish. Keep in
mind that the roughness shown here is large compared to the wavelength but small compared to the overall



surface geometry; it is due to surface �nish on scales less than about a millimeter in most cases. The bottom
two cases in Figure 3 are for dielectrics the exhibit volumetric (or subsurface) scattering. For our model to
accurately describe solar scattering we must take into account all four scattering cases. We do this using a
statistical Multi-Facet (MF) scattering approach as described in the next section. The only scattering case
we have not shown if Figure 3 is the case of multiple surface scattering. Since all of the cases we will examine
in this paper are at incident angles greater than 20° (phase angles > 40°), multiple surface scattering will
have a negligible e�ect on the scattered light.

Microfacet Model

Figure 4: Computer rendering of velvet

Figure 5: Computer rendering of transparent globe.

Figure 6: Left: Real image of purple satin, Right:
Computer generated image[1]

The requirements for our model are: that it be
radiometrically accurate, conserve energy, exhibit
Helmholtz reciprocity and be numerically tractable.
This last point is important since any real time ap-
plication of our polarization approach will require
many calculations per second.

Figure 6 shows examples of measured and computer
generated images of satin tape wrapped around a
spindle. The computer generated image is practi-
cally indistinguishable from the real image. This is
no accident, the method used to generate the im-
age on the right is physics based and radiometri-
cally accurate. Figure 4 shows another image of a
computer generated satin cloth draped over a table.
The subtle change in hue with angle that is charac-
teristic of satin is even reproduced. Figure 5 Shows
a computer rendering of a transparent globe with
rough (frosted) surface features. The images in Fig-
ures 6-5 were generated from �rst principles using a
Micro-Facet (MF) based model of light scattering.
The overall geometry were modeled using standard
computer graphics methods.

The MF approach grew out of a desire by the com-
puter gaming and movie animators for more realis-
tic scene generation. In this approach, e�ects due
to the surface structure on scales smaller than a
wavelength can be ignored. This assumption has
been shown by rigorous calculations to be appro-
priate[18] since, any di�raction e�ects will average
out at normal viewing distances. Surface geome-
try at scales much greater than the surface rough-
ness correlation distance are modeled explicitly us-
ing standard 3-D modeling methods such as: polyg-
onal (macro) facets, geometric primitives or Bezier
splines. The meso-scale, between the microscopic
di�raction scale and the explicitly described macro
scale, included all of the �surface roughness� scales
and are modeled statistically. In this approach
the surface is modeled as an ensemble of micro-
facets (Figure 7). These facets need not be planar;
they can have any number of geometric and physi-
cal properties. However, Ashikhmin[12] and He[18]
have shown that triangular, plainer facets are suf-
�cient to describe any surface; in fact, in the limit
that the size of the micro-facets goes to zero, all of
the facets can be identical in shape. In the case of
identical, planar microfacets, only three parameters
are necessary to fully describe the surface micro-structure: the distribution of surface normal directions, the
surface roughness and the material index of refraction.

We have chosen to use a the Blinn-Phong normal distribution to describe the microfacet normal distribution

ρ(h) =
(
m+ 1

2π

)
cos(ĥ · n̂)m (11)

Here, ĥ is the microfacet normal, n̂ is the local average (macro-scale) surface normal and m is a surface
roughness parameter proportional to the inverse of the surface correlation distance. A Lambertian surface
would havem = 0 and a mirror surface would havem =∞. This distribution has a number of computational
advantages and, more importantly, it has been experimentally justi�ed[11] for a number of materials. While
the results presented here use the Blinn-Phong normal, there are no a priori restrictions on the distribution,
it is not even required to be analytic.



Figure 7: Left: microfacet surface, blue arrows are normals. Right: fractal surface with 130k facets

One of the key features of the microfacet theory is the concept of microscopic shadowing and masking (Figure
8). If under illumination a microfacet is shadowed by another microfacet it does not contribute to the BRDF.
Likewise if a microfacet is not visible to the �viewer� then it is said to be masked, and does not contribute
to the BRDF. Since, the BRDF is symmetric with respect to interchange of kand k′ we will henceforth refer
to both e�ects as shadowing. Thus, the microfacet BRDF can be written as:

f(k̂; k̂′) =

 ρ(ĥ)

< n̂ · ĥ >
(
n̂ · k̂

)
F (k̂, k̂′)P (k̂|k′) (12)

Figure 8: Shadowing and Masking

Here the factor P (k|k′) if the probability that a mi-
crofacet is visible from both the k and k′directions
and contains the shadowing e�ects. The term
F (k|k′) is the Fresnel refection term which contains
the surface physics. In his original work, Ashikhmin
used the unpolarized (average) Fresnel approxima-
tion of Shick[6]:

F (k; k′) = F0 + (1− F0)
(
1−

(
ĥ · k̂

))
(13)

Here ĥ is the half-angle vector between k and k′,
which is just the microfacet normal, and F0 is the
Fresnel re�ection factor for normal incident angle. The term < n̂ · ĥ > in Equation 12 is the ensemble average
over the distribution ρ(ĥ).

Ashikhmin et al. have shown that the general form of the shadowing term, P (k|k′) in Equation 12is:

P (k|k′) = (1− f(φ))P (k)P (k′) + f(φ)min (P (k), P (k′)) (14)

where f(φ) is a function of the angle, φ, which is the angle between the projections k and k′ onto the plane
normal to n̂, the surface normal. For our work we choose the simplest form for f(φ) which is consistent
with Equation 14 namely, f(φ) = cos(φ/2). Finally, the function P (k) is the probability that a microfacet is
visible from the direction k:

P (k) =
< n̂ · ĥ >

(
n̂ · k̂

)
< ĥ · k̂ >+

(15)

Here the ensemble average, < ĥ · k̂ >+, is over all microfacets that are not shadowed (or masked). For details
on the derivation refer to Ashikhmin's paper[2]. The important point here is that once the microfacet normal
distribution is speci�ed, the BRDF is speci�ed. Also note that this BRDF only contains contributions from
single bounce (specular) re�ections, To account for multiple re�ections, Ashikhmin et al enforced energy
conservations and reciprocity to derive a unique expression for the multiple re�ections (di�use) re�ection
term.

fd = c (1−R(k)) (1−R(k′)) (16)

Here the function R(k) is the total hemispherical specular re�ectance for light incident from direction k.
The total BRDF is then the sum of a specular (single re�ection) and a di�use (multiple re�ection) BRDF:

f = fspecular + fdiffuse (17)



The optical e�ects that this simple, physics based approach is capable of reproducing is quite striking
(Figures 6,4). For non-normal illumination, multiple re�ections depolarize, and the di�use term gives the
depolarization. Thus, if depolarization is the only polarimetric quantity of interest this formulation is a good
approximation. Though not shown here, the Ashikhmin-Shirley approach can also represent simple surface
roughness anisotropy by introducing an anisotropic ρ(h)[12] (see Figure 9).

Figure 9: Anisotropic silk, from Kautz et al[4]

However, if we want to model the polarimetric quan-
tities such as retardance, diattenuation and polar-
izance a more sophisticated approach is warranted.

Model Implementation

In our model we replace the simple Fresnel term of
Shick (Equation 13) with a rigorous vector polar-
ization treatment. We also include terms for sub-
surface scattering for dielectrics and treat the po-
larized and unpolarized light separately. For the po-
larized light we calculate using the scattered �elds
and for the unpolarized light we calculate using the
scattered intensity. We include wavelength depen-
dence of the index of refraction and of the subsurface
scattering and absorption.

Our computer implementation draws upon the ex-
perience of the real-time computer gaming industry,
namely the use of specialized graphics hardware. Until recently, complicated illumination calculations like
ours would require hours on a computer using ray-tracing techniques. However, recent hardware implemen-
tations using Graphical Processing Units (GPUs) such as NVIDIA�8000 and 9000 series graphics boards
has made it possible to render (generate) thousands of full 3D realizations per second. This hardware is
available for only a few hundred dollars and is available for almost all computing platforms. In addition to
the NVIDIA�GPU hardware, we make use of a number of software programming tools including: OpenGL,
a 3D graphics package; GLSL, the OpenGL Shader Programming Language and CUDA, NVIDIA's general
purpose computing language for GPUs.

Figure 10: Left: ray traced image; Right, shader gen-
erated (from [4])

One of the implementation choices we made was to
use a shader based rendering approach rather than
a ray tracing approach. The details of this trade-
o� are beyond the scope of this paper. While ray
tracing is a more general approach, for most appli-
cations, the shader approach is best because of the
tremendous increase in speed. Figure 10 shows some
results from Kautz[4] et al that compare the ray
tracing to the shader approach for rendering cloth
using BRDFs.

Polarization and Scattering

To handle general polarization e�ects in a rigorous manner is simply a matter of replacing the unpolarized
Fresnel term of Shick[6] with the full Fresnel representations for the s and p polarizations:

rs =

√
n2 − sin(θ)2 − cos(θ)√
n2 − sin(θ)2 + cos(θ)

(18)

rp =
n2cos(θ)−

√
n2 − sin(θ)2

n2cos(θ) +
√
n2 − sin(θ)2

(19)

-

Here n is the index of refraction of the material and θ is the angle of re�ection with respect to the microfacet
normal. Note, that the above Fresnel equations, for the re�ection �eld amplitudes, are valid for complex n
and thus can be used with metals or dielectrics. By adding the polarization in this way we can now calculate
polarimetric quantities such as: retardance, diattenuation and depolarization

On interesting observation about the MF approach is that at the microscopic level all (microscopic) single
bounce re�ections are specular, independent of the scattering angle. In a previous paper we showed that
except for near normal incidence above, multiple surface scattering has a negligible e�ect [16]. The MF
description of all scattering as specular single scattering might at �rst thought seem wrong however, exper-
imental studies by Ngan et al[14] have validated that MF approach for a large variety of surface materials,
�nishes and geometries. Figure 11 shows two photographs of a complex surface (tile �oor) under large
incident-angle illumination. The image on the left is under natural sunlight; the image on the right is under
the same lighting conditions but with a polarizer that rejected the S-polarization. Two e�ect are evident
here: one, the majority of large angle scattering is due to a single polarization (Brewster angle e�ect) and



two, the scattered S-polarized light is nearly achromatic. In the left image, the color is washed out due to
the specular scattering whereas, in the right hand image, the low angle of incidence scattering of ambient
room light leads to deeper hues. In most materials the color is determined by selective absorption during
subsurface scattering (see Figure 3). In the left image the re�ected light is dominated by single scattering
from the surface.

Figure 11: Left, unpolarized light image. Right, P-polarization blocked with polarizer

For metal such as gold or copper, the chromatics dispersion occurs because of the variation of the index
of refraction with wavelength not because of subsurface scattering. This is illustrated in Figure 12where
the index of refraction for gold (Au) is plotted versus wavelength. Interestingly, for surface scattering at
large angles, re�ectivity approaches unity independent of the index of refraction and both conductors and
dielectrics will experience more achromatic scattering (see Figure 1).

Figure 12: Dispersion in the index of refraction of gold.

Figure 13: Chromatic e�ects of surface roughness.

While color e�ects may be due to both surface
and sub-surface scattering, generally only surface
re�ections cause in polarization e�ects. Addition-
ally, with rough surfaces there may also be chro-
matic e�ects from surface re�ections due to the ap-
parent surface roughness e�ect, where the surface
will �appear� to be smoother to longer wavelengths.
this e�ect is intensi�ed for large scattering angles.
Whereas this e�ect may produce a strong intensity
modulation, it leaves the polarization una�ected.
This e�ect is illustrated in Figure 13 where the ratio
of scattered intensity between the blue and red light
(425nm/650nm) is plotted for three di�erent surface
roughness of gold.

From our discussion so far it is clear that single scat-
tering from the surface of material will dominate its
polarization signature at large incident angles. For
this paper we will restrict ourselves to geometries
where the scattering angle is greater than 25° so that
we may ignore multiple surface scattering. With-
out double scattering it is not possible to generate
circular polarization from unpolarized light. Addi-
tionally, only a few materials are known to produce
circular polarization from subsurface scattering; one
such example is Scarab Beetle wings. To this end,
we will only investigate the diattenuation e�ects, or
more precisely the linear polarizance. Finally, with
our parametrization of the Stokes Vector (Figure 4)
the Mueller matrix reduces to:


S′0
S′1
0
0

 =


M00 0 0 0
M10 0 0 0
0 0 0 0
0 0 0 0

 ·

S0

0
0
0

 (20)

Where, M10 is a measure of the ability of a material to produce linear polarization for unpolarized light. For
the remainder of this paper we will refer to the normalized quantity:

Q =
M10

M00
=
S′1
S′0

(21)

as the Diattenuation Coe�cient. Here we have chosen the letter Q to remind us that the material is producing
a non-zero diattenuation, S = Q.



Material 425nm 550nm 650nm
n k Rsub n k Rsub n k Rsub

Au 1.62 1.94 0 0.359 2.69 0 0.170 3.14 0
Al 0.556 5.146 0 1.015 6.627 0 1.558 7.712 0

BK7 (glass) 1.527 0 0 1.518 0 0 1.514 0 0
Si (Amorphous) 5.15 0 0.1 4.77 0 0.1 4.46 0 0.1

Spectralon (PTFE) 1 0 1 1 0 1 1 0 1
Mylar (copper color) 1.10 0 0 1.5 0 0 1.6 0 0

Table 1: Materials used in this study

Results

We examine the polarization signatures from two speci�c types of space objects: Satellites in Low Earth
Orbit (LEO) and space debris. The orbital dynamic are calculated using SGP-4 Two Line Elements (TLEs).
Sun location and Earth rotation are all calculated and compared in Earth Fixed Geodetic coordinates. Sun
occultation by the Earth (termination) is accounted for and only sunlit geometries are considered. Figure 14
show typical trajectories for series of LEO satellite (Explorer 27) passes. The left plot shows the trajectory
in azimuth and elevation tracker coordinates and the right plot shows the phase (sun-observer) angle as a
function of time since illumination began.

Figure 14: 8 consecutive passes of Explorer 27. Left is in tracker Az-El space and on right is phase angle
versus time

We will consider the polarization e�ects at three di�erent wavelengths: blue (425nm), green (550nm) and red
(650nm). The actual band passes are shown in Figure 15. The choice of wavebands is not critical, we could
easily have chosen Johnson UBVRI �lters. However, we chose the RGB �lters because all three �t within
the bandpass of most Si based ccd cameras. Also, if the method described here works for such closely spaced
wavelengths it should will work even better for more widely spaced bands such as the Johnson UBVRI bands
used by astronomers.

Figure 15: The RGB band passes used in this paper

The simulations were run for a number of materi-
als; Table 1 list the materials and the correspond-
ing material properties used. It is important to re-
member that these properties, while reasonable may
be di�erent that actual materials that have expe-
rienced a prolonged space environment. The goal
here was to demonstrate the feasibility of our ap-
proach by using a variety of representative materi-
als. The �rst 2 materials int Table 1 are metals,
BK7 is a transparent glass, amorphous silicone is a
high index material, Spectralon�is a very lamber-
tian (non-polarizing) volumetric scatterer and My-
lar�is a specular plastic.

The �rst test we ran was to look at the linear di-
attenuation coe�cient,Q ,as a function of the three
wavebands (RGB) de�ned above. Figure 16 shows
Q as a function of phase angle and waveband for the six materials above. From a discrimination point of
view these results are very good news. The BK7 and Mylar are similar for Q but, since BK7 is transparent,
they can easily be discriminated from each other using total re�ectivity. While the behavior in Figure 16 is
nice, real space objects have complex shapes.

One of the predictions of MF theory is that for objects composed of a single material, the Q signature will
be independent of shape and orientation. To verify this we used 2 shapes (Figure 17): a chamfered cube
and a cigar shape. The chamfered cube provides an object with specular facets while the cigar shape has no
facets.



Figure 16: 3 color Q versus phase angle for each material.

Figure 17: Chamfered cube and cigar shape meshes

Figure 18 shows the Q values at the three colors (RGB) for 100 random poses for two shapes and two
materials (Au and Al). The plots for the chamfered cube is noisy because of the low number of body facets
leads to noise in the surface normal calculation. This noise is not present in the cigar shape because it has
a su�cient facet count. It is clear from Figure 18 that for single material objects, the 3-color Q signature
is independent of shape and pose. Also, note that for all of the plots in Figure 18the Sun phase angle was
140°; however, changing the phase angle may change the Q values but if will not produce a dependence on
pose or shape.



Figure 18: Q values for 1000 poses of Cube and Cigar for both Au and Al

Figure 19: Au/Al MLI model used in this study

Figure 20: Tumbling MLI in I-RGB (left) and Q-RGB (right) space.

Now consider a more complicated material such as a piece of multi-layer insulation (MLI). In Figure 19 we
show a simple model of MLI where one side has a metallic gold coating and the other has an aluminum
coating. As this object tumbles we would expect the polarization signature to simply modulate back and
forth between the value for gold and aluminum. The right hand plot in Figure 20 shows the results of using
the three Q values for the debris as the components in a (Qred, Qgreen, Qblue) vector space. In this Q-RGB
vector space (for a �xed solar phase angle) a given material corresponds to a speci�c point. If a piece of
debris is at GEO, then for short periods we can consider the solar angle to be constant and the Q signature
of a tumbling piece of MLI, like the piece modeled above, will just oscillate back and forth between two
points in Q-RGB space, one for Au and one for Al. This is precisely what our model predicts as seen in the
right hand plot in Figure 20where, the point on the left is for gold and the one on the right is for aluminum.



On the left hand side of Figure 20is the corresponding RGB Intensity (I-RGB) space plot. Clearly, in the
I-RGB plot the signature is much more complicated.

For the next exercise, we looked two more realistic shapes: an Agena rocket body and the Hubble Space
Telescope (Figure21). Remember that only the 6 materials from Table 1 were used for the two models. I
was not our intent to produce exact rendering of the HST and Agena object, we only wanted to achieve
reasonable amount of realism while providing test objects for this paper.

Figure 21: HST and Agena shapes. Mesh (left) and sample rendering (right).

Now that we have higher �delity object models we can look at some more realistic LEO scenarios. Figure
22 shows the total scattered intensity, I, and the diattenuation factor Q for a single pass of the Agena and
HST objects. The Agena results are on top and the HST results on the bottom and all graphs are plotted
against the phase angle. The three colors represent the three RGB wavebands discussed earlier.

The �rst thing to note is that the I and Q plots have di�erent shapes and they even appear to be comple-
mentary; when the I plot shows little spectral variance the Q plot shows signi�cant variance and conversely,
when the Q plot shows little spectral variance the I plot shows signi�cant variance. This illustrates what we
expect to see namely, that the polarization signature provides additional information about the object not
contained in the intensity.

Our original hypothesis was that the polarization signature would help us discriminate objects. Whereas
with simple shapes the polarization signature was shape independent (Figure 18), we do not expect that to
be true for asymmetric objects composed of multiple materials. For those complex shapes the mixture of
material �seen� by the observer will depend strongly on the pose (see Figure 21). To understand this better
we plotted the polarization signatures of the Agena and HST objects for 1000 random poses each at three
di�erent solar phase angles.

Figure 23 shows this data plotted in Q-RGB space. The top row is fora phase angle of 60° the middle row
is for 100° and the bottom row is for phase angle 140°. The three horizontal plots show three di�erent
perspective views of the same data. The blue data is 1000 random poses of the HST target and the red data
is 1000 random poses of the Agena rocket body. Two e�ects are immediately evident; �rst, the HST and
Agena data does not overlap in Q-RGB space and second both the Agena and HST data appear to lie on
planar 2D surfaces.

The fact that the Agena and HST data don't overlap in Q-RGB space is probably just luck, though a further
investigation with more shapes is warranted. The fact that both the HST and Agena data are restricted to
2D surfaces in Q-RGB space is more interesting. While some of the data points fo HST lie o� the plane,



Figure 22: Agena and HST single pass results: Intensity (left) and Diattenuation (right).

they appear to come from poses with very low SNR and as such can be ignored. The co-planarity of the data
for a given shape may be explained by the fact that the Q's for a given material have a �xed relationship
independent of pose, for a given phase angle, (Figure 18). If the phase angle is constant, then changes in
poses are simply changes in ad-mixtures of material with constant Q relationships.

Q = c1Q1 + c2Q2 + c3Q+ ... (22)

Here the ci are functions of pose. If we let the ci be a function of rotations in 3 dimensions, Euler angle for
instance, then we can show that only two of the rotation angle are independent and thus, Q is a 2-dimensional
surface in Euler space. This can be visualized by imagining that you rotate a shape about the line of sight,
in this case the ad-mixture (Q) will not change thus, Q is degenerate in rotations about the line of sight
and only 2 rotations are needed to describe the admixture for Q. Now the position in Q-RGB space can be
written as a vector of Qs:

Qrbg =

 Qr

Qg

Qb

 (23)

Thus Qrgb, the position in Q-RGB space is only a function of two variables (2 angles) and for a given
composite object all possible poses will lie on a 2-dimensional surface in Q-RGB space.

The argument we just made for the co-planarity of the points in g Q-RGB space assumed a �xed solar phase
angle. From the di�erent rows in Figure 23 it is clear that the planar surfaces change with phase angle,
but very slowly. Figure 24 shows 8 consecutive passes of the HST (top) and the Agena (bottom) plotted in
Q-RGB space. Once again the Qrgb points are constrained to a plane. This was not expected on the basis
of our argument above, where we concluded that the addition of the third degree of freedom (phase angle)
should have broken the symmetry in Q-RGB space. A possible explanation for this is that the all of the
satellite passes in Figure 24 had stable pointing and that over a short period of time (like a single pass) the
change in the pose of the satellite can approximated by a single rotation about the center of the earth: thus,
reducing the degrees of freedom back to 2 (rotation and phase angle). This is speculative and needs to be
investigated more thoroughly.

Real Time Calculations

Our approach allows us to generate high �delity polarization signatures for solar illuminated space objects
in real time. This capability can enable several real time applications such as: Space object ID veri�cation,
satellite aging and health monitoring and real time pose and material estimation for unresolved satellites.
With the microfacet and GPU approach it is possible to generate signatures �faster that real time� so we
can search the Q-RGB parameter space for real time classi�cation and ID. If the apparent 2D co-planarity
symmetry in Q-RGB space turns out to be correct then, classi�cation and ID tasks will be greatly accelerated.



Figure 23: Q-RGB space graphs for 1000 random poses of HST (blue) and Agena (red). Top row is for phase
angle of 60°, the middle row is for 100° and the bottom is for 140°. Within a row are three view of the same
data.

Figure 24: Trajectories in Q-RGB space for HST (top) and Agena (bottom). Within a row are two view of
the same data.



Summary

We have developed polarization extensions to the Ashikhmin's microfacet scattering theory. These extensions
are physically based and yield BRDFs that conserve energy and Helmholtz reciprocity. This approach allows
us to accurately describe the physics of polarized for light scatter from complicated objects. This includes
e�ects such as shape, orientation, material and surface �nish. The microfacet approach is very general
and can be easily extended to handle multilayer surfaces, emission, and refraction and transmission. Even
complicated, textured material like cloth, scratched metal and wood are readily modeled. With minor
modi�cations our approach can also handle re�ections from liquids, gasses and particulates[1, 5]. Also,
our GPU implementation will allow use to extend the current code to include thermal emission e�ects and
atmospheric e�ects like turbulence and transmission). The computational speed of our MF scattering model
could enable a host of real time applications including: space object ID veri�cation, satellite aging and health
monitoring, and real time pose and material estimation for unresolved satellites

We also presented a framework for discussing polarization e�ect in satellite �light curves� and discovered a
potentially valuable symmetry for material diattenuation coe�cients. Results of simulations show that this
symmetry may greatly simplify the construction of polarization based classi�ers, possibly improving real
time target ID, pose and material estimation for resolved and unresolved space objects.

This work was funded in part by AFOSR grant FA9550-07-1-035B
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