Investigation of Properties and Characteristics of High-Area-to-Mass- Ratio Objects Based on Examples of Optical Observation Data of Space Debris Objects in GEO-like Orbits #### Carolin Früh Astronomical Institute, University of Bern, Switzerland, frueh@aiub.unibe.ch # **Thomas Schildknecht** Astronomical Institute, University of Bern, Switzerland, thomas.schildknecht@aiub.unibe.ch #### 1 ABSTRACT The Astronomical Institute of the University of Bern first discovered in 2004 an unexpected population of so called high area-to-mass ratio (HAMR) objects in GEO-like orbits. Due to their unique properties these objects pose a major challenge in maintaining an orbit over longer time periods. The orbits of HAMR objects at high altitudes are strongly perturbed by solar radiation pressure. Observations suggest that the objects have a strong attitude motion. The Astronomical Institute of the University of Bern (AIUB) collected a significant set of observations of HAMR objects over the past years. Some of the objects could be followed over longer time intervals. The paper addresses the task to investigate the properties and characteristics of HAMR objects by analyzing optical observations of five HAMR objects in GEO-like orbits stemming from the internal AIUB catalogue. The dynamical properties are investigated by means of systematic orbit determination. Evolution of orbital elements and the Area-to-Mass-Ratio over time. Differences of orbits determined with observations from a single site or combined observations of various sites are investigated. The propagated orbits are compared to further optical observations belonging to the same object, which serve as a ground truth. #### 2 INTRODUCTION The Astronomical Institute of the University of Bern maintains a high Area-to-Mass-Ratio (HAMR) object catalogue since 2004 and observes HAMR objects on a regular basis. New objects are detected with the one meter ESA Space Debris Telescope (ESASDT) on Tenerife, Spain, or with the 18 cm ZIMmerwald SMAll Robotic Telescope (ZimSMART), located in Zimmerwald, close to Bern, Switzerland. Immediate follow-up observations can be tasked within the night of detection. Both telescopes are also used for regular follow-up observations for catalogue maintenance in addition to the one meter ZIMmerwald Laser and Astrometric Telescope, located in Zimmerwald, Switzerland as well. To maintain a catalogue of HAMR objects is especially challenging due to the unique properties of these objects; regular observations on short time intervals are mandatory. In regular orbit determinations, variations in the value of the Area-to-Mass-Ratio (AMR) was detected, first investigations were performed, i.e [1]. in. The current paper investigates the dynamical properties in greater detail exemplary through five HAMR objects of the AIUB internal catalogue in geostationary like orbits. This unique data set of the AIUB allows to investigate the evolution of the orbits over longer time periods. Orbits were determined with observations of single sites and with combined observations. ## **3 ORBIT DETERMINATION** All orbits were determined with an advanced version of the CelMech tool [2]. The orbit determination is based on a least square approach. Earth gravitational potential is regarded up to order and degree 12. Earth shadow passes are modeled and corrections due to ocean and Earth tides are taken into account as well as relativity corrections. As solve for parameters are the area-to-mass-ratio (AMR) as well as so called biases are available. Biases are parameters that should account for asymmetries of the observed objects, e.g. misalignment of solar panels. The area-to-mass-ratio is derived from the estimated value of the direct radiation pressure (DRP) acceleration. $$\vec{a} = \frac{C}{2} \times \frac{A_{\dot{0}}}{|\vec{r} - \vec{r}_{\odot}|^2} \frac{S}{c} \frac{A}{m} \vec{e}_{\odot} \tag{1}$$ \vec{e}_{\odot} is the satellite-Sun direction under consideration of light aberration, $\vec{r} - \vec{r}_{\odot}$ is the direction of the satellite with respect to the Sun, A_{\dagger} is the distance Sun-Earth, one astronomical unit, S is the solar radiation flux, and C the reflection coefficient. In the determination of the orbits in the current paper a value of C=2.0 was assumed, which corresponds to Table 1: Internal name, eccentricity, inclination (deg), semi major axis (km), area to mass ratio (m^2/kg) and apparent magnitude (mag) of the selected objects of the AIUB catalogue | NAME | E | I | A | A/M | Mag | |---------|-------|-------|-----------|-------|------| | E08241A | 0.040 | 13.26 | 43200 | 1.20 | 16.1 | | E06321D | 0.036 | 7.0 | 42900 | 2.56 | 15.3 | | E07194A | 0.026 | 6.76 | 42000 | 3.31 | 16.8 | | E07308B | 0.233 | 6.52 | 436008.93 | 15.9 | | | E06293A | 0.092 | 11.89 | 44000 | 15.30 | 16.8 | a full absorption (other implementations use the formula for the radiation pressure without the factor of $\frac{1}{2}$, in those cases a factor of 1 for the reflection coefficient corresponds to full absorption). The value for the DRP and therefore for the AMR is assumed to be constant over the whole fit interval of observations in orbit determination as well as in propagation. Five objects have been chosen for a detailed investigation. All objects were discovered and first detected by the AIUB and are not listed in the USSTRATCOM catalogue. All of the objects are faint debris objects, they were followed over several years and no maneuvers could be detected. A current set of orbital elements and a medium value for the apparent magnitude are listed in Tab.1. All objects are in GEO-like orbits, only E07308B has an eccentricity significantly different from zero. For the orbit determination a specific controlled setup was chosen. Two sets of observations were chosen, at the end and at the beginning of each fit span. To find reliable orbits, the sets itself span at least a time interval of 1.2 hours. A reliable orbit is defined as an orbit which produces small residuals in propagation, see [3] for further details. Each set of observations consist of four to eight single observations. The overall fit span in between the sets spans between 10 and 120 days. Although the fit spans are quite different, the orbits are comparable in accuracy of propagated orbits in this specific setup, see [3] for further details. The orbits were first determined with observations of one observation site only then with combined observations of different sites in the setup mentioned above. The observations used in this investigation stem from the ESASDT, ZIMLAT and from several telescopes of the ISON network, provided courtesy of the Keldish Institute of Applied Mathematics, Moscow, which supported this work in offering observations from additional sites. The controlled setup was chosen, to actually generate comparable orbits. In such a setup possible error sources can be closely monitored. The risk to introduce variations that might display in the AMR values is minimized. A sparse data sampling as in the chosen setup, with larger gaps in between observations is a realistic observation scenario in optical observations. ## **4 EVOLUTION OF ORBITAL ELEMENTS** In a fist step, the evolution of the orbital elements over time is inspected. In Fig. 1 the inclinations and errors in inclination, as determined in orbit determination, of the five objects are displayed. In most of the cases the error bars are so small, that they are not visible in the plot. In all cases, the solutions are closely aligned to each other, only in the case of object E08241A in Fig. 1 some spread in the data can be observed. The orbits from the different observation sites produce nearly identical values. The expected decline and increase in the value of the inclination can be observed for all objects. For object E06293A, which has the highest AMR value, the inclination seems not to follow a steady increase over time, but some smaller substructure of decrease and increase seems to be superimposed. This may be due to the fact, that in this AMR region, the effect of the DRP is dominating over purely gravitational effects in the evolution of the orbit. In Fig. 2 the evolution of the eccentricity values over time and the errors of eccentricity as found in orbit determination for the different objects are orbits are displayed. Periodical variations can be observed for all objects. Again the different orbits with observations of one site only or of combined sites result in the same eccentricity values. ## 5 EVOLUTION OF AREA-TO-MASS-RATIO In Fig 3 the different AMR values for the different objects and observation sites are displayed. The error bars show the error in the determined DRP parameter. In all cases, the values for the AMR are not nicely aligned as it was the case for the orbital elements in Fig. 1 and Fig. 2. For object E08241A the area to mass values seem to form a cloud of values (see Fig. 3(a)), varying around a mean Figure 1: Inclination as a function of time for orbits of the the object (a)E08241A, (b) E06321D, (c) E07194A, (d) E07308B, (d) E06293A. Figure 2: Eccentricity as a function of time for orbits of the the object (a) E08241A, (b) E06321D, (c) E07194A, (d) E07308B, (d) E06293A. Figure 3: Area-to-Mass-Ratio as a function of time for orbits of the the object (a) E08241A, (b) E06321D, (c) E07194A, (d) E07308B, (d) E06293A. value of $1.4\,kg/m^2$. But a single value found in the orbit determination with Zimmerwald observations only, has a value of around $0.8\,kg/m^2$. For object E06321D (see Fig. 3(b)) the AMR value even seems to vary periodically around a value of $2.5\,kg/m^2$, but also values of $2.35\,kg/m^2$ and $2.65\,kg/m^2$ occur. The AMR value of object E07194A (see Fig. 3(c)) seems to form a cloud around $3.5\,kg/m^2$, but in the orbits determined with combined observations from all the sites, also values of $4.5\,kg/m^2$ and $2.3\,kg/m^2$ can be found. Object E07308B (see Fig. 3(d)) seems to generally increase its AMR value over time from a value of $8.5 \, kg/m^2$ up to $9.0 \, kg/m^2$. But single orbits also show AMR values of i.e. $10 \, kg/m^2$. For the object with the largest AMR, which is investigated in this paper, E06293A, there may also a periodical variation over time detected with a general trend to higher values over time (see Fig. 3(e)), increasing from $15.310 \, kg/m^2$ to $16.510 \, kg/m^2$. But one orbit determined with ESASDT data also shows a value of $18.210 \, kg/m^2$. To gain more insight, all orbits were propagated and compared to further observations of the same object, which were not included in the orbit determination process with the COROBS tool. The additional observations were all cross checked by further dense data orbit determinations; they serve as a ground truth. For further details, see [4]. In Fig. 4 the residuals determined between the predicted ephemeris from orbit propagation to the observed positions in degrees on the celestial sphere are displayed. The values are mean values over all residual values found 50 days after orbit determination and their standard deviations as error bars. Fig. 4(a) shows, that for object E08241A one orbit produces large residuals of 1 degree, but this orbit does not show up to have *unusual* orbital parameters or AMR value. The orbit with Zimmerwald data, which produced the *outlier* AMR value, does not show up prominently in the residual plot. In Fig. 4(b), which shows the residuals of object E06321D, several orbits determined with observations from the Zimmerwald, ESASDT and ISON data together, show large standard deviations in the residuals, although the mean value of the residuals is well under 0.2 degrees. Three of the orbits could be identified to be the four AMR values in Fig. 3(b), which seem not to follow the periodical variation trend; the orbit with the larges variation however with an AMR value of $2.45 \, kg/m^2$ seems to (accidentally?) fit into the periodic variations of the AMR value. A similar observation can be made in Fig. 4(c) in comparison with Fig. 3(c). The orbits determined with the observations from all sources that do not show large overall residuals are the ones that have significantly higher and smaller AMR values than the other orbits. The orbits with the highest residuals in Fig. 4(c), do show similar AMR values than the other orbits. A similar trend can be observed in Fig. 4(d) for object E07308B for the two orbits out of the ISON observations, that showed up significantly in Fig. 3(d). They also show the largest standard variations in Fig. 4(d). But the orbit, which has Figure 4: Residuals of propagated orbits on the celestial sphere as a function of Area-to-Mass-Ratio for orbits of the the object (a) E08241A, (b) E06321D, (c) E07194A, (d) E07308B, (d) E06293A. Figure 5: Error in the DRP parameter as found in orbit determination as a function of Area-to-Mass-Ratio for orbits of the the object (a) E08241A, (b) E06321D, (c) E07194A, (d) E07308B, (d) E06293A. the largest offset compared to the mean AMR value, does not show a large standard variation. The orbit with the AMR value of $10\,kg/m^2$ has the largest residual for all orbits regarded here, of 0.7 degrees. Object E06321D shows one orbit from combined observations of the ESASDT and ISON data, which shows a very large residual with 3 degrees and large standard variation, but the value does not show a significant value for the AMR. The orbit out of the ESASDT observations however, shows also a relatively large residual of almost 1.5 degrees but no large variations. In a final step the dependency of the AMR value on the error in the DRP parameter, as it was found in orbit determination, was investigated. For object E08241A Fig. 5(a) shows that the orbit, which has far the smallest AMR value, also shows the larges DRP error, nevertheless the absolute value of 0.06 is very small. The same situation can be observed for object E07308B in Fig. 5(d) and for object E06293AB in Fig. 5(e). The area to mass ratios, which are far off the mean value, show the largest DRP errors, but the absolute values are also below 0.06. For object E06321D, Fig. 5(b) shows overall very small DRP errors, for most of the orbits are even below 0.01. For object E07194A however, the orbit with the largest DRP value does not show an unexpected AMR value. On the other side, the DRP error values for the orbits with unexpected AMR values have small DRP errors. #### 6 CONCLUSIONS Five objects in GEO-like orbits with area-to-mass-ratio values of $1 \, kg/m^2$ up to $15 \, kg/m^2$ have been investigated. The objects were discovered and orbits were maintained over several years by the AIUB. Under a controlled setup orbits were determined with the CelMech tool from observations of single sites and of combined observations from different sites. The controlled setup was chosen to be able to acquire comparable orbits over time, to monitor all possible error sources and to minimize the risk to introduce variations in the AMR value by the sheer choice of observations. The orbital elements were found to be consistent for all objects. No differences between the orbits from the different observation sites or the orbits from combined observations could be observed. The AMR values of all objects showed variations. Some indicated a constant increase of the area-to-mass-ratio value others a periodic variation. In general all variations were around 20 percent around the mean value for this object. However, all objects also showed single orbits with AMR values far larger and/or smaller than this 20 percent, which did not follow the general trend in the evolution of the AMR value observed in the majority of orbits. Some of the orbits of these so called outliers showed either large residuals in the propagated orbits when compared to further optical observations with the COROBS tool. Some of them showed a small mean value of the residuals, but large standard deviations in the residuals. Others showed larger values in the error of the DRP parameter, which has been determined in orbit determination, but the overall values were still relatively small. But orbits with insignificant AMR values could also show either larger mean values of the residuals, or large standard variation of the residuals or large DRP values. It can be stated that there obviously seem to occur variations in the current AMR values of space debris objects. There investigation is complex and no general rule, valid for all orbits could be found. #### 7 ACKNOWLEDGMENTS The work was supported by the Swiss National Science Foundation through grants 200020-109527 and 200020-122070. The observations from the ESASDT were acquired under ESA/ESOC contracts 15836/01/D/HK and 17835/03/D/HK. ## REFERENCES - [1] R. Musci. Analyzing long Observation Arcs for Objects with high Area-to-Mass Ratios in Geostationary Orbits. In *Proceedings of the International Astronautical Congress* 2008, A6.1.10, Glasgow, Scotland, Great Britain, 29 Sep- 3 Oct, 2008, 2008. - [2] G. Beutler. *Methods of Celestial Mechanics*. two volumes. Springer-Verlag, Heidelberg, 2005. ISBN: 3-540-40749-9 and 3-540-40750-1. - [3] C. Früh. Orbit Propagation and Validation with Angle-Only Observations. In *Proceedings of the 20th AAS/AIAA Astrodynamics Specialist Conference, Toronto, Canada, August 2nd 5th, 2010*, volume Toronto, Canada, 2010. | [4] | C. Früh, T | C. Schildknech
The European Co | nt, R. Musci, a
conference on S | nd M. Ploner.
Space Debris, | . Catalogue Co
ESOC, Darm. | orrelation of S _I
stadt, Germany | oace Debris Obj
o, 30 March-2 Ap | ects. In <i>Proceedin</i>
pril 2009, 2009. | gs | |-----|------------|-----------------------------------|------------------------------------|--------------------------------|-------------------------------|--|-------------------------------------|---|----| |