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ABSTRACT 

Accurate spectral signature classification is key to reliable nonimaging detection and recognition of 
spaceborne objects. In classical hyperspectral recognition applications, especially where linear mixing 
models are employed, signature classification accuracy depends on accurate spectral endmember 
determination.  In previous work, it has been shown that class separation and classifier refinement results in 
Bayesian rule-based classifiers and in classical neural nets (CNNs) based on the linear inner product tend to 
be suboptimal.  For example, the number of signatures accurately classified often depends linearly on the 
number of inputs. This can lead to potentially severe classification errors in the presence of noise or 
densely interleaved signatures.  Such problems are exacerbated by the presence of input nonergodicity. 

Computed pattern recognition, like its human counterpart, can benefit from processes such as learning 
or forgetting, which in spectral signature classification can support adaptive tracking of input 
nonergodicities.  For purposes of simplicity, we model learning as the acquisition or insertion of a new 
pattern into a classifier’s knowledge base.  For example, in neural nets (NNs), this insertion process could 
correspond to the superposition of a new pattern onto the NN weight matrix.  Similarly, we model 
forgetting as the deletion of a pattern currently stored in the classifier knowledge base, for example, as a 
pattern deletion operation on the NN weight matrix, which is a difficult goal with classical neural nets 
(CNNs).  In practice, CNNs have significant disadvantages of poor classification accuracy, limited 
information storage capacity, poor convergence, and long training times, which have been remedied by the 
development of neural networks based on lattice algebra.  The first two authors have elsewhere shown that 
such lattice neural networks (LNNs) can be configured as auto- or hetero-associative memories and are 
amenable to pattern insertion or deletion operations on the LNN weight matrix.  

In this paper, we detail the implementation of pattern insertion and deletion in lattice associative 
memories (LAMs), in support of signature classification.  It is shown that, for an n-input LAM having an 
nxn-element weight matrix, pattern insertion and deletion from the weight matrix can be computed exactly 
in O(n) addition operations, with a small proportionality constant.  Adaptive classifiers based on LNN 
technology can thus achieve accurate signature classification in the presence of time-varying noise, closely 
spaced or interleaved signatures, and imaging system optical distortions. As proof of principle, we 
exemplify classification of multiple closely spaced, noise corrupted signatures from a NASA database of 
space material signatures.   
 

Keywords:  Automated signature detection, Pattern recognition 
 

1. INTRODUCTION 
 
Non-resolved detection and classification of space objects using features such as spectral signatures, or 
mixtures of such signatures, requires accurate, comprehensive signature classification technology [1-3].  
Although passive remote sensing research has advanced significantly over the past decade, yielding 
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imaging devices with increasing spectral coverage and resolution, the development of classifier technology 
has progressed more slowly.  In the linear mixing models from which hyperspectral image understanding 
derives, spectral endmembers represent fundamental materials that are mixed via various abundance 
fractions to yield signatures that characterize remotely sensed objects.  Regardless of the type of demixing 
and classification of abundance fraction vectors that are employed in hyperspectral image understanding, if 
one cannot accurately classify spectral endmembers under various noise constraints, then classification of 
signatures based on mixed endmembers is not feasible in practice.   

Additionally, in the development of adaptive pattern recognition systems, nonergodic input is often 
encountered in realistic applications. Nonergodicity can affect the accuracy of pattern classification, 
because input statistics tend to drift away from the statistical assumptions upon which a classifier is based.  
In previous research, we have found that it is useful to be able to add or remove patterns from a pattern 
database, to improve classifier performance in response to input nonergodicity [4].  These processes of 
addition or removal are respectively similar to notions of human remembering or forgetting.  In pattern 
classification technology, such classifier updates can help maintain correspondence between input statistics 
and underlying classifier assumptions, and can keep the classifier’s knowledge base (pattern memory) at 
fixed size, to achieve and maintain storage efficiency. 

In the case of neural network based classifiers, one desires that pattern updates could be performed 
incrementally, in real or near-real time. Unfortunately, classical neural networks (CNNs) have many 
disadvantages, including not being able to add representations of input patterns to their weight matrices 
without recomputation of the entire NN weight matrix.  Due to the computational cost of multiplications 
inherent in the CNN linear inner-product formulation, the concept of incremental or continuous pattern 
update remains primarily of pedagogic interest for CNNs with large weight matrices. 

Fortunately, lattice associative memories (LAMs) have much lower computational cost in their training 
and classification steps, very high classification accuracy, and theoretical maximum information (pattern) 
storage capacity [5]. As such, LAMs exhibit many advantages over CNNs, including but not limited to very 
high classification accuracy in noisy environments, theoretical maximum information storage capacity, fast 
computation, fast convergence and training.  Due to their foundations in lattice algebra, we have found that 
LAMs are good candidate platforms for the development of pattern insertion and deletion algorithms, in 
support of adaptive classifier technology. 

In this paper, we first overview lattice associative memory theory (Section 2), then show how patterns 
are added or removed in a type of LAMs called lattice autoassociative memories (LAAMs, Section 3).  We 
extend this theory to lattice heteroassociative memories (LHAMs Section 4), and discuss how this 
extension overcomes problems associated with incremental updates due to existence of fixed points in 
LAAMs.  Pattern insertion and deletion operations for LAAMs and LHAMs are exemplified in Section 5.  
Preliminary conclusions and suggestions for future work are given in Section 6. 

2. OVERVIEW OF LATTICE ASSOCIATIVE MEMORIES 

Let a source domain X = {1,2, …, n}, such that patterns in X are given by 11 =x , …, nn =x .   Let the 
weight matrices M and W be formed for a lattice auto-associative memory, as follows: 
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Note that W =  – M ’, where unary minus denotes negation (sign flip) of the elements of M transposed. 
The correct operation of M can be verified using the additive minimum operation in image algebra [6]: 

kkM xx =∧ ,     (2) 

and similarly using W and additive maximum.  M and W can also be denoted as MXX and WXX, since as 
autoassociative memories, they map X to X.  The case of MXY and WXY, where Y is not the same as X, is 
called heteroassociative memories, and is discussed in Section 4. 

Given this basic overview of LAMs, we next progress to the problem of dynamically inserting a 
pattern into an LNN weight matrix, without recomputation of the entire matrix. 
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3.  PATTERN OPERATIONS IN LATTICE AUTO-ASSOCIATIVE MEMORIES 

Suppose we have a lattice autoassociative memory (LAAM) WXX, where X = {x1, …, xk}.  Consider the 
insertion of a new pattern xk+1 such that WXX will recognize xk+1 presented as input to WXX, for example, 
using a formulation similar to Equation (2).   

3.1. Pattern Insertion in LAAMs 

To compute the augmented memory WXX, with the new pattern set X = {x1, …, xk, xk+1}, we simply 
calculate 
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Note that the size of W (i.e., n x n elements) does not change. 

Proof. Using the fact that for R∈cba ,, , bacba ∧≤∧∧ , we always have that 
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 Thus, in this case, ijij ww = . 
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 Therefore, 11 ++ −= k
j

k
iijw xx , in this case.                 

Remark 1.  If ij
k
j

k
i w≤−+ )( 1 xx , then the computational cost can be reduced by setting ijij ww = , else the 

lower part of Equation (3) is implemented.  Again, the computational cost involves only one subtraction 
operation. 

3.2. Pattern Deletion in LAAMs 

Suppose we have an autoassociative memory WXX, where X = {x1, …, xk}, as before. Consider deletion of a 
pattern xλ from WXX, where 1 < λ < k.  We first let }{\ λxXX = , where (\) denotes set subtraction (i.e., 
deletion of xλ from X).  Instead of directly computing the new memory WXX, which incurs O(k2) operations, 
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we let wij denote the (i, j)th entry of WXX and ijw  denote the (i, j)th entry of WXX, as before, then perform the 
following: 
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Remark 2.  Note that ijji w<− λλ xx  is impossible, since  
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Defining the entries ijw  according to Equation (4) results in the same memory as computing WXX from 
scratch (i.e., by complete recomputation of WXX), but without the computational cost.   
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This equation follows from the fact that if R∈cba ,,  with a < b, then accba =⇒∧= .  So in the 
preceding equation, let ijwa = , λλ

jib xx −= , and ijwc = .   

Next suppose ijw λλ
ji xx −= .  In this case, we have 
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or ijij ww ≤ .  Note that if  ijij ww ≤  for at least one pair }...,,1{},{ nji ⊂ , then the pattern will 
have been successfully removed.  However, if }...,,1{, njiww ijij ∈∀= , then  the  pattern is 
lattice dependent on the set X \ {xλ} and will not have been erased.  This follows from the fixed 
point theorems for WXX and MXX stated in [7].                  

This problem with fixed points can be remedied using lattice heteroassociative memories, as follows. 

4.  PATTERN OPERATIONS IN LATTICE HETERO-ASSOCIATIVE MEMORIES 

Suppose we have a lattice heteroassociative memory (LHAM) WXY, where X = {x1, …, xk}, as before, and 
Y = {y1, …, yk}, such that Y = {one, two, …, letter-n}, that is, patterns in Y are given by one=1y , …, 

nlettern −=y , and so forth.   

4.1. Pattern Insertion in LHAMs 

Further suppose that we want to add a new association (xk+1, yk+1) such that WXY will output yk+1 when xk+1 
is presented as input to WXY.  To compute the augmented memory WXY with the new pattern sets X = {x1, 
…, xk, xk+1} and Y = {y1, …, yk, yk+1}, we simply calculate 
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As before, note that the size of W (i.e., n x n elements) does not change. 

4.2. Pattern Deletion from LHAMs 

Let X = {x1, …, xk}, as before. To remove a pattern xλ from the memory WXY, where the pattern index 1 < λ 
< k, we perform the following: 
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The proofs of Equations (5) and (6) follow from the discussion of Section 4 and the observation that, in 
MHAMs, fixed points are not a problem because fixed points do not exist in heteroassociative memories, as 
the mapping (e.g., WXY) is between different sets X and Y.  Unfortunately, the MHAMs WXY and MXY do not 
possess the perfect recall features of MAAMs.  We are currently investigating solutions to this challenging 
situation, using dendritic lattice associative memories (DLAMs, [5]). 

5.  EXAMPLES OF PATTERN INSERTION / DELETION IN LAAMS AND LHAMS 

Given the 16 x 16 pixel input patterns shown in Figure 1, a LAAM was constructed using the 
procedure described in Section 2, which yielded the M  and W  weight matrices shown in Figure 2.  This 
memory stored all patterns (1 through 5), and recalled all patterns correctly, such that kkM xx =∧  and 

kkW xx =∨ . 

                     
Figure 1.  Input images (16 x 16 pixels) for MAAM test example. 

We then deleted pattern “3” from the MAAM, via the procedure described in Section 4.  This yielded 
the revised M and W weight matrices shown in Figure 3, which show subtle differences when compared 
with Figure 2.  Application of the input x3 = pattern “3” (Figure 4a) to M and W (Figure 3) respectively 
yielded the results shown in Figure 4b-c.  To obtain the correct result of zero output for input x3 not 
represented in M and W, we multiply image 4b by image 4c, i.e., ( 3x∨W )( 3x∧M ) = 0.  This can 
be exhaustively shown to work correctly for any pattern not stored in the MAAM.  Finally, re-insertion of 
x3 into the revised MAAM (Figure 3) yielded weight matrices shown in Figure 2, and the correct result 

3x∨W  ~ 3x∧M  shown in Figure 4a. 
We also applied LHAMs to classification of numerical patterns (set X) and pictures of words (in set Y 

Y) that corresponded to the numbers in X.  In each case, we were able to employ our LAM testbed shown 
in Figure 5, varying the noise (standard deviation in dialog box at bottom-right-hand side of Figure 5) until 
imperfect classification occurred, typically, at noise standard deviation σ > 0.06.   

In an additional experiment, the spectral signatures illustrated in Figure 6 were classified with LHAMs 
using the testbed shown in Figure 5.  In preliminary results, perfect classification was achieved for each 
spectrum with respect to all other spectra for noise standard deviation 0 < σ < 0.04 at 100 percent noise 
cross-section, with respect to a range of [0,1], and for mean values 0 < µ < 0.5.  These tests will be 
extended to various types and levels of noise in future research. 
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Figure 2.  W and M matrices of MAAM constructed with patterns from Figure 1. 

 
Figure 3.  W and M matrices of MAAM from Figure 2, after pattern “3” is deleted. 

 
(a)                (b)                     (c) 

Figure 4.  Results of MAAM pattern deletion:  (a) MAAM input and output with original weight matrices 
(Figure 2); after x3 = pattern “3” deleted we have (b) result of 3x∨W , and (c) result of 3x∧M .  It is 
readily seen that ( 3x∨W )( 3x∧M ) = 0. 
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Figure 5.  Example computational testbed for LAM development. 

 

Figure 6.  Normalized test spectra, adapted from NASA database of space materials.  

6.  CONCLUSIONS AND FUTURE WORK 

We have presented a simple technique for inserting and deleting patterns from lattice auto- and hetero-
associative memories (LAMs), similar in concept to human practices of remembering and forgetting.  This 
approach is useful for various purposes including (a) maintaining storage efficiency of a LAM, (b) tracking 
input statistical changes by changing the statistics of the memory to match input statistics, as well as (c) 
expanding or contracting the pattern database stored in the memory, as application scope changes.  We 
successfully demonstrated this approach for lattice auto-associative memories, using a simple recall of 
images of Arabic numbers and corresponding names of numbers.  In a separate experiment, we 
demonstrated perfect classification with LAMs of space materials spectra under moderate Gaussian noise. 

Unlike classical associative memories based on a linear inner product, which require recomputation of 
their entire weight matrices whenever a pattern is inserted or deleted, lattice associative memories can 
insert or delete patterns from their weight matrices with a much smaller amount of computation.  This is 
due to the exploitation of locality of pattern storage in the memory, and to the lattice memory’s 
significantly lower computational cost. 

Future work involves extended testing with different noise levels and distributions, as well as 
augmentation of the presented techniques using dendritic lattice associative memories.  We are also 
investigating techniques for improving the recall accuracy of lattice heteroassociative memories, which will 
form the basis for the majority of our forthcoming research in adaptive spectral classification. 
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