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Abstract 
 
Depending on the mode of operation, an optical sensor records signatures of sidereal and non-sidereal objects as 
points or streaks. Streaks that result from fast moving objects present a challenge to automated detection algorithms 
since potential for heterogeneity in the expected optical signature is higher than that of a point-like object due to the 
fact that energy is spread over a larger number of pixels during integration. Such heterogeneities may arise from 
object tumbling, atmospheric effects, occlusions, or even focal plane irregularities.  
While standard image processing techniques rely on a single estimated threshold applied to a field of view to isolate 
sidereal and non-sidereal pixels from background it is often the case that objects captured as longer streaks are being 
fragmented into multiple collections of pixels resulting in inaccurate position predictions. Such erroneous position 
estimates often cause loss of detection.  
Here we present a novel segmentation algorithm that maximizes fidelity of the resulting streaking objects on a focal 
plane for highly heterogeneous signatures. Our technique is general in that it assumes that any given object’s 
signature is separable from the background by multiple thresholds simultaneously allowing for accurate 
segmentations in high-noise or even occluded settings. Segmentation algorithm that we propose is based on a 
dynamic region-growing technique where a decision for including each individual pixel into a given object is made 
based on both statistical and spatial properties of the object. Such decisions are made dynamically as objects are 
being segmented.  
This segmentation algorithm is robust and its complexity order does not exceed that of standard segmentation 
techniques, making it an attractive alternative to signal enhancement techniques such as matched filtering. Testing 
has been conducted on the ground-based acquisitions of Low-Earth Orbit (LEO) satellites where, in certain datasets, 
number of detected streaking stars has been increased by over 20%. Also, we have observed a significant increase in 
detection rates of streaking satellites in high-fidelity simulation data from the Space-Based Space Surveillance 
program. 
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Introduction 
 
Optical sensors, both ground- and space-based, are currently widely used to detect and track space objects. 
Generally, telescopes operate by integrating reflected energy onto a focal plane array. In case of a sidereal stare 
mode of observation, depending on the velocity at which the object is moving, energy associated with the object will 
spread across multiple pixels. This, effectively, reduced the SNR of the object making it more difficult for automatic 
detection. Detection capabilities may be exacerbated by the introduction of additional heterogeneity into the object 
signature. Such has been observed to come from factors such as atmospheric refraction (when imaging from the 
ground) or object tumbling during the integration period. Since optical systems include a digital focal plane array 
(DFPA), infidelities in the latter may be a cause of loss of useful signal. Phenomena commonly referred to as hot 
and dead pixels on a DFPA tends to be compensated for by simply excluding such pixels from processing as they do 
not capture necessary information. Same may be determined for pixels that have saturated during the integration 
time thus causing them to be discarded. Fig. 1 exhibits a streaking object that happened to have crossed a row of 
pixels excluded from processing and, thus, creating a spatial discontinuity in the objects signature. Naturally, this is 
more likely to happen with streaks of longer length such as those produced by higher-velocity LEO objects. Fig. 2 
shows a streaking star, captured in rate-track mode of a ground telescope, where texture introduced due to 
atmospheric effects presents a problem when a single threshold is being applied to segment it from the background.  
Accurate segmentation, necessary for subsequent detection, association, and tracking, is central to this paper. Next 
section is dedicated to a brief review of standard methods for segmenting objects where deficiencies of such 
techniques in view of aforementioned problems will be explained. The following section will describe the proposed 
approach to mitigated issues presented by standard methods and that has been implemented and is currently 



deployed as part of Optical Processing Architecture at Lincoln (OPAL). Finally, results of applying proposed 
segmentation approach to data from various ground- and space-based systems will be shown.  

 

 
Figure 1: Object signature corrupted by sensor artifact. 

 

 
Figure 2: Object heterogeneity poses a problem for single-threshold  
segmentation methods. 

 
Single-Threshold Segmentation 

 
Techniques that fall under the umbrella of single-threshold methods mainly differ in the way the threshold is 
estimated. They all, however, share an assumption that there exists a single threshold that separates foreground 
objects from the background [1]. It has to be noted that in a general case such assumption does not hold and objects 
tend to span a significant section of the dynamic range. Consider Fig. 3, where a 1D intensity cross-section of an 
object (depicted in green) fails to be accurately captured by a potential threshold due to a presence of a strong cross-
track gradient. Situations like this are quite common and techniques such as high-pass filters are employed to 
alleviate the issue (see Fig. 3, blue profile). Some common methods for estimating a segmenting threshold 
(foreground-background) include Otsu’s algorithm [2], where ratio of between-class and within-class intensity 
variance is being maximized. Another approach uses a cumulative density function (CDF) to mark as foreground 
pixels that comprise the top  percent of the overall image’s energy. In our case, such percentage is usually small 
as there background pixels dominate. A third method determines threshold by estimating the full-width-half-max 
(FWHM) of the image’s background distribution and uses a multiple  thereof to adjust threshold for a particular 
image (see Fig. 4). This is particularly useful since background intensity distribution is often skewed away from 
being normal and a robust estimate of its energy is needed.  
 



 
Figure 3: Cross-track gradient and single-threshold segmentation 

 

 
Figure 4: FWHM used to estimate background distribution. 

 
These techniques generally provide a good estimate of the segmentation threshold but fail to account for local scale 
heterogeneities within streaking objects. We proceed with description of the proposed segmentation approach.  
 
 
 

Region Growing-Based Segmentation 
 
It is evident from the examples above that segmentation should support multiple thresholds within an object at the 
same time preserving its spatial contiguity. Conveniently enough, space objects observed with optical sensors can be 
viewed as point-sources convolved with a point-spread function and having some velocity. This allows us to employ 
a scheme where an object can be “grown” starting with a highest intensity pixel (we refer to it as a seed later) and by 
adding subsequent neighboring pixels until a criteria-based decision is made to stop. Such procedure is then repeated 
until there are no more seed pixels available (see Fig. 5). 

 

 
Figure 5: Region-growing algorithm. 

 
Individual steps of the algorithm are further discussed in greater detail.  



 
Seeding 
 
Seeding a region for growth involves picking a highest available intensity pixel (image pixels are sorted in 
descending value order) under the condition that its value is higher than that of the global background estimate 
( method is used here). Such condition prevents from seeding regions within the background. Pixels 
picked as seeds or added to a region are eliminated from further consideration. (see Fig. 6) 
 

 
     Figure 6: Seeding algorithm. 
 
 
 
Growing 
 
Rule to add a pixel to an existing region demands that a candidate pixel must be a neighbor (in 8-connected sense). 
Also, the preference is given to the candidate  whose value is closest to the region’s mean value [3]:  
 
 
This ensures a growth that is smooth in intensity which usually translates into a smooth spatial growth of an object. 
Fig. 7 illustrates a sample growing process. 
 

 
Figure 7: Growing algorithm. Starting with a seed (far left), two pixels are added. 

 
Stopping 
 
An important step in any unsupervised clustering approach is a point of convergence or stopping. Before a candidate 
pixel is added to the region, a number of criteria are evaluated to decide whether the addition should proceed. One of 
the conditions under which a pixel would not be added to the region is when a pixel is determined to belong to 
background rather than the object. In our current implementation such decision is made by evaluating a current 
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pixel’s value against a statistical sample of background in its immediate neighborhood. Background distribution is 
sampled and estimated from a structured disk (SDE) (see Fig. 8) using the  estimate.  

 
 

Figure 8: Stopping Algorithm. SDE (shown in green) samples local background distribution.  
Pixels show in red are already part of the current region. 

Merging 
 
During growth it is possible to encounter an existing, processed, region. If such an event occurs, an agglomerative 
approach is taken and both regions are merged into one (unless the existing object has been previously split; see 
Splitting below). Two regions are merged if they share at least one neighboring pixel. See Fig. 9 for illustration.  
 

 
   Figure 9: Merging Algorithm. Two regions are being merged as soon as 
   contact is detected. 
Splitting 
 
Merging of all neighboring objects on the scene does not necessarily produce proper object separation (see Fig. 10). 
Constraints on object’s texture statistics are placed in order to prevent objects “leaking” across connecting intensity 
ridges. It is assumed that each object has some level of heterogeneity and as growth proceeds, quantified by intensity 
coefficient-of-variation (CV): 
 

 , where  is the set of pixels in the region. 
 



 
   Figure 10: Splitting Algorithm. Dynamic texture feature tracking is employed to  

detect oversegmentation. 
 
A moving window is employed to detect a peak in this texture feature indicating that growth procedure has travelled 
across a set of pixels that separates two relatively texture-homogeneous structures. At this point growth is 
interrupted and region is marked as being split such that no other object can be merged with it. 
 
 
Note that since only a small fraction of the image’s pixels is being used for processing and complexity of the 
processing is roughly , where  is the number of pixels, this algorithm is an attractive candidate for 
segmentation.  

 
Results 

 
Testing was conducted using data from MIT Lincoln Laboratory Experimental Test Site, Socorro NM as well as 
from MIT Lincoln Laboratory Firepond Facility, Westford MA. (see Fig. 11)Rate-tracking mode was used to 
generate large numbers of streaking stars. Proposed segmentation approach was evaluated against standard ones to 
show that detection rate for contiguous streaks increased 22% (average over approximately 1300 framesets).  
Tests were also conducted with Space-Based Space Surveillance (SBSS) High Fidelity Simulation Data to show a 
56% increase in detection of higher velocity streaking targets and nearly 60% decrease in overall false alarm rate 
(present mainly due to fragmented long streaks). 
Algorithm has been implemented and deployed as part of Optical Processing Architecture at Lincoln (OPAL). 
 



 
 

Figure 11: Streaking star data collected at MIT Lincoln Laboratory Experimental Test Site, 
Socorro NM. Standard segmentation (left), proposed segmentation (right). 
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