Fast PSF reconstruction using the frozen flow hypothesis
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ABSTRACT

When imaging space objects from ground-based telescopes, observed images are degraded by atmospheric
blurring. If an accurate estimate of the point spread function (PSF) is known, then deconvolution
algorithms can be used to restore the image. Wavefront sensors (WFS) collect gradients of the wavefront,
which can then be used to estimate the PSF. However, the relatively coarse grid used by a typical WFS
limits the accuracy of the PSF estimate, especially when there is severe atmospheric turbulence. Using the
frozen flow hypothesis, it is possible to capture the inherent temporal correlations present in wavefronts
in consecutive frames of data. Exploiting these correlations can lead to more accurate estimation of the
PSF. Here we address the computational aspects of the problem. Specifically we show that the process of
extracting additional information from the correlated WFS data can be done by solving a sparse linear
least squares problem.

1. INTRODUCTION

When viewing objects in space using a ground-based telescope, optical aberrations introduced by turbu-
lence in the atmosphere cause the observed image to be blurred. We assume that the image formation
model of this situation is

g(x,y) = k(z,y) * f(z,y) +e4(z,9y) (1)

where f is the true object, k is the point spread function (PSF), x denotes convolution, g is the observed
blurred image, and ¢, is additive noise. Using a Fourier optics model for atmospheric turbulence, the
PSF k can be expressed in terms for the incoming wavefront of light, ¢ that reaches the telescope mirror,

K(z,y) = |F Py (2)

Here F~! is the inverse Fourier transform, P(z,y) is the mirror aperture function, and ¢ = v/—1.

Image restoration algorithms compute an approximation of f from the given blurred image g and the
PSF k. The quality of the restoration depends on how accurately the PSF, or equivalently the wavefront



¢, can be estimated. Approximations of ¢ can be computed from gradient measurements obtained from
a wavefront sensor (WFS) on the telescope [8, 9]. Mathematically the wavefront reconstruction problem

can be modeled as
sy | | Dy
M )

where s, and s, are discrete, noisy measurements of the horizontal and vertical derivatives of ¢; D, and
D, are discrete, horizontal and vertical derivative operators. The precise structure of D, and D, depends
on the sensor geometry. Common wavefront sensor geometries discussed in the literature are those of
Hudgin [6] and Fried [4]. In our work we assume a Fried geometry because it is more commonly used in
operational adaptive optics systems. However, our methods can be implemented with any geometry.

A difficulty with using equation (3) is that the gradient measurements are given on a relatively coarse
grid compared to the observed image data. Interpolation of the gradient data to a fine grid can be used
to reconstruct the wavefront and corresponding PSFs. Unfortunately such an approach may not provide
enough accuracy in the PSF to allow for quality restorations, especially when seeing conditions are poor
(e.g., during daylight hours, or when looking close to the horizon).

A recent approach proposed by Jefferies and Hart [7] uses multiple frames of data and a frozen
flow hypothesis (FFH) of the atmosphere to construct a composite, higher resolution grid of gradient
measurements. The purpose of this paper is to describe an efficient implementation of this approach, and
to show that it can be easily adapted to situations when there are nonlinear changes in the wind velocity
from frame to frame.

This paper is organized as follows. In Section 2 we describe the FFH, and show that it can be modeled
as a linear system involving sparse matrices. A regularized linear least squares approach is then proposed
to reconstruct high resolution gradients from coarse grid WFS measurements. In Section 3 we provide
some experiments on simulated data to illustrate the effectiveness of our approach. Some concluding
remarks are given in Section 4.

2. FROZEN FLOW HYPOTHESIS

The FFH assumes that atmospheric turbulence can be modeled by a series of independent static layers,
each moving across the telescope aperture with the prevailing wind at the altitude of the layer. Because
of its simplicity, the FFH is frequently used as the basis for numerical studies of telescope imaging
performance, particularly in the modeling of adaptive optics (AO) systems. While the FFH is observed
not to hold in the real world over long time scales, a number of studies have shown that it is a reasonable
approximation for short but still interesting periods [5, 10, 11].

To use the FFH to reconstruct wavefront gradients, several frames of data are collected over a short
time period, each giving gradient measurements at a different set of grid points. This is illustrated in
Figure 1 for two different velocity profiles. For ease of presentation, we consider only one layer; clearly
multiple, overlapping layers will provide even more grid points in regions where the various layers overlap
each other. Note that the composite grid resolution depends on the velocity profile; in the example
shown in the top part of Figure 1, the velocity (direction and magnitude) remains constant from frame
to frame, and the magnitude of the velocity is relatively small. A more extreme situation is illustrated
in the bottom part of Figure 1, where there is a nonlinear change in the velocity from frame to frame.

If the composite grid is uniform, then the high resolution wavefront gradient measurements can be
obtained from the composite grid through a simple extraction process. However, a situation such as this
would only occur when there is a very specific, constant velocity from frame to frame. For example,
consider the simple situation illustrated in Figure 2, where an underlying uniform grid is represented
by x’s, and two coarse grids are denoted by o’s. Although one frame falls directly on the underlying
uniform grid, the other frame does not. Including rotation in the velocity profile will introduce additional
irregularities in the composite grid of data. The computationally challenging step is to construct the
composite gradient measurements on a uniform high resolution grid from the given, nonuniform, coarse
grid information.
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Figure 1. Illustrations of building a composite, high resolution grid using gradient grid points from several
frames. The first two rows illustrate a situation when the velocity remains constant from frame to frame. The
bottom two rows illustrate a situation when the velocity changes nonlinearly from frame to frame.

2.1. Linear model of wavefront motion

In this subsection we describe the approach we use to model motion of the wavefront or, equivalently,
motion of the gradient fields. To simplify notation, we consider a general situation were s(z,y) is a
function and let S be an array of discrete samples of s(z,y); that is, the (¢, 7) entries of S are given by

S(t,7) =s(ziy;), 1=1,2,...,n, 7=12,...,n.

Using the FFH, we can assume changes in the wavefront and corresponding gradients from frame to
frame are modeled as a rigid movement of s(x,y). Suppose S is a discretization of s(z,y) after a rigid
movement; this can be described through a 3 x 3 affine transformation:

R T a1 a2 @13 T
S(i,j) = s(&;,9;), where Ui | = | a1 azn a yi | . (4)
1 0 0 1 1

Note that because the function s is not known at every point (z,y) (all that is known is the discrete
values S), it may not be possible to evaluate s(Z;,7;), unless &; = x; and §; = Y; for integers 7 and 7,
1<i<nandl< j < n. However, an approximation of s(Z;,3;) can be computed by interpolating
known values of s near s(&;,9;). Suppose, as illustrated in Figure 3, that s(x;, yj), s(x; 15 y;), s(a;, yjﬂ)
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Figure 2. A single frame of data can be aligned to an underlying, uniform fine grid, as illustrated with the image
on the left. However, additional frames are likely to move to locations that do not fall directly on the uniform
grid; this is illustrated with the image on the right. In this figure, the x’s denote points on the underlying uniform
grid, and the o’s denote points on the coarse grid of each frame of WFS data.

and s(z; 110 Y5 +1) are four known pixel values surrounding the unknown value s(&;,9;). Using bilinear
interpolation, a weighted average of the four pixels surrounding s(Z;, 9,) is used for the approximation:

S@,5) = s(&,9;)
~ (1—Az)(1 - Ayj)s(z;y;) + (1— Awy)Ay;s(as, y;,4)

+ A‘E’L(]‘ - ij)s(xi_t,-layj) + A:Eiijfsx§+1ayj+1)'

where Az; = &; — x; and Ay; = g; — y;.
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Figure 3. Illustration of bilinear interpolation, where a weighted average of the four known discrete values is
used to approximate s(Z;,9;)-

If we define vectors s = vec(S) and & = vec(S) from the discrete data arrays (e.g., through lexico-
graphical ordering), we can write
§=As



where A is a sparse matrix that contains the interpolation weights. Specifically, the kth row of A contains
the weights for the pixel in the kth entry of §. That is, in the case of bilinear interpolation, there are at
most four nonzero entries per row, given by

We emphasize that by using a sparse data format (e.g., compressed row [2]) to represent A, we need only
keep track of the nonzero entries and their locations in the matrix A. Moreover, this discussion assumes

that the affine transformation used in equation (4) is known from wind velocity information.

Our discussion to this point assumes the discretization grid for § is the same as s. If we want § to
represent a subsampling of a small section of s after movement, then this can be modeled as

§ = RWAs

where W is an indicator matrix that grabs a specified section of s, and R is a sparse downsampling (or
restriction) matrix that transforms high resolution data to a lower resolution.

2.2. Least squares reconstruction of high resolution wavefront gradients

In this subsection we set up the linear model for reconstructing the high resolution wavefront gradients
from coarse grid measurements. Let si’“) and sy(,k) be the given coarse grid wavefront gradient measure-
ments for frames k£ = 1,2,...,m. Assume that each of the gradient measurements is obtained from a
moving, frozen wavefront, and that there is some overlap of information in adjacent frames, as depicted
in Figure 1. Further denote the composite, high resolution gradient fields by s, and s,. The aim is,
given sSf) and sék), k=1,2,...,m, compute s, and s,. With the FFH, and the notation introduced in
the previous subsection, we can describe the relationship between the high resolution information to the

measured, low resolution gradient fields of each frame as

sg“) = RWA;s, and s?gk) = RWAs, (5)

where Ay, is a sparse matrix that describes the motion of wavefront (and corresponding gradient fields)
to those corresponding to the kth frame, and W and R are the indicator and downsampling matrices
described in the previous subsection.

With this model we can set up linear systems of the form:

RWA, stV RWA, s
RWA, st RWA, s{?
. Sy = ) and . Sy = ) (6)
RWA,, ) RWA,, )
x Y

We remark that this linear model is very similar to that used in digital super-resolution applications;
see for example [1, 3]. As in digital super-resolution, regularization is needed to stabilize the inversion
process. In this work we use standard Tikhonov regularization, and thus we need to solve the following
least squares problems:

s [ RWA; ] sV [ RWA; ]

s? RWA, s RWA,
min : : Sz and min : - : Sy (7)
T st RWA,, T s RWA,,

0 7 ) 0 | ol |

Computational efficiency is obtained by exploiting the sparse structure of the matrices [2].




3. NUMERICAL EXPERIMENTS

In this section we report on some numerical experiments that illustrate the effectiveness of using the
FFH to extract additional gradient information, as well as our linear approach for the reconstruction
process. To generate a realistic simulation, we begin with a large, high resolution global wavefront, and
corresponding gradient fields. We then propagate the wavefront using two different velocity profiles: first
using a linear, constant velocity for each frame, and second a nonlinear change in velocity from frame
to frame. In each case we generate 16 frames of data, and the measured gradient fields are obtained by
downsampling the high resolution gradient fields to a 32 x 32 grid.

3.1. Linear constant velocity

In this first example we consider a linear constant velocity from frame to frame, similar to the illustration
shown in the top part of Figure 1. Figure 4 shows the composite gradient fields obtained by solving
the least squares problems given in equation (7). From these we extract high resolution estimates of
the gradients for each frame. Figure 4 shows these estimates for frame 1, along with the corresponding
true gradients and naive estimates obtained by up-sampling the measured low resolution gradients. In
addition, we also display the corresponding reconstructed PSFs for frame 1. Rather than displaying the
results for all 16 frames, we instead show in Figure 5 a plot of the relative errors for all reconstructed
PSFs. Because the velocity profile in this example is similar to the illustration shown in the top part
of Figure 1, where we have more high resolution grid information for the middle frames than at the
beginning and end, we expect to get better estimates of the PSFs for the middle frames. The PSF errors
shown in Figure 5 clearly verifies this expectation. Finally, from Figure 6 we see that the better PSF
estimates, when used in a deconvolution algorithm, produces a clearly superior restoration.

FFH composite FFH, frame 1 Naive, frame 1 Truth, frame 1

Figure 4. Comparison of reconstructed gradients for one frame. Top row shows the = gradient results, the middle
row shows the y gradient results, and the last row shows the corresponding PSF's.

3.2. Nonlinear velocity

In this example velocity changes nonlinearly from frame to frame, similar to the illustration shown in
the bottom part of Figure 1. Figure 7 shows the composite gradient fields obtained by solving the least
squares problems given in equation (7). From these we extract high resolution estimates of the gradients
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Figure 5. Plot of the errors for all reconstructed PSFs.

Blur, frame 1 FFH restoration Naive restoration

Figure 6. Comparison of the reconstructed images.

for each frame. Figure 7 shows these estimates for frame 1, along with the corresponding true gradients
and naive estimates obtained by up-sampling the measured low resolution gradients. In addition, we also
display the corresponding reconstructed PSFs for frame 1. Figure 8 shows a plot of the relative errors for
all reconstructed PSFs. Because the velocity profile in this example is similar to the illustration shown
in the bottom part of Figure 1, where we have more high resolution grid information for the first few
frames, and less towards the end, we expect to get better estimates of the PSFs for the first few frames.
The PSF errors shown in Figure 8 clearly verifies this expectation. Finally, from Figure 9 we see that the
better PSF estimates, when used in a deconvolution algorithm, produces a clearly superior restoration.

4. CONCLUDING REMARKS

The frozen flow hypothesis captures the inherent temporal correlations present in wavefronts in consecu-
tive frames of data. Exploiting these correlations can lead to more accurate PSF estimations, as illustrated
by the numerical experiments in this paper. We have shown that reconstructing high resolution gradient
fields from coarse grid WFS measurements can be modeled as a linear system involving sparse matrices.
Because our approach requires only to solve linear least squares problems involving sparse matrices, we
can compute PSF estimates very efficiently.
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FFH composite FFH, frame 1 Naive, frame 1 Truth, frame 1

Figure 7. Comparison of reconstructed gradients for one frame. Top row shows the = gradient results, the middle
row shows the y gradient results, and the last row shows the corresponding PSF's.
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Figure 8. Plot of the errors for all reconstructed PSFs.
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Figure 9. Comparison of the reconstructed images.
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