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ABSTRACT 

 

The current class of small satellite systems presents an analyst responsible for monitoring spacecraft operational 

status and early detection of detrimental anomalies with a broad variety of sensing and identification issues and 

challenges.  Simple, small, cube-shaped satellites, without protruding solar panel appendages, may require enhanced 

preflight characterization processes to support monitoring by passive, remote, nonimaging optical sensors. 

 

This paper will describe spacecraft optical signature modeling and simulation techniques to develop sensing and 

identification algorithms for observing and characterizing key spacecraft features. The simulation results are based 

on electro-optical signatures apparent to nonimaging sensors, along with related observable features derived from 

multicolor and multiviewing aspect scenarios. This model and simulation analysis capability is used to support 

programs to monitor spacecraft performance status and identify anomalies associated with spacecraft 

damage/deterioration due to space debris or micrometeorite impact, thruster exhaust deposition or material aging. 

 

The development of state-of-the-art optical signature modeling tools to perform high-fidelity satellite models (such 

as the Air Force Academy FalconSat-5 or AFRL TacSat-3) simulations to characterize spectral radiant intensities 

apparent to passive, remote, nonresolved imaging sensors are described in detail.  Simulations are performed for a 

comprehensive scenario range of natural (solar and earth) illumination and viewing conditions.  Results are 

generated for comparing baseline, streamlined geometry models with the actual higher fidelity models that capture 

vehicle small-size hardware components and modifications. 

 

Output consisting of radiant intensity history apparent to ground-based sensor locations for vehicle trajectories that 

capture a comprehensive range of illumination conditions from the sun and underlying earth scene are presented for 

extensive spectral band coverage spanning the electro-optical spectrum from visible wavelengths through extended 

long-wave infrared. The analysis of selected results is summarized with the perspective of developing future 

generation sensing and identification algorithms.  

 

1. INTRODUCTION 

 

Monitoring the operational status or health of spacecraft for early detection of detrimental anomalies presents a 

significant challenge to an organization or analyst responsible for the spacecraft.  Critical components, such as solar 

panel arrays, sensors, and communication equipment, may require enhanced preflight characterization processes to 

support monitoring by passive, remote, nonimaging optical sensors.  

 

While in orbit a spacecraft is exposed to a variety of hostile natural and man-made phenomena that can damage 

critical components on the spacecraft. Potential surface damaging events that can occur are (noncatastrophic) impact 

due to space debris or micrometeorites on surfaces of spacecraft that can affect the operational status of the system. 
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A more subtle surface modifying or damaging phenomenon is that due to exhaust plumes from thrusters on the 

spacecraft itself or nearby systems. In the low-atmospheric densities of space, thruster plumes can extend for 

thousands of kilometers. The damage to a spacecraft due to engine exhaust could result in a significant change in the 

optical properties of spacecraft solar panels and sensors. 

 

When in orbit, spacecraft require onboard or secondary propulsion systems to perform orbit transfers, orbital 

maintenance, and attitude control maneuvers. A serious issue in the use of propulsion systems on spacecraft is plume 

impingement. In addition to generating unwanted torques and localized surface heating, impingement of a thruster 

plume on surfaces can produce surface contamination or degradation.  

 

Thrusters are nominally positioned so that the exhaust plumes avoid potential impact on the surface structures of the 

spacecraft. However, under certain conditions the onrushing atmospheric wind of primarily O-atoms during certain 

Low Earth Orbit (LEO) maneuvers can deflect the exhaust plume to impinge on critical spacecraft components, such 

as solar panels or sensors. The potential contamination of spacecraft surfaces by engine exhaust plumes can degrade 

the performance of sensitive optical and thermal systems and affect mission performance.  

 

The deposition of engine exhaust and plume contaminant material on sensitive spacecraft surfaces can modify the 

optical properties of the spacecraft surface materials, thus changing the absorptivity, emissivity, reflectivity, and 

transmissivity of certain functional spacecraft surfaces such as thermal control coatings, optical view ports and 

lenses, or solar panels. In addition to plume contaminant deposition on spacecraft surfaces, mechanical abrasion or 

surface material erosion resulting from exhaust-generated particulates (soot or ice particles due to condensation) can 

be swept back onto the spacecraft by the ambient atmospheric wind, essentially “sand-blasting” the spacecraft 

surfaces. Engine exhaust material deposited as plume contaminant layers on a surface could also produce surface 

chemical reactions, especially in the highly reactive O-atom surrounding atmosphere, and thus cause additional 

changes in surface properties. 

 

The types of propellants used on the majority of spacecraft systems for orbital changes, attitude control, and other 

station keeping maneuvers include warm or cold gas monopropellants, pure hydrazine monopropellant thruster 

systems, and bipropellants using hydrazine derivatives such as MonoMethylHydrazine (MMH) and Unsymmetrical 

Dimethyl Hydrazine (UDMH).  

 

The cold gas monopropellants typically used are H2, N2, NH3, Freon, He, Ar, or Kr. These are primarily used on 

smaller spacecraft for attitude control and have typical thrust ranges of 0.05 to 200 N. These propellants can 

potentially produce condensed particles (droplets) in the exhaust, plus condensed (frozen) H2O due to chemical 

interaction with the atomic oxygen in the atmosphere, which can be swept back onto the spacecraft surface by the 

ambient wind.  

 

Pure hydrazine engine possible contaminants include water, unreacted hydrazine, NH3, and ammonia hydrate. The 

specific engine parameters influence the amount of undecomposed hydrazine droplets which have been observed in 

both flight and ground tests to be significant in concentration. There have been successful measurements of 

detectable deposits from hydrazine rocket engine plumes in a high vacuum. Hydrazine is very reactive and can 

chemically react with surface materials to change optical properties. The water can freeze in the cold environment of 

space resulting in ice particles that can erode spacecraft surfaces if swept back onto the spacecraft. 

 

For the MMH and UDMH propellants, significant amounts of H2O, CO, and CO2 exist in the exhaust plumes that 

can freeze in the space environment and potentially impact the spacecraft surfaces as condensed particles and 

change the optical properties of the surface materials. Carbon particles (soot) in the exhaust of these propellants can 

also be a potential source of contamination of spacecraft surfaces. Therefore, it is essential for operators of satellites 

and other spacecraft to be able to assess possible physical damage to their systems.  

 

In this paper we explore possible means to assess spacecraft operational status and provide damage assessment using 

remote electro-optical measurements systems.  The location of the sensor(s) to provide this assessment is not 

important, as either ground-based or space-based systems can be utilized. However, in the following analysis 

ground-based sensors are assumed. In either case, it is assumed the spacecraft observed by the sensor will be 

nonresolved, that is, it will appear as a point source to the detector.  
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2. METHOD 

 

In this analysis we use computer models of a typical spacecraft to produce simulation hardbody signature data to 

determine whether ground sensors can detect changes to spacecraft surfaces due to plume impingement or space 

debris impact. These events can modify the optical properties of a surface material such as may be found on the 

solar panels. The goal is to develop a method for the prediction of contaminant effects on spacecraft surfaces using 

passive remote (nonimaging) sensors.  

 

For this analysis, a satellite computer model similar to the TacSat-3 (Fig. 1) was constructed with arbitrary 

dimensions. The spacecraft dimensions were 1 m main diameter and 3 m total length. The three solar arms’ 

dimensions were 0.57 m width by 2 m length. Ground-based sensors were chosen to perform detection in the 3.0 – 

5.0, 8.0 – 12.0, and 14.0 – 21.0 μm spectral bands. These sensors were situated on Maui at the AMOS facility at an 

altitude of 3,048 m above sea level. The trajectory of the spacecraft was a fly-over of the AMOS facility with the 

atmospheric data recorded on 9 June 2009 starting at 0000 hr.   

 

 

Fig. 1. Artist Conception of the TacSat-3 Satellite 

 

To simulate degradation or soot deposition of the solar panels, selected areas of the solar arms were coated with 

black paint. The black paint optical and thermal properties are built into the signature generation program and were 

chosen because of the higher solar absorptivity and thermal emissivity relative to the other surface materials, as 

summarized in Table 1.  

 

For the main body of the satellite model, varying aluminum alloys were used; the first hexagonal section and 

cylindrical section were composed of 2014-T4 aluminum, while the second hexagonal section was composed of an 

aluminum-zinc alloy. The solar arms were a base of the aluminum-zinc alloy overlaid with Silicon solar panel 

material. The connecting areas between each of the three sections were composed of silicon phenolic, and the band 

ring on the top of the satellite was chosen to be stainless steel. The antenna and other accessory components were 

composed simply of the aluminum-zinc alloy.  

 

Figures 2 – 4 show three views of the TacSat-3 representative model used in the following analysis, given the 

dimensions and materials in Table 1. 
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Table 1. TacSat-3 Satellite Model Parameters 

Satellite 
Component Material Thickness (cm) 

Thermal 
Emissivity 

Solar 
Absorptivity 

First Hexagonal 
Section 

Aluminum 
(2014-T4) 0.75 0.1371 0.3986 

Second 
Hexagonal 

Section 

Aluminum 
Alloyed with 
Zinc (7075) 0.75 0.4002 0.1108 

Cylindrical 
Section 

Aluminum 
(2014-T4) 0.75 0.1371 0.3986 

Caps for 
Hexagonal 
Sections Silica Phenolic 0.5 0.5400 0.9085 

Retaining Ring 
for Solar Panels Stainless Steel 0.75 0.4124 0.1312 

Solar Panels 
(Top) 

Silicon Solar 
Cell 0.25 0.8044 0.7860 

Solar Panels 
(Backing) 

Aluminum 
Alloyed with 
Zinc (7075) 0.75 0.4002 0.1108 

Added 
Instruments 

Aluminum 
Alloyed with 
Zinc (7075) 0.75 0.4002 0.1108 

"Damaged" 
Solar Panels 

Black Paint of 
Lord Corp. 0.5 0.9500 0.8800 

 

 

Fig. 2. Top of TacSat-3 Satellite Model (Sensor Observation View) 
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Fig. 3. Side View of the TacSat-3 Satellite Model 

 

Fig. 4. Bottom View of the TacSat-3 Satellite Model 

To determine whether a change in the emissivity in a region on the solar panels (representing an area of plume 

contamination) is detectable from unresolved, radiometric signatures, several test cases were run with varying 

amounts of black paint cover on the three solar array arms on the satellite model. The amount of cover was 

systematically increased by the same increment each time by 0.1425 m2 for each respective trial to simulate the 

detection of an observable pattern. Simulations were then performed to obtain the radiant intensities (J1, J2, J3) for 

the 3 infrared spectral bands, (1) 3.0 – 5.0; (2) 8.0 – 12.0, and (3) 14.0 – 21.0 μm. From the radiant intensity 

simulation data, the corresponding three two-color temperatures (T12, T13, and T23) and emissive areas (εA12, εA13, 

and εA23) were determined.  

 

The resulting color temperatures for six of the test runs are shown in Fig. 5. These represent no cover (baseline test), 

0.2% cover (minimum detectable cover with size prediction error within 10%), 12.5%, 50%, and 100% (complete 

cover of all three solar panel arms). Note that although the change in the color temperatures in the 0.2% case is 
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virtually undetectable relative to the baseline case, the change in the values markedly changes (particularly the T23 

color temperature) as the cover on the solar array panels is increased. 

 

 

 

Fig. 5. Change in Color Temperatures as Contamination Cover on Solar Array is Increased 

 

Using these results, the test cases were statistically evaluated to determine whether there was a noticeable, 

systematic change in the simulation data that could potentially correlate to the amount of cover on the panels. In this 

analysis, it was found that there was a strong linear correlation between the amount of black paint coverage on the 

solar arms and the signature detected by the ground sensors. A few preliminary regression fits to the simulation data 

were attempted, but these statistical analyses did not appear to be sufficiently robust or versatile. This was 

predominately due to the strict dependence that this type of analysis had on the conditions that were used for a 

particular test.  

 

To provide a more robust statistical method of utilizing nonresolved signature data for damage assessment, a 

multiple regression approach was investigated. With this method, multiple data sets could be utilized simultaneously 

and referenced across their respective parameters collectively or independently. Other parameters could also be 

used, such as changing aspect angle and/or satellite motion (frequency oscillations due to rotation or spin), to more 

accurately determine the specific effects that certain physical aberrations, in this case solar panel corruption, can 

have on the target.  
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To incorporate the multiple regression approach, a MATLAB script was developed that accesses the data from 

individual CSV (comma separated variable) files containing the signature simulation data (spectral intensities, color 

temperatures, emissive areas, any other parameters) and stores the data in a structured array that can be easily 

accessed and utilized. These CSV files are created by extracting the required data from the optical signature 

generation code simulation output files. From that data, the code then computes the Multiple Linear Regression 

(MLR) analysis using the parameters specified from a list loaded into the collective structure of data.  

 

Once the data are loaded and the “Calculate Coefficients” option is selected in MATLAB, the code accesses the 

specified data and performs the MLR. The MLR method is a way to solve the following equation: 

 

 
where T is an n x 1 vector containing the condition that is tested (in this case, the amount of cover on a solar panel), 

X is an n x m matrix containing data from the respective n simulation trials of each of the m parameters, and β is an 

n x 1 vector of coefficients that relates X to T and is the solution to the MLR. Since T and X are not necessarily 

square matrices, they may not have inverses that can be used to easily compute β.  

 

To solve for β, the ML divide (\) operator in MATLAB is utilized ( . If the normal equation is badly 

conditioned relative to the original system, the MATLAB ML divide operator avoids solving the matrices directly. 

Instead, to handle nonsquare matrices, a QR factorization orthogonal triangular decomposition method can be 

utilized in MATLAB to create a lower and upper triangular matrix from X and T whose product is evaluated 

numerically to produce an approximation of β. This process is quick and stable and produces a unique solution for β, 

but at the cost of adding some inherent error derived from both the approximations of the triangular matrices and the 

computation of their product. While this error is usually relatively small, on the order of 10-16, it can potentially 

increase if X and T are not well conditioned. In this analysis, the simulation data (radiant intensity, color 

temperature, and emissive area) for the three bands (X) and solar panel contamination cover (T) are well-conditioned 

matrices. While this potential error is acknowledged, it is not directly calculated or incorporated into the analysis.  

 

Table 2 shows an abbreviated (6 trial points) representation of the X matrix. Note that the X matrix (nominally 19 X 

12, for all of the 19 trial points) as shown for this abbreviated case is a 6 x 12 array so that the two separate tables 

(shown in Table 2 as 6 X 6 arrays stacked on top of each other for convenience of presentation) are actually oriented 

side by side. In addition to the nine optical parameters (three intensities, three color temperatures, and three emissive 

areas) provided by the simulation code, an AC (alternating component) parameter was added to the matrix that 

accounts for anomalies in the motion (rotation, spin) of the spacecraft.  The AC component is determined using a 

wave packet analysis approach by computing the Fourier Transform of each radiant intensity band for a specific 

trial, multiplying it by its complex conjugate, and dividing it by the total time-span of the data. To convert this into a 

single fractional value corresponding to each band, the resulting data are summed over a user-selected range or as a 

default from the fifth data marker on, and the result is normalized with respect to the initial, or peak, value obtained 

from the transform. The use of this component allows the MLR analysis to avoid any sharp peaks caused by 

anomalies (such as solar glint) in the periodic rotational satellite motion that appears in the simulations as a response 

to the observation of the covered areas on the solar panels.  
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Table 2. A Selection of the First Six Entries in the X Matrix (Shown Stacked for Convenience) 

Color 

Temperature 

Bands 1-2

Color 

Temperature 

Bands 1-3

Color 

Temperature 

Bands 2-3

Emissive 

Area 

Bands 1-2

Emissive 

Area 

Bands 1-3

Emissive 

Area 

Bands 2-3

318.491 311.657 291.615 2.443 3.056 3.737

318.472 311.652 291.650 2.444 3.056 3.735

318.459 311.655 291.693 2.446 3.056 3.735

318.434 311.657 291.768 2.449 3.058 3.733

318.385 311.668 291.943 2.456 3.060 3.730

318.331 311.679 292.127 2.463 3.063 3.727
Radiant 

Intensity 

Band 1

Radiant 

Intensity 

Band 2

Radiant 

Intensity 

Band 3

Fractional 

AC Band 1

Fractional 

AC Band 2

Fractional 

AC Band 3

8.663 124.904 122.864 2.91E-05 9.54E-06 3.12E-06

8.662 124.918 122.849 2.90E-05 9.48E-06 3.09E-06

8.665 124.989 122.884 2.90E-05 9.48E-06 3.09E-06

8.669 125.099 122.930 2.91E-05 9.50E-06 3.10E-06

8.682 125.370 123.051 2.94E-05 9.59E-06 3.13E-06

8.695 125.656 123.180 3.00E-05 9.77E-06 3.21E-06  
 

Table 3 gives the values in the T matrix or the different solar panel coverage test cases. The areas here correspond 

row by row to the data in matrix X. 

 

Table 3. T Matrix, Representing the Different Solar Panel Coverage Test Cases 

Test Cases 

(m^2)

0

0.007

0.014

0.0285

0.057

0.0855

0.1425

0.285

0.4275

0.57

0.7125

0.855

0.9975

1.14

1.71

1.71

2.28

2.85

3.42  
 

As can be seen from Table 2, elements of matrix X are singular values. This is a necessary restriction on X due to the 

nature of the computation. For that reason means are used for each data type and sensor combination. Therefore, the 

means of the radiant intensities and color temperatures used for each of the three bands were used in the analysis. 
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3. ANALYSIS RESULTS 

 

The MLR method allows an analyst to access several parameters simultaneously and, unlike principal component 

analysis, utilize them collectively to determine how a certain parameter affects the simulated data (i.e., how solar 

panel aberration affects the radiative signature). It is also a robust and versatile method since it is generically 

conditioned according to changes defined in the model and the parameters that are used to describe those changes. 

The computations, time-wise, are relatively fast using current computer systems, and the methods used within the 

computation are stable, which prevents errors that could potentially arise from small input changes.  

 

The primary parameter investigated in the development of this method was the amount of solar panel area (m2) 

covered by black paint. This was an arbitrarily chosen parameter and could easily be changed to another metric, 

such as the addition of various size features on the spacecraft at a given location, if desired. Also, for this 

preliminary analysis, we chose to use only the radiant intensity, color temperature, and emissive area simulation 

measurement data for our calculation of β in order to obtain the most accurate information possible. Other possible 

parameters that could be used in the analysis would be sensor-target observation angle or range. In the trajectory and 

observation geometry investigated in this analysis these parameters were not an issue. In other observation 

geometries, corrections due to these factors would be necessary. 

 

The Multiple Linear Regression analysis predictions of the solar panel area coverage, compared with the actual 

coverage used for the nonresolved signature simulations, are given in Table 4. The 0 m2 trial (no solar panel 

coverage) provides an estimate of the inherent error (0.067%) of the MLR method. A plot of these results, 

comparing the predicted solar panel coverage with the actual values used in the simulations, is shown in Fig. 6. 

 

Table 4. Multiple Linear Regression Analysis Predictions vs. Actual Coverage 

Trial 

Number

Actual 

Amount of 

Cover (m^2)

Predicted 

Amount of Cover          

(m^2)

Percent Error 

(%)

1 0 -0.0007 0.0668

2 0.007 0.0075 7.3971

3 0.014 0.0148 5.3647

4 0.0285 0.0282 1.1770

5 0.057 0.0562 1.4836

6 0.0855 0.0854 0.1220

7 0.1425 0.1429 0.2755

8 0.285 0.2856 0.2007

9 0.4275 0.4272 0.0784

10 0.57 0.5707 0.1200

11 0.7125 0.7123 0.0315

12 0.855 0.8551 0.0115

13 0.9975 0.9970 0.0496

14 1.14 1.1396 0.0364

15 1.425 1.4264 0.0994

16 1.71 1.7103 0.0190

17 1.71 1.7100 0.0012

18 2.28 2.2805 0.0214

19 2.85 2.8495 0.0191

20 3.42 3.4202 0.0046  
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Fig. 6. Predicted vs. Actual Solar Panel Coverage 

 

As we can see, the algorithm is capable of predicting the amount of cover on a solar panel with reasonable accuracy 

for smaller spot sizes and excellent accuracy for larger values. For example, trial #20 is the best case scenario for 

solar panel corruption detection and quantification, representing the case where all 3 solar panels (total area 3.42 m2) 

are covered with the black paint. On the other hand, trial #2, with surface area coverage of 7 X 10-5 m2, represents an 

extremely small feature (0.205% of the entire solar panel area or 0.614% of one solar panel), yet the MLR analysis 

estimates the size from the nonresolved signatures to within 7% accuracy.  

 

The results of this analysis also show (see Fig. 7) that as the area coverage decreases from 500 down to 70 cm2, 

there is a rapid increase in the error associated with the MLR prediction, so that for areas less than 70 cm2 the 

experimental error would be greater than 10%, which is the minimum requirement for acceptable estimates. It 

should be noted that these results will be specific for the current configuration and simulation parameters. The 

results could be much different for other trajectories, illumination conditions, sensor bands, or spacecraft 

configurations. This algorithm needs to be (and will be) tested for other spacecraft configurations and variations in 

the simulation parameters.  
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Fig. 7. MLR Estimation Error vs. Actual Area Coverage 

 

4. DISCUSSION/FUTURE STUDY 

 

This analysis should be viewed only as a proof of concept in the sense that the correlation and algorithm developed 

is not necessarily a solution to fit all circumstances and would need additional analysis, test, and evaluation in order 

to be completely general and valid for all potential sensing and identification scenarios. The analysis presented in 

this paper is a first step in the generation of a method for providing surface area coverage predictions.  

 

In a real-time mode one would want to solve the two trial cases (no coverage representing the baseline measurement 

and an unknown partial coverage) using the parameters (radiant intensity, color temperature, emissivity area) for 

multiple observation times to increase the statistics.  

 

Once fully developed, however, this technique could have potential application in any health monitoring situation 

where the anomaly of interest can be observed by passive remote sensors. A necessary requirement is that the 

anomaly on the spacecraft must have identifiable thermal and/or optical (emissive, reflective) characteristics that 

will produce a measureable change in the observed unresolved spectral signature. In this regard, more study is 

required on how different material compositions can affect the detectability of solar panel aberrations.  

 

Developing a generalized algorithm will focus on improving the validity of the correlations to make it more 

applicable to all cases of interest. In addition to using the Multiple Regression Technique to characterize all 

detectable aberrations or anomalies, a single-correlation vector technique could also be applied to such phenomena 

to provide sufficiently accurate predictions.  

 

This approach that was developed for use in detecting and analyzing the condition of the solar panels could be used 

to evaluate changes in other regions of spacecraft, such as the addition or deployment of antennas and other 

hardware features. This would enable personnel utilizing the spacecraft to be able to determine or confirm from 

remote ground optical sensors that experimental packages or solar panels have properly deployed.  

 

Future investigations will evaluate how viewing angle and trajectory affect the prediction capabilities of the 

correlation, i.e., how much better the matrix β can identify and predict the size of anomalies on spacecraft for more 

complex trajectories than the Maui fly-over used in this analysis. Trajectory dependent parameters will be required 
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to improve the accuracy, increase the usability, and make the algorithm more general. In this regard, we propose 

using sensor observation, or aspect angle and range corrections, to source correct the data.   

 

As noted in this paper, the particular development of the correlation vector, β, did not address or include the errors 

associated with the numerical approximations. It is possible to include an error term, ε, in the MLR method format 

that may further improve the accuracy of our algorithm. In this case we have the expression, 

 

  XT
 

 

In this equation, T, X, and β are as before and ε would be a matrix or vector containing the errors associated with the 

computation of β. In general, ε can be positive or negative.  For our correlation, however, we would require that ε be 

negative in order to minimize errors due to the numerical approximations. The investigation and possible inclusion 

of the error associated with this process could improve the prediction algorithm for remote detection and 

characterization of spacecraft anomalies.  

 

Additional investigation is required to determine how detailed the characterization of a particular phenomenon needs 

to be to develop an accurate algorithm. In the current analysis we achieved acceptable accuracy, approximately 90%, 

with 12 parameters and 19 different characterizations of those parameters, i.e., 19 different trials with varying 

amounts of solar panel cover in each trial. It would be of significant interest to investigate how few parameters and 

characterizations could have been used to achieve similar accuracy.  


