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ABSTRACT 

 
We investigate two variations of the classic multi-frame blind deconvolution (MFBD) 
algorithm. The first is compact MFBD, a technique for reducing the number of unknown 
variables in the MFBD problem while still maintaining leverage from all available data 
frames. The second is a multi-channel MFBD algorithm. We demonstrate the performance of 
the former using real ground-based imagery of a satellite and show that it produces an image 
with fewer artifacts than were obtained with conventional MFBD.  We demonstrate the 
performance of the latter using simulated imagery from two telescopes with different sized 
apertures, and show that data included from the smaller aperture telescope can facilitate an 
improved restoration over that obtained using solely the data from the large aperture 
telescope. Both variations of the MFBD technique have application in space situational 
awareness. 
 

 

BACKGROUND 

Multi-frame blind deconvolution (MFBD) is an image restoration technique developed in the 
early 1990s [1,2] that allows for the reconstruction of an image from multiple blurred and 
noisy observations, without prior knowledge on the point-spread functions (PSFs) for the 
observations.  With this capability, it is clear why MFBD has rapidly found application in 
numerous areas of research including astronomy, remote sensing, medical imaging, 
microscopy and space situational awareness. 

MFBD algorithms typically estimate the object and PSFs that describe the observed data 
through minimization of a cost function that has the form 

cost = data fit terms + prior terms. 
 

Here the data fit term compares the observed data with the model for the data generated from 
the object and PSF models. The „prior terms‟ inject additional information that may be known 
about the imaging system or the noise processes corrupting the data. The underlying 
assumption is that the more prior information injected into the problem, the higher the fidelity 
of the solution.  

In Fourier space the data fit term can be described by 
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signal-to-noise ratio (SNR) is greater than one. 
 
The prior terms come in many forms - some physical, some not (e.g., a widely-used entropy 
prior may be suitable for describing atoms in a box, but it is not physically meaningful for the 



imaging of complex scenes). Here we introduce two (physical) priors that are based on the 
observation that in the case of noise-free data, the ratio of the Fourier spectra of two data 

frames 
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for ( ) ( ) 0k kN u N u  where ˆ ( )kH u is the optical transfer function, ( ), ( )k kN u N u are the 

additive noise components for the thk and thk  frames and the PSFs are assumed to be 

spatially invariant and incoherent. 
 
The first of our “spectral ratio” based prior terms enforces consistency between the estimated 

PSFs and is given by 
2

' ' '

1 '

ˆ ˆ( ) ( ) ( ) ( ) ( )
K

kk k k k k

k k k u

M u G u H u G u H u
 

 . Here
  
M

kk '
(u)  is a mask 

that is unity where both 
  
G

k
(u) and 

  
G

k '
(u) have SNR>1. 

 
Our second spectral ratio-based prior term enforces positivity on the estimates for the PSFs 

and is given by 
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F 1 A denotes the inverse 

Fourier transform of  A ,
  
M

j ,k
(u) is a similar mask to 

  
M

kk '
(u)  and the summation over x is 

only over pixels with negative values. This prior has application only in the case when the 
user wants to perform “compact” MFBD (CMFBD), where the object and PSFs are explicitly 
modeled for a subset of the data frames ( K  “control” frames) but all the data frames ( N ) are 
used to leverage the restoration [4]. Such a case can occur when N is very large and the 
number of variables required to model all the data is impractical due the large dimensionality 
of the parameter hyperspace. This leads to inevitable entrapment in local minima during the 
optimization. In CMFBD the  J (  N  K ) “non-control” frames still provide leverage on the 
restoration through this prior that demands that the PSFs for the non-control frames be 
positive. These PFSs are estimated via spectral ratios, and the PSF estimates for the control 
frames are modeled as a band-limited positive function. This prior provides a “hard” 
constraint for an object whose Fourier spectrum extends over the entire spatial frequency 
range sampled by the atmospheric OTFs (e.g. a star). But this is only a “soft” constraint for an 
object with a more compact Fourier spectrum that does not fully cover the OTF spectral 
extent.  Here “hard” means that the constraint can be enforced throughout the optimization, 
while “soft” means the constraint can only be used to guide the restoration at the beginning of 
the optimization.   
 
We note that both spectral ratio-based priors enforce the inherent temporal variations in the 
data that are due to the PSFs. Moreover, both priors can easily be extended to the case where 
we have additional data from more than one channel (e.g., phase diversity data or data from 
multiple apertures). Then, we just duplicate the cost function terms described above for the 
additional channels. However, it is important to note that for the multi-channel scenario there 

are additional “cross-channel” spectral ratios, 
  
G

k

l (u) / G
k '

l ' (u) , that can be used to bolster the 

PSF consistency prior that has been introduced above. For multi-channel data the objective 
function becomes 
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where 
 


i
are weights that are adjusted so that the derivatives of the cost function with respect 

to each variable are balanced across the terms [4] and L is the number of data channels.  
 

This general cost function is applicable to both MFBD (  J  0 ) and CMFBD (  J  0 ). Please 

note that it is easy to show that for   L  1,   J  0 and
 


2
 0 , this cost function is identical to that 

obtained with Equations (5) and (10) in [4]. In addition, for 
 


2
 

3
 0 , this cost function 

reduces to that used in what we refer as “traditional” MFBD, where positivity on the object 
and PSFs is enforced as part of their physical model. 
 
In this paper, we study two implementations of this general cost function: 

2 30, 1, 0, 0J L       and 
2 30, 2, 0J L      . The former represents single channel 

CMFBD, the latter multi-channel MFBD.  
 
 

COMPACT MFBD 

 

We evaluate the performance of our CMFBD algorithm using real ground-based imagery of 
the SEASAT remote sensing satellite observed in the near infrared using the GEMINI 1.6m 
telescope on Haleakala (Maui) during daytime. We use   N  271data frames with 

  K  36 control frames. Examples of the data frames are shown in the upper two panels of Fig  
1. Please refer to [4] for details of the modeling of the object and the PSFs, and the general 
implementation of CMFBD. On the lower left is a restoration using a conventional MFBD 
algorithm [5], while the lower right is the CMFBD restoration which was obtained by 

setting
1 2 31, 0.1      with the soft positivity constraint metric (the second spectral ratio-

based prior term) held until the change in its value was less than 10% which occurred after 
about 80 iterations for this particular target.  The consistency metric was enforced for the 
entire minimization.  The main bar across the image represents the down-looking synthetic 
aperture radar antenna, and the two panels extending out represent the solar panels.  On 
comparing the two images, it is clearly noticeable that the solar panels are more well-defined 
and there is an obvious decrease in the number of artifacts in the CMFBD image.  



 
Figure 1 Top left: best data frame. Top Right: worst data frame. Bottom Left: 

Restoration using a conventional MFBD algorithm [5]. Bottom right: Restoration using 
the CMFBD algorithm 

 
 

MULTI-CHANNEL MFBD 
 
Here, we study the possibility of using multi-channel MFBD with focal plane imagery 

obtained from two telescopes 
2 3( 2, 0, 0)L J       to improve the fidelity of the restored 

image of the object over what can be obtained from a single telescope. The telescopes have 
different apertures and are in proximity to each other, such that the target object presents the 
same pose to each telescope.  
 
For our preliminary tests we use simulations of imagery obtained simultaneously with 3.6m 
and 1.6m telescopes. We assume an object of visual magnitude 2.3 and turbulence conditions 
characterized by D/r0= 27 for the 3.6m telescope. Please note that adaptive optics is not 
effective in these conditions. The image cadence for both telescope systems is 50 frames per 
second and both cameras have the same field scale.  The image data are noise free, as we want 
to investigate the ability of our restoration algorithm to unscramble the turbulence problem. 
 
To study the effect of adding a second data channel, we ran MFBD for two scenarios - both 
with the same total photon count (6x10

7
 photons). This is to ensure that same amount of 

information is available in each scenario. The first test used 6 frames of 3.6 m data, and the 
second used 4 frames of 3.6 m data and 10 frames of 1.6 m data. Due to the aperture sizes, the 
number of photons collected in 10 data frames from the 1.6 meter is equivalent to the total 
photons in two data frames from the 3.6m telescope. 
 
The restorations were run for 5000 iterations. The results, shown in Fig. 2, clearly show that 
there is a marked improvement in image fidelity when using the data from both telescopes. 
We infer that this gain comes through better constraining of the low spatial frequencies during 
the restoration process. Fig. 3 shows that this result is robust even in the presence of noise on 
the data.  



 
Figure 2 Top Row: Data frame from GEMINI 1.6m on left, data frame from AEOS 3.6m 

in center. On the right is a restoration of the AEOS imagery (6 frames). Bottom Row: 
MFBD restoration of both AEOS imagery (4 frames) and GEMINI imagery (10 frames) 

on the left. The diffraction-limited image for the GEMINI 1.6m is shown in the center 
and the diffraction-limited image for the AEOS 3.6m on the right. 

 Observations are at 0.90 microns. 
 

 
Figure 3 Shown are restorations in the presence of photon counting noise. Left: 

restoration using 6 noise corrupted data frames from the 3.6m telescope and Right: 

Restoration of imagery using both 3.6m data (4 frames) and 1.6m data (10 frames) . 
 
 

DISCUSSION 
 
MFBD is a difficult mathematical and computational problem that has received significant 
attention in recent years due to its wide applicability. The mantra of MFBD practitioners has 
been “the more physical constraints used, the better the restoration”.  Indeed, our preliminary 
results shown above for the compact and multi-frame variations of MFBD support this 
philosophy.  In particular, we have validated CMFBD using real data and have shown that 
there is a potentially significant benefit to fusing data from telescopes with different sized 
apertures. Having said that, we note that while our results for the multi-channel approach are 



extremely encouraging, further studies need to be performed to understand the range of 
conditions where such an approach will be effective.   
 
As more and more data channels are used to provide additional constraints on the MFBD 
problem, the number of variables required to model all the data unfortunately exceeds 
practical levels. This happens both computationally due to memory limitations and 
mathematically, when the dimensionality of the parameter hyperspace becomes extremely 
large, leading to inevitable entrapment in local minima during the optimization.  Our results 
indicate that the merging of the compact and multi-channel extensions of MFBD offers a way 
to overcome this limitation. Additionally, it also provides a possibility for an extension of 
MFBD research to potential scenarios consisting of datasets that are orders of magnitude 
larger than those currently processed.   
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