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ABSTRACT

There is a common suspicion that formal covariances do not represent a realistic measure of orbital un-
certainties. By devising metrics for measuring the representations of orbit error, we assess under what
circumstances such lore is justified as well as the root cause of the discrepancy between the mathematics
of orbital uncertainty and its practical implementation. We offer a scheme by which formal covariances
may be adapted to be an accurate measure of orbital uncertainties and show how that adaptation performs
against both simulated and real space-object data. We also apply these covariance adaptation methods
to the process of observation association using many simulated and real data test cases. We demonstrate
that covariance-informed observation association can be reliable, even in the case when only two tracks are
available. Satellite breakup and collision event catalog maintenance could benefit from the automation made
possible with these association methods.

1. INTRODUCTION

Assessing the quality of orbital states estimated from observational data is a bedrock goal of astrodynamics.
Tasks as fundamental to space situational awareness as resident space-object catalog maintenance and refine-
ment, initial orbit determination (IOD), object correlation, space event detection and conjunction analysis
all depend on a quantitative understanding of how well observations of a particular space object translate
into an accurate picture of where that object is and where it will be in the future.

Conceptually, orbital uncertainty is straightforward. Measurements of a space object are made by a particular
sensor with an understood confidence. The measurements are then translated into a state by means of a
best-fit to a model of orbital dynamics. While the resulting state is the best fit to the measurements, it
is not the only fit consistent with them. The “orbital uncertainty” is precisely the range of states that are
consistent with the given measurements.

While the concept of orbital uncertainty is straightforward, the mathematical representation of orbital un-
certainty in a compact and computationally efficient way is not, unless simplifying assumptions are made.
Formal covariances are derived from such a set of simplifying assumptions. If the uncertainties are sufficiently
small and if the uncertainty statistics are sufficiently gaussian, linear error theory is applicable and the state-
uncertainty region may be represented by ellipsoidal volumes centered on the estimated state; the surfaces
of these ellipsoidal volumes are constant-valued surfaces of the underlying multi-dimensional gaussian distri-
butions. Covariances contain the parameters that define those multi-dimensional gaussian distributions and
the corresponding ellipsoidal volumes.

As a practical matter, the computational simplification that a covariance represents rarely works under
conditions of interest. But why is this the case? What is the origin of the discrepancy? Let us review some
of the important insights that have already been made in the attempt to understand the problem.

2. THE EXISTING LITERATURE

Junkins et. al. [1] studied the limitations of applying linear error theory to orbital state propagation, describ-
ing how nonlinearities in the equations of motion of the chosen set of state variables affected error propagation.
Monte-Carlo simulations were applied to compare the accuracy of the covariance to the true uncertainty for
three sets of state variables: osculating position/velocity in cartesian space, osculating variables in polar
coordinates and mean keplerian orbital elements. The results indicated that the covariance associated with
a set of mean keplerian elements produced the best agreement with the Monte-Carlo point cloud. Hill et.
al. [2] followed up the Junkins analysis by using a set of state variables in rectilinear coordinates.

Sabol et. al. [3] compared covariance and Monte-Carlo simulated point clouds for state variables in osculating
position and velocity, osculating equinoctial elements and mean equinoctial elements. A realistic initial
covariance and set of Monte-Carlo runs was initiated using simulated radar tracks. The analysis showed that
the mean equinoctial elements provided the best covariance agreement with Monte-Carlo simulations, while
the osculating equinoctial and osculating position/velocity coordinates providing the 2nd best and 3rd best
agreement, respectively.

The results from these studies suggest there are two distinct reasons for errors in propagating the covari-
ance. There are those due to imposing a rectangular coordinate system onto what is inherently a nonlinear
trajectory, i.e. geometry induced errors, and those due to applying linear error theory to nonlinear equations
of motion. Sabol, et. al. surmised that the improved performance of the osculating equinoctial variables
over the osculating rectangular coordinates was due to geometry, and that the improved performance of
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Figure 1. Schematic depiction of the algorithm behind the performance metric.

the mean equinoctial elements over the osculating equinoctial elements was due to the mean elements being
more linear in time than the osculating set.

3. ROADMAP

This paper presents work to produce covariance and Monte Carlo simulation results that confirm findings in
Junkins [1], and Sabol [3]. The covariance associated with a set of mean equinoctial elements outperforms
the covariance of the osculating position and velocity vectors and the covariance of osculating equinoctial
elements. In addition, a method to improve the accuracy of the initial and propagated mean equinoctial

covariance is discussed. This method is shown to be effective both in Monte-Carlo simulations and with real
observational data on satellites. A prototype observation-association and catalog-initialization/maintenance

system which makes use of the accurate mean equinoctial covariance is also described. The results from the
prototype indicate that accurate covariance can be effective even when it is based on short tracks of radar
observations.

Several aspects of this study required high precision orbit determination and propagation tools. To satisfy
this requirement we made use of the Goddard Trajectory Determination System (GTDS) [4]. Two of the
propagation theories in GTDS were exercised, the Cowell propagator and the Draper Semianalytic Satellite
Theory (DSST) propagator [5]. The perturbations modeled in GTDS for satellite propagation included 30x 30
Earth gravity coefficients from the JGM-2 gravity model, atmospheric drag, lunar and solar point-mass
gravity and solar radiation pressure. It should be noted that although drag was included in the modeling,
the uncertainty in knowledge of the drag coefficient and uncertainty in the knowledge of atmospheric density
were not addressed.
4. PERFORMANCE OF ORBIT-UNCERTAINTY MEASURES

For an uncertainty region to be considered meaningful, it should be the case that the true state lies somewhere
within it. In practice, the uncertainty region is generally some form of P% confidence region. That being the
case, we would expect to find the true state within the uncertainty region P% of the time; this directly points
the way to our method of assessing uncertainty measures, which is to numerically estimate the probability
that the true state is found within the predicted uncertainty region.

Given a sensor, whose configuration is characterized by a viewing geometry and noise characteristics, and an
orbit, we generate simulated observations by adding zero-mean, gaussian measurement noise to true orbital
positions. We then fit an orbit to the simulated observations, producing both a state and an estimate
of the uncertainty in that state (the formal covariance, for example). Next, we propagate the state and
uncertainty estimates forward in time. This process is repeated many times, with different instantiations of
the measurement noise each time. Finally, we propagate the true state forward in time. Figure 1 depicts
this methodology. Given this data, we can, at each time step, answer the question “What is the fraction
of cases for which the true state lies within the predicted uncertainty region?” The cumulative measure of
what fraction of these runs have truth that lies within the region of estimated state uncertainty at each time
step is a measure of the quality of the orbit-uncertainty estimation scheme. This, therefore, lets us assess
the quality of the uncertainty measure as a function of propagation time.

Covariances are matrix quantities that represent the statistics of uncertainty in the state space of an estimated
state. If the uncertainties are sufficiently small and if the uncertainty statistics are sufficiently gaussian,
the state-uncertainty region may be represented by ellipsoidal volumes centered on the estimated states.
Covariances represent the parameters needed to fix those ellipsoidal volumes.

Covariances are thus correlated to uncertainty statistics via gaussian statistics. Specifically, if one constructs
a series of nested ellipsoids of differing number of ¢’s, then, for an N-dimensional gaussian distribution, the
expected fraction within each ellipsoid can be calculated and is presented in the table in Fig. 2. So, one may
ask whether the truth lies within ellipsoidal volumes of differing number of sigmas, i.e., for different k—values
where one is drawing ellipsoids of size ko.

So, we can now use the performance metric to follow the quality of the uncertainty measure, but also to
validate whether gaussian statistics is adhered to by using the values found in Fig. 2: for every k, we can



Percent of Monte-Carlo Runs Where Truth State

Probabilities of Lying Within the k o Error Ellipsoid* Contained in 6D k-0 Covariance

N 1o 20 30 40
1 0.683 0.954 0.997 0.9999

2 0.393 0.865 0.989 0.9997

3 0.199 0.739 0.971 0.9987 H

4 0.090 0.594 0.939 0.9970 =

5 0.037 0.451 0.891 0.9932

6 0.014 0.323 0.826 0.9862
* See, for example, “Modern Orbit Determination” by W. Wiesel ° s Time

Figure 2. Left table shows containment probabilities of k—sigma shells given an N-dimensional gaussian distribution [6].
For the problem under consideration, state space is six-dimensional so we are particularly interested in the case where
N = 6. The right graphic shows the containment probabilities over time for a notional case in which containment
agrees with Gaussian statistics initially, but gradually degrades.
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Figure 3. Osculating ECI vs. mean equinoctial 6D covariance containment; 10-20 degree rising pass scenario.
Covariance containment is statistical agreement between the actual uncertainty cloud and the covariance The (k=4)
covariance ellipsoids should contain truth about 98% of the time We confirm what Junkins, et al. [1] found: covariance
of mean elements performs better than covariance of osculating ECI vectors.

count occurences and calculate the fraction of the Monte Carlo runs in which the true state is contained
within the ko error ellipsoid surrounding each individual estimated state. When calculating whether the

truth state, X4y, lies inside the k-sigma shell of the estimate, x.s¢, and its covariance, Ce4, the following
k-distance, i.e. Mahalanobis distance, calculation is made:

k = \/(Xest - Xtrue)ce_si (Xest - Xtrue) (1)

Let us examine examples of state variables and the associated determination and propagation of covariance in
each. Although many orbits and tracking schedules were tested using the containment metric, Figures 3 and
4 show two examples of the containment results when using osculating ECI, osculating equinoctial and mean
equinoctial coordinates. The states and covariance were determined from a single track of observations,
and for these examples, a 474 km altitude circular orbit at 97.3 degrees inclination was used. The state
and covariance were built and evolved according to high precision models in all of these coordinates. We
see that while, initially, gaussian statistics is respected (i.e., the percentages found in Fig. 2 are followed
fairly faithfully at the start of the evolution), covariance containment is extremely poor for osculating ECI
coordinates; it fails almost immediately after one orbit. Containment is improved for osculating equinoctial
coordinates and is even better still for mean equinoctial coordinates. However, in both cases, containment is
not particularly satisfactory, except possibly in the most favorable of observation conditions and then only
for a short period of time. Covariances, when produced using a short, single track of radar observations,
form a poor measure of actual orbital uncertainties when measured for several days.

5. STATE SPACE AND DYNAMICS
In order to understand the structural flaws of covariance and how it fails to accurately represent orbital
uncertainties, we need to recall the formalism underlying both orbit dynamics and the computation of
covariances based on those dynamics. FEach satellite orbit can be represented by a state (its kinematic
properties such as position and velocity, as well as physical properties such as mass and cross-sectional area,
etc.) that allows us to identify the object as well as predict its future evolution.! Then, the state space is an

1 Alternatively, the kinematic properties may be elements of an element set (e.g., inclination, eccentricity, mean anomaly, etc.).
Abstractly, exchanging positions and velocities for an element set is simply a one-to-one reparametrization of state space,
and represents no fundamental difference. However, due to the nonlinearity of such a change in parameters, attention must
be paid to the best choice of state-space components. A scenario that is properly gaussian in one representation may not be
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Figure 4. Osculating equinoctial vs. mean equinoctial 6D covariance containment. Single track, 10 degree zenith
tracking pass of a 474 km altitude circular orbit at 97° inclination. The mean equinoctial element covariance performs
better than osculating equinoctial covariance in containing the truth state. The osculating equinoctial containment
also often includes oscillations (4 each rev in this case).

n—dimensional vector space, {x}, where each satellite orbit in our scenario may be represented at any time,
t, by a vector x(¢) such that the components of that vector are given by its kinematic properties. Then, the
state space will be filled with a cloud of points, each representing a different satellite orbit, where each point
follows a specific trajectory through state space as time marches forward. An orbiting satellite located at x
at time ¢ is dictated by

x =F(t,x) . (2)
where F is a vector-valued function given by familiar evolution equation, such as Newton’s laws of gravitation,
etc. So a trajectory in n-dimensional phase space has a one-to-one correspondence with each orbit or
trajectory of a satellite in real space.

Each set of observations is processed into a likelihood distribution on the state space by some well-understood
estimation scheme (e.g., least squares or Kalman filtering or even some IOD scheme). This likelihood
distribution represents the probability distribution, Prob(x), that the observations taken correspond to a
specific state x at a particular time. Assuming small uncertainties and well-behaved, linear statistics, that
likelihood distribution may be treated as gaussian and can be represented as being located around a state
x; and characterized by a covariance C; (associated with the i—th set of observations) such that

1 / " {
=————— [d'x exp
\/ (27’(‘)” det Cl
We may now define confidence ellipsoids, i.e., surfaces of constant Prob;(x) exhibiting volumes of state

space containing, for example, 90%, 95%, or 99% of the probability. These ellipsoids have sizes and shapes
associated with the components of C;.

Prob;(x) —%(x —x)TC (x —x;)| - (3)

A crucial component of a correlation algorithm is the evolution of the likelihood distribution, or in this case,
the evolution of the covariance, C;(¢;), associated with a set of observations taken near ¢;, to a covariance at
a future time, C;(¢). This evolution is dictated by variations of F(¢,x) with respect to x; moreover, if there
is an uncertainty in F, that uncertainty acts as a process noise. Assuming a gaussian process noise source
with zero mean and covariance Q(t), the evolution of the covariance C is dictated by

. OF oF\ 7
cza}(c+c(a)() +Q. (4)

Here is a circumstance for which an inspired choice of state-space coordinates will be crucial. Gaussian
process noise for one set of x may be extremely nongaussian if the state space is reparametrized by another
set of coordinates y.

Perturbations around circular orbits are of particular interest for analyzing orbit error dynamics.? For
two-body dynamics, consider the reference orbit governed by the equations

r(t) =roq, 0=0, @(t) = wot (5)

in standard polar coordinates for a given rg and wg. The reference angular frequency follows the expression
wo = /GM/r3. Then, second-order element set perturbations around this circular orbit are governed by

so in another representation.

2 Moreover, for orbits that are not circular, the estimates of perturbations will still be well-approximated by the circular-orbit
relationships to an order characterized by the orbit’s eccentricity. I.e., the equations governing the perturbations will only be
wrong to O(e), where e is the (small) eccentricity of the baseline truth orbit.



eight parameters: Aa, the semi-major axis perturbation; Ae; and Aes, the components of the eccentricity-
vector perturbation; Ai; and Aids, the components of the inclination-vector perturbation; and Ag¢g, the
initial true longitude perturbation.

For 10D, and for short arcs of tracking in general, there is a hierarchy of perturbation scales. Generally,
the initial velocity uncertainties, while small, are much larger than spatial position uncertainties. This
requires the careful inclusion of certain second-order perturbations, particularly those second-order in velocity
uncertainties.

After carefully establishing that to second-order, the eccentricity parameters are not perturbed by forces
normal to the orbit plane, the in-plane circular orbit equations to second-order are as follows:

Ae? + Aed
rit) = a {(1 - 61—562> — (A€ coswt + Ael sinwt)
1
- (2(Ae§ — Ae2) cos 2wt + Ae) Aey sin 2wt>} (6)
o(t) = Ad¢p+ wt + 2(Aey sinwt — Aeg(coswt — 1))
5 /(1
+5 <2(Aef — Ae3) sin 2wt — AejAes cos 2wt> , (7)
with
3/2 3A
w=uwp (%0) and wt = wopt (1 - 57(1 + - ) being the most relevant contribution. (8)
0

Here, the secular growth in the anomaly is evident as the dominant long-term behavior. Using the definition
of the element-set parameters, to second order we may establish the perturbed orbit parameter, Aw, in terms
of initial position and velocities:

Aw = wp [(1 + f:) o 1] (9)

Because of the simple nature of orbit-element evolution, one may reduce the complex dynamics of orbit-
confidence evolution to that of a single position/velocity degree-of-freedom, {A¢, Aw}, governed by Eqs. (7)
and (9). We see that long-term (i.e., longer than one orbit period) uncertainty dynamics in orbits are almost
completely determined by along-track evolution as described by Eq. (7) to second-order. Focusing on the
secular components of evolution, i.e., ignoring the oscillatory components, we see that one simply has

Ap(t) = Ao+ Awt (10)
Aw(t) = constant . (11)

Let us recharacterize the variables as a single position/velocity degree of freedom such that z = A¢ and
v = Aw and the time variable 7 = wyt is time-normalized using the period of the unperturbed orbit. If one
wishes to assess the evolution of the along-track covariance, one may define the following relations and use
simple evolution relations for ¢ and ¢ to subsequently write expressions for evolving an initial covariance in
time:

Cow = (xz) — (2)> = Con(7) = Cazlo + 27Crulo + 72Chulo (12)
va = <U’U> - <’U>2 — va(T) = C’U’U‘O (13)
Crv = (zv) —(z) (V) = Cup(7) = Caplo + 7Cuvlo- (14)

6. THE ROLE OF NONGAUSSIANITIES

Now, we may start to address why containment fails. Simple along-track dynamics are sufficient until
one needs to consider second-order contributions to evolution. This is where the underlying assumption
of linearity girding covariances breaks down. The source of covariance failure is non-gaussianities. These
nongaussianities appear because of irreducible nonlinearities in the evolution equations of the orbital state.
The assumption of linearity is a generally good assumption so long as errors are small. However, as errors
grow large, the straight ellipsoids that covariances represent do not well-characterize the curved banana-like
shapes that the true orbital uncertainties follow in Earth centered inertial (ECI) rectangular coordinates. We
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Figure 5. Type 3 nongaussianity. For a given truth (red dot), one may establish an uncertainty volume (blue
points) given initial observations. State estimates (green dots) lie in the uncertainty volume, but their corresponding
covariance estimates are straight, thin ellipsoids that follow the shape of the blue points. If the true uncertainty
volume were flat, the estimated covariances would contain the truth; however, because it is curved, the truth state
(red) will not fall inside the estimated covariances most of the time

see three places where important nonlinearities arise: (1) ECI vs. Element Set coordinates, (2) osculating
versus mean, and (3) IOD position vs. velocity.

Type 1 nongaussianities are the most straightforward to understand. Ellipsoids in ECI are initially aligned
with the linear geometry, however, as uncertainty grows with time, we know the true state will follow the
curved orbit. That discrepancy represents a nonlinearity that may be addressed by taking element set
coordinates rather than raw position-velocity ones. This type of nongaussianity is discussed in Junkins, et
al. [1].

Type 2 nongaussianities involve per-orbit oscillations that introduce nonlinearities on the scale of the orbit
period. Mean element sets average out those contributions making the evolution more monotonic and secular,
those being more conducive to linearizations that are valid over long periods of time. Linear error theory as
shown by equation 4, after all, assumes linearity.

The third type of nongaussianity that appears in short-track IOD is a subtle one. When long-track (e.g.
horizon-to-horizon) IODs are made, this nongaussianity disappears and using mean-equinoctial covariances
is valid and successful. However, when IOD tracks are short (e.g. from a radar fence sensor), initial position
uncertainties (dz) are much smaller than initial velocity uncertainties (dv) in a quantifiable fashion. The
covariances appear more pancake-shaped. Nonlinearities become important as dz is smaller than dv? and
one cannot ignore dv? type terms in the evolution equations. What look like pancake shapes get turned into
saddle shapes, and as one can see from Fig. 5, covariance does not cover the uncertainty volume well.
7. COVARIANCE INFLATION

How do we solve these issues and get covariances that work, i.e., that contain properly the evolving uncer-
tainty of an initially determined orbit state? The first two types of nongaussianities can be cured by careful
choice of orbital state coordinates (Type 1: use elset coordinates versus ECI coordinates, Type 2: use mean
element sets versus osculating element sets). To resolve the final problem we take a different action. As we
said, the problem is in containing the saddle shape with a pancake. The solution is to fatten the pancake
in a strategic way. The scheme is to inflate (in effect) initial position uncertainty to the scale of the initial
velocity uncertainty (or one can be more aggressive and rather than inflate dz — dv, choose dz — 10 x dv?).
With a proper choice of initial inflation of the covariance, the governing spatial size of subsequent covariance
volume is not much larger than before, but still contains the entire saddle-shaped uncertainty, even as time
evolves. Figures 6 and 7 schematically depict the scheme.

More precisely the following scheme is to be followed:
1. Observation with given noise statistics are taken
2. Initial state is estimated from observations as well as corresponding initial covariance
3. Eigenstates, {o;} and eigenvalues {\;} of covariance are identified in natural units®
4. Eigens;cates whose eigenvalues are < 102, have their eigenvalues re-scaled up to the value Ayax (or
to 10\

max)

3 Natural units are dictated by the orbit regime under consideration. For low-earth orbit objects, we take distances to be in
units of Earth radius, Rg, and velocities to be in units of \/G Mg /Rg, the velocity of an object in circular orbit of Earth’s

radius. The corresponding natural time unit is inverse of such an orbit’s angular frequency: /R%/GM@. For objects in
geosynchronous orbit, natural units are the same, except that Rg are replaced by the geosynchronous radius, ~ 6.61Rg.
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Figure 6. (a) Schematic uncertainty volume of an IOD state appears in blue, where the uncertainty in velocity is
much larger than the uncertainty in position, estimated using the linear truncation of the evolution equations. (b)
the red uncertainty volume of the same IOD if the the full evolution equations are used. Note that when there is a
large hierarchy of uncertainty scales, the linear (gaussian) approximation of uncertainty does not represent the actual
uncertainty well. (c) However, the linear (gaussian) uncertainty in green does formally contain the true nongaussian
IOD uncertainty and does not have a large hierarchy between the position and velocity uncertainties.
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Figure 7. The evolution of a nongaussian IOD (red) inside a circumscribed gaussian volume (green) remains in that
volume until large-scale nongaussianities unrelated to IOD become important (i.e., when Avt ~ 1). The virtue of
that choice of inflation is two-fold: (1) The containment of the true uncertainty persists with time (2) After a brief
period of time during which the covariance stretches out in space, the spatial extent of the inflated covariance volume
is not substantially larger than the spatial extent of the true uncertainty.

5. New covariance is taken as the initial covariance and the state and covariance are propagated as normal

We have truncated the evolution equations to terms linear, or at most quadratic, in uncertainties. An
argument needs to be made for why this is a valid procedure to undertake. In fact, in the linear truncation,
a case can be made that this is in fact not sufficient. Figure 6 depicts the scenario. When there is a large
hierarchy of uncertainty scales, i.e. while Av ~ ¢ < 1 in some normalized units, Az < Awv, is even smaller
such that there are terms in the governing equations such that Av? ~ Az, a linear (gaussian) treatment of
uncertainties is insufficient. In order to proceed with a gaussian treatment of the uncertainty evolution, one
needs to contain the true uncertainty in a volume that is know to obey linear (gaussian) evolution.*

So, we surrender having proper gaussian statistics of the one, two, and three-sigma ellipsoids in favor of
ensuring overall containment by some fixed n—sigma modified ellipsoid. The difference between this approach
and merely naively increasing the initial volume of the original covariance ellipsoid (by taking a sufficiently
large number of sigmas) is that the inflation is asymmetric in position versus velocity (thus maintaining a
relatively manageable size in real space), and the containment resulting from this inflation is persistent in
time.

To see how well covariance inflation works to address the shortcomings of covariances as measures of orbital
uncertainty, our reference test orbit is again taken as truth. Figure 8 shows one example of the results. It
has been shown that raw mean equinoctial covariance does not provide sufficient containment when based on
short initial tracks and when propagated 12 hours. Covariance inflation as prescribed improves containment.
Many additional cases have been attempted using this inflation technique. Several types of radar passes
with varying track lengths and observation noise levels were tested. Also, several types of orbits were tested
including manned spaceflight low-altitude, sun synchronous, NASA 2030 catalog peak density, Iridium, 2000
km altitude, and Molniya orbits. In each of these cases, containment improved sufficiently to make short-track
estimates and covariance useful for representing actual uncertainty. More specifically, the 40 containment
remained above 70% while propagating the estimates and covariance for 12 hours. This criteria is important

4 One needs to be careful, however, to ensure that the circumscribing volume continues to be gaussian even as it evolves in
time. In the first case (i.e., no hierarchy of small scales), treating just the O(e)—terms should be sufficient. The most perilous
terms ignored are O(e2t)-terms. This implies that things should be fine until et ~ 1. In the second case, taking Az ~ €1
and Av ~ ez such that €3 ~ 1 where O(e?)-terms are kept, the most perilous terms ignored are O(e3t2)—terms. In all cases
where there are €1 ~ e%, there are egfterms accounted for that dominate. Thus again, one is safe until eat ~ 1.

Under circumstances where one is neglecting second-order terms, one needs to make sure terms that look like ¢2¢ don’t get
too large. If there is a hierarchy of scales such that e; > e% so that it is safe to neglect second-order terms initially, one still
needs to worry about neglecting e%tfterms. One may show that if one uses the containing gaussian volume of an initially

nongaussian pancake-like volume (as depicted in Fig. 6), then the evolution is safely gaussian until such time as ezt ~ 1 (see
Fig. 7).
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Figure 9. Inflation results (real data). Object 7646 800 - 1100km Object 16908 1500 - 1500km. Eglin, PARCS,
ALTAIR, and HAX. Based on 272 independent 60-sec tracks at varying elevation angles.

for short-tracks taken with radar because revisit times for a fence could be on the order of 12 hours, and
correlation methods relying on covariance require agreement between the covariance and actual uncertainty.

The inflation technique has also been corroborated using real data. These real data tests are constructed on
calibration satellites (EGP (SSN 16908) and STARLETTE (SSN 7646)) for which we have truth orbits with
better than 10 meter errors. The truth orbits are based on ILRS laser-range measurements; the same truth
orbits are used by the MIT Lincoln Laboratory Space Surveillance Center (LSSC) to calibrate the Millstone,
Haystack and HAX radars. Radar observations were gathered from the Eglin, Parcs, HAX and Altair radars
on EGP and STARLETTE. Because these are calibration satellites, most of the tracks were taken horizon-
to-horizon. Four weeks of calibration orbits and four weeks of observations were gathered in order to collect
a significant sample. Each horizon-to-horizon radar track was divided up into 60-second sub-tracks yielding
272. Orbit estimates and covariances were generated from each sub-track and then predicted for the next
five days. The k—values were then calculated using the state and covariance estimates and the coincident
truth states.

Figure 9 shows that the simulations of short tracks are verified by the tracks of real data. The nominal
covariance performs poorly over the 5 day span. The containment of the 4-sigma covariance drops to under
20% after 5 days of propagation. The modified, i.e. inflated, mean equinoctial covariance performs reasonably
well in that the 4-sigma covariance only drops to about 70% after 5 days.

8. I0OD AND OBSERVATION CORRELATION

The orbital dynamics play directly into the evolution of the volume of the confidence ellipsoids. Approaching
correlations in terms of state space volumes allows us to see that the growth in those volumes should occur
almost exclusively along one direction in state space. That direction can be parametrized by a single value:
either by the uncertain along-track velocity value or the uncertain drag coefficient. So, while the size of the
confidence ellipsoid may grow in that direction, the other five directions are relatively well-contained, thus
preventing the volume of the confidence region from becoming uselessly large.



Using the evolution equations Eqs. (2) and (4), one may conceive of a scenario consisting of a sequence of
observations tagged by their times of occurrence, {¢;}. Each set of observations will be processed by some
estimation scheme into likelihood distributions characterized by {x;(¢;), C;(¢;)}, each corresponding to some
unknown target or object in the catalog. Each of these objects (as represented in state space by the likelihood
distributions) must be evolved forward in time by Egs. (2) and (4).

Consider the initial object represented by {xq(t), Co(¢)}. Eventually, a new set of observations, corresponding
to {x;(t;), Ci(t;)}, is such that x;(¢;) falls within the confidence ellipsoid given by {x¢(t), Co(t)} where ¢t = ¢,.
Then there is a significant probability that this new set of observations is associated with the original object.

To assess the closeness of two overlapping thin ellipsoids that are oriented in different directions, one needs
to construct a more complex metric of association. Let us call this the “joint k—distance.” This new distance
metric provides a single number for automated correlation decisions that accounts for uncertainty. Consider
the following: find the minimum combined k—distance

Ejoint (X)? = kT + k3 where k7 (x) = (x — Xi)C'i_l(x —X;), (15)
and x; is the estimated state of the i—th set of observations (propagated or freshly acquired), and C; is its
corresponding inflated covariance. By finding x that minimizes kjoint, we find

k2
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The k—distance represents the likelihood that both objects are the same state, assuming that the combined
probability is just the product of the individual probabilities. The joint k—distance is guaranteed to be posi-
tive and represents a normalized distance scale that characterizes whether two states with given uncertainties
are likely to be the same.

We can now look at how this set of schemes, i.e. covariance inflation, joint k—distance test, works for the
association of observations of unknown objects. We begin by simulating a fence-type radar sensor with a
specific beam shape, as well as range, azimuth, and elevation noise that observes objects in orbits found in
the current AFSSN catalog. The orbital states were regarded as truth for these simulations. Gaussian noise
was added to the observations of the truth trajectory and were generated with a spacing of between 2 to
8 seconds while the satellites were in the field of view of the radar. The resulting noisy observations were
then processed using the 6D state and covariance correlation algorithm. Finally, correlation decisions were
compared to truth to determine what percentage of observations were correctly correlated.

To manage all the tasks necessary to test these covariance-based correlation methods, a prototype system was
developed. The correlation and catalog-maintenance prototype reads in track files that contain observations
of satellites as would be collected from a radar sensor. The observations from the incoming track file are
processed using 10D, specifically the range and angles method [4], and then least squares orbit determination
[4] to create a new state and covariance representing the incoming track. The states and covariance from the
catalog are propagated to the time of validity or epoch of the state and covariance of the incoming track.
The joint k—distance is calculated by pairing each state and covariance from the propagated catalog with the
state and covariance produced from the incoming track. Any pair with a joint k—distance less than eight is
considered a match and is saved for further consideration. If there are multiple matches or matches involving
long propagations, a differential correction is used to resolve the correct match or verify the match.

Once the prototype has processed all given track files, the observation tags determined by the prototype are
compared with the original tags supplied with the observations. The results of tests using simulated track
files indicate a high degree of success in using the estimates, modified covariance and the k-distance metric
for correlation. Including all trials, 84192, the algorithm prototype successfully correlated 74112 of the 1st
and 2nd track opportunities for a success rate of 88%. The percentage of 2nd tracks matched to the wrong
1st track was less than 1%. These trials consisted of all SSN and NASA 2030 catalogued satellites in which
the track simulations provided 10 degree track extents from the radar fence locations. The observations were
simulated with 18 millidegree angle noise and 30 meter range noise. The simulated radar fence sites were
located in either Harold Holt, Australia, Ascension Island in the Atlantic Ocean or the Kwajalein Atoll in
the Pacific Ocean. The satellite catalogs used were the AFSSN catalog as of 3 March 2010, the NASA2030
catalog (a catalog of > 2cm objects simulated for the year 2030 as evolved from 2006, provided by the NASA
Orbital Debris Program Office) and a synthetic catalog which contains satellite orbits distributed uniformly
in apogee, perigee and inclination.

In addition to the simulated observation association cases mentioned already, real data cases were tested
using the correlation prototype. These eight cases are summarized in Table 1. Radar observations from the
Eglin, FPS-85, radar from March 2010 were gathered and fed through the prototype system. The tracks of
observations chosen were selected so that Eglin tracked the observed satellite twice in a three day interval.
For example, in case 1, there were 147 satellites for which this occurred and in case 2, there were 108
satellites. The interval for each case is identified in the “Catalog, Observation span” column of Table 1.



ABLE 1
Real observation correlation results from the correlation prototype.

Case # Radar Catalog, Observation Satellites with Satellites correctly Average
span two passes correlated after two | matches per
passes track
(with check DC)

1 Eglin SSN, 25-28 Mar 2010 147 119 (81%) 11

2 Eglin SSN, 28-31 Mar 2010 108 91 (84%) 0.95

3 Eglin SSN, 1-3 July 2010 142 91 (64%) 1.3

4 Eglin SSN, 1-3 April 2010 89 76 (85%) 0.97

5 Eglin SSN, 4-7 June 2010 59 45 (76%) 1.2

6 Eglin SSN, 14-17 June 2010 49 40 (82%) 1.1

7 Eglin SSN, 14-18 April 2010 135 104 (77%) 11

8 Eglin SSN, 1-4 March 2010 112 83 (74%) 0.96

As one would expect when using real data instead of simulated data, the ratio of satellites correctly correlated
after two passes over the satellites with two passes is less for these cases than for the simulated cases. The
average ratio is 77%. This ratio is about 11% less than the average success rate of the simulated cases.
Features of real data that probably contribute to the reduced correlation success rate are range, azimuth and
element measurement biases, drag coefficient and atmospheric density uncertainties and longer gap times
between 1st and 2nd tracks. Indeed, the correlation decisions are ultimately based on the k—distance metric
which relies on accurate covariance.

9. CONCLUDING REMARKS

We have highlighted how standard measures of orbital uncertainty break down in important domains of
interest. For long-track, i.e. horizon-to-horizon tracks of initial orbits, results show that mean equinoctial
state variables provide for covariance propagation while osculating ECI and equinoctial state variables do not.
For short-track initial orbits, mean equinoctial covariances are also inaccurate. However, using a covariance
modification method that strategically inflates, but doesn’t over-inflate the covariance, a modified mean
equinoctial covariance can serve as an accurate measure of orbital uncertainty over extended periods of
time. The accuracy of this new uncertainty measure persists for 12 hours or more, providing a powerful tool
relevant to space-situational awareness needs.

Starting with a space environment composed completely of UCTSs, the simulated and real data cases per-
formed for this study show that, implementing this new uncertainty measure, about 78% of those objects
can be acquired by the fence, an IOD can be executed, the fence can reacquire the satellite and can correctly
identify the satellite, and can subsequently refine the orbital state. All this happens in about 12 to 36 hours,
in the case of a 13600 object scenario, for the specified fence performance and with a single fence site. For
a more powerful single fence, the same should hold true for the full NASA 2030 catalog.
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