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ABSTRACT 

 

Optical observations of rotating space debris near GEO contain important information on size, shape, 

composition, and rotational states, but these aspects are difficult to extract due to data limitations and the 

high number of degrees of freedom in the modeling process. For tri-axial rigid debris objects created by 

satellite fragmentations, the most likely initial rotation states have large components of angular velocity 

directed along the intermediate axis of inertia, leading to large reorientations of the body on the timescale of 

the rotation period. This lends some support to the simplest possible interpretation of light curves -- that they 

represent sets of random orientations of the objects of study, although such rotation states do not typically 

sample orientation space uniformly even over a large number of rotations. Furthermore, effects of solar 

radiation can cause significant modification of rotation states within timescales of hours, for cm-sized objects 

of irregular shape. In order to examine the rotational dynamics under solar influence, a set of seven first-

order coupled equations of motion were assembled in state form: three are Euler equations describing the 

rates of change of the components of angular velocity in the body frame, and four describe the rates of change 

of the components of the unit quaternion. Quaternions are four-dimensional extensions of complex numbers 

that form a seamless, singularity-free representation of body orientation on S3. The Euler equations contain 

explicit terms describing torque from solar radiation.  Numerical integrations reveal widely varying rotation 

states, such that in general, light curves for small objects of irregular shape can be expected to radically 

change character between different observation epochs. Because the axis of maximum rotational inertia tends 

to be roughly coincident with the normal to the largest projected cross-sectional area, internal friction or 

magnetic damping, if significant, may lead to reduced variation of light curve amplitudes at a given phase 

angle, but a large dependence of the amplitudes on phase angle. At a given phase angle, databases are 

generated that show reflected intensities at all orientations simultaneously, within a semi-transparent 3D 

spherical projection of the quaternion intensity database. Simulated rotational sequences form trajectories 

through this space which may be conveniently visually examined relative to all possible orientations. 

Symmetries in the problem suggest that if internal friction or magnetic retarding torques are significant, 

preferred rotation states will be likely, defined relative to the object-sun direction and/or the magnetic field 

direction in inertial space and relative to the maximum principal axis of inertia in the body coordinate 

system. Such rotation states may greatly simplify the problem of light curve interpretation by reducing the 

number of degrees of freedom in the problem. Acknowledgements: This work was produced under NASA 

contract NNJ05HI05. 

1. Introduction 

 

In recent years, observation and analysis of unresolved light curves from orbiting debris objects has increased and 

advanced considerably, as the importance of these data for understanding the on-orbit debris population has come 

into focus. However, as more data have been gathered, it has become evident that the light curves of individual 

objects can change character quite rapidly, particularly for small objects in GEO with high area-to-mass ratios 

[1],[2].   Here we report that a likely cause of such variations is a rapidly evolving rotation state due to the torque 

caused by solar radiation pressure acting on irregularities in shape and/or reflectivity.    In order to study these 

effects, geometric models of fragments produced by earth-based satellite impact tests and other objects believed to 

accurately represent orbital debris are created with a laser scanner at the Orbital Debris Program Office at the 

Johnson Space Center (JSC) [3].  These are employed in a MATLAB code that can simulate realistic rotational 

dynamics and consequent light curves. The simulations may be compared with data acquired by telescope or 

simulated in the Optical Measurements Center (OMC) at JSC using a CCD camera and an artificial light source 

incident upon the fragments themselves as they are gripped and rotated using a robotic arm. 



2. Probable initial conditions 

 

The initial rotational conditions imparted to a debris object upon injection into orbit are generally unknown, but 

under plausible assumptions  it is possible to compute a distribution of initial rotational states in a probabilistic 

manner.  These assumptions are (1) upon creation during an on-orbit breakup, a debris object is originally oriented 

randomly relative to the fragmenting parent body, and (2) the object 

receives an initial impulse that is applied at a random location on the 

object from the side facing the parent body.  Under these assumptions, 

the distribution of probable initial angular velocity vectors can be 

readily computed.  The force producing the initial rotation is given by 

F, which acts over a time Δt on the jth area element of the modeled 

object, for which the position vector is rj.  The unit vector from the 

facet toward the parent body is given by np.  Since the initial angular 

velocity is zero and the force acts as a short impulse, the imparted 

angular momentum is given by 

 

   (1) 

    

 

Dividing the components of L by the principal inertia components 

gives the initial components of the angular velocity.   Fig.1 shows 

isosurfaces of equally probable initial angular velocity vectors, 

generated using Eq.1 and computed numerically for a solar panel 

fragment that was scanned at JSC.  Three semi-transparent isosurfaces are plotted.  The most notable result is that 

the isosurfaces of probability density have shapes that roughly approximate triaxial ellipsoids with (decreasing) 

major axes in the directions of 2 , 1 , and 3 , respectively.  Therefore, the distribution of probable initial angular 

velocities favors large values of 2 , and smaller values of 1 and 3 , so the most likely initial state is one that has 

a large component of angular velocity along the intermediate axis of inertia. Interestingly, when the 2  component 

is large relative to the others, the free rotation of the body will exhibit the most extreme variety of orientations over 

time – i.e., the largest amount of “tumbling” motion.    Such motion samples the space of possible reflected 

intensities in the most diverse manner (though still far from randomly) over a time period spanning numerous 

rotations (see sections 5 and 6).  Thus, unless these results are otherwise affected by influences such as internal 

friction, magnetic retarding torque, and/or solar radiation torque, it seems initially possible that the distribution of 

object orientations may be approximated as random.  However, it is seen below that even without such influences 

this is a relatively poor approximation. 

 

3. Quaternion representation of orientation and intensity 

 

The unit quaternion is a mathematical construction that represents an extension of the complex plane to four 

dimensions.  Discovered by R. W. Hamilton in 1843 [4], the unit quaternion z can be used to represent the set of all 

axis-angle rotational orientations in a seamless, singularity-free manner, according to the following equation: 

 

  

  (2) 

 

 

where   is the angle of rotation about the axis given by the unit vector n.  The sum of the squares of the 

components is unity, so the unit quaternion represents the surface of a 4D hypersphere, known as S3 by  

mathematicians.  Because of this constraint, the  i , j, and  k components are sufficient to completely define all 

possible orientations.  Just as a 3D spherical surface can be projected onto two dimensions in a polar stereographic 

projection map without losing the information recorded on a hemisphere, so the unit quaternion can be projected 

onto a 3D spherical volume (hereafter the “orientation sphere”), thus allowing an immediate visualization of all 

possible rotation states.   By dividing this volume into tiles of equal “3-area”, a database of equally likely 

Fig.1. Isosurfaces in space of initial angular 

velocities for laser-scanned model of solar 

panel.  See text. 
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orientations can be easily constructed.   Orientations of objects are defined here by the directions of their principal 

axes of inertia (I1 <  I2 <  I3)  relative to an inertial coordinate system where the x-axis is from the debris object 

toward the observer, and the observer, object and the sun lie in the (x,y)-plane. The maximal diffuse and specular 

reflected intensities (i.e. for reflectivities of unity) at the centers of each volume element are generated for a chosen 

debris object, and these values may be mapped as points with varying colors as shown in Fig.2.  Linear 

combinations of these two databases are used to model objects with both specular and diffuse characteristics.  The 

orientation sequence of objects undergoing rotations may be plotted as trajectories through the spherical volumes.  

The yellow trajectory shown in the figure is a simple 360-degree rotation about a fixed axis.  When starting from the 

orientation where the body and inertial coordinate systems are coincident, rotations about the x,y, and z (inertial) 

axes all fall on the green, red and blue diametric lines, respectively, and the surface of the sphere represents rotations 

of 180 degrees about all possible fixed axes. 
 

 

4. Solar radiation torque 

 

The collective effects on rotation states of specular and diffuse reflection of solar radiation, as well as of thermal 

emission are collectively known as the Yarkovsky-O’Keefe-Radzievskii-Paddock effect (YORP) [cf.5].  The spin-

altering effects of YORP have been verified observationally for small asteroids [6] and satellites [cf.7] and it has 

long been believed to be the source of rotational bursting – a phenomenon whereby small meteoroids spin-up to 

such a degree that centrifugal forces can cause catastrophic fragmentation [8] in ~10
5
 years.  Not surprisingly, 

Fig.2: Specular and diffuse reflection databases for the SOCIT4:252.A1 flake, plotted on quaternion orientation sphere. 

 Fig. 3: (a) Simple object which experiences solar torque.  (b) windvane  (c) sphere and rectangular solid. 
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YORP can also be shown to have very significant effects on rotating space debris.  In Fig.3a, a simple object is 

shown, composed of two plates of area A whose centers are separated by a distance 2R, and which have unit normal 

vectors as shown.  The planes of the two plates are tilted as shown by an angle  with respect to vertical.  Solar 

radiation is incident in the downward direction.  For simplicity, the plates have only specular reflectivity given by 

 ,and thermal emission is ignored. In  this geometry the reflection of solar flux Fsun off of each plate yields 

torques 1 and 2 as shown.  By adding  these torques vectorially, the magnitude of the total torque is easily 

computed, but a more general expression is given below.  

 

Debris objects  in general experience a solar torque that is dependent on shape and variegation, but only shape 

effects are considered here.  A uniform sphere or rectangular solid as shown in Fig.3c will experience no solar 

torque, while a windvane (b) will experience a relatively large solar torque.   In general, for an object described by 

planar facets, the torque due to specular and diffuse reflection and thermal emission is written: 

   

 

    (3) 

   

 

where Atot and r are the total surface area and average distance from center of mass to a facet, while Ajn and rjn are 

the facet areas and radii from the center of mass to the center of the jth facet, normalized by Atot and r , 

respectively.  Fs, c, D , S and   are the solar flux (1370 W/m
2
,[9]) , the speed of light, the diffuse and specular 

reflectivities, and the thermal absorptivity.  For simplicity, Eq.3 assumes a state of thermal equilibrium with incident 

radiation for each facet at all times.  This is equivalent to the assumption of zero thermal conductivity and is known 

as Rubincam’s approximation [cf. 7].  jn̂  and Sn̂  are the unit normal vector of the jth facet and the unit sun-

direction vector.  The characteristic time Ts over which the solar radiation torque can be expected to greatly change 

the angular momentum of a debris object is simply the characteristic angular momentum 03I  divided by the 

torque given in Eq.3. If  3I  is taken to be roughly that of a disk, the result is      

          

         (4) 

 

 

where P, m, and S are the initial rotation period, the mass, and the magnitude of the vector sum  in Eq.3.   For 

objects with no windvanedness, such as the sphere or rectangular solid in Fig.3, S=0 and Ts goes to infinity, while 

irregular objects commonly have S >1.  For example, for the synthetic pinwheel described below, S is considerably 

larger than unity.  Eq.4 indicates that if such objects are of centimeter scale with mass on the order of grams and 

rotation rates on the order of minutes, their angular momentum can change by a large percentage within hours.  The 

object shown in Fig.4a is a synthetic pinwheel -- a simple object with obvious solar torque characteristics.  Eq.3 was 

used to compute the solar torque, in the body coordinate system, acting on this object as a function of the direction 

of the sun, where for simplicity, pure specular reflectivity was assumed and  =0.  Each vector on the surrounding 

sphere illustrates the magnitude and direction of the solar torque for the case where the sunlight is incident from the 

direction indicated by the location of the vector relative to the object center.  The pinwheel exhibits a dipole-like 

distribution of solar torque.  Where the vectors point outward, the solar torque causes increase in angular momentum 

about the corresponding body-direction, which is true as expected if the sun is on the symmetry axis.  Fig.4b 

illustrates the corresponding torque for a flake-like object created by the SOCIT4 satellite break-up test, designated 

SOCIT4:252.A1.  This object is a small (~2x1cm), Aluminum fragment.  For this object (hereafter “the flake”), the 

torque field is more complicated, but nonetheless is a smooth function of sun direction.  

 

5. Rotational dynamics in the presence of solar radiation 

 

The Euler equations describe the evolution of the components of the angular velocity vector   in the coordinate 

system of the body.  With the external torque given by Eq.3, these equations may be written in nondimensional form 

as follows: 
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       (5b) 

                 

 

 

       (5c) 

 

 

 

where the 0 jjn    ,  
3III jiijn  , 3III iin  , Cs is a constant and time is in units of the 

reciprocal of  the initial angular velocity 0 .   Terms representing internal friction and magnetic retarding torque 

may be added to the above equations, but they are not included in the work presented here. 

 

The nondimensional rates of change of the components xi of the unit quaternion are only dependent on the xi-values 

and the components of  as defined above  [10], according to: 
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Equations 5a-c and 6a-d are integrated as a set, using an 8
th

 order Runge-Kutta routine .  Results are presented in the 

following section. 

Fig.4:  Synthetic pinwheel (a) and flake (b) with the corresponding solar radiation torques due to pure specular 

reflection. 



 

6. Dynamical evolution of specific objects. 
 

Fig.5 shows the dynamical results of the integration of Eqs.5 and 6, for the case of the symmetric pinwheel 

described above.  The pinwheel was given an area-to-mass value characteristic of multi-layer insulation (hereafter 

MLI), of  2.0m
2
/kg, and has a maximum diameter of 7.0cm.   In this case, the initial rotation period is 2.5 minutes, 

and the component of the angular velocity along the I2-axis of inertia was largest, which is a likely initial condition 

considering the results of section 2.   I2=I1 in this case, and time is in units of 01  , spanning approximately an 

interval of four hours. Fig 5a shows the trajectory of the angular momentum L (red) and angular velocity   (blue) 

in the frame of the body.  As is to be expected, both vectors precess about the I3 body-axis, while 0  precesses 

about L.  Both vectors grow in magnitude, spiraling upward, then spiral downward as they shrink.  Fig.5b shows the 

same trajectory in inertial space, indicating a large increase and subsequent decrease in both vector magnitudes.  

Notably, L reaches a magnitude of three times its initial value, before approaching the initial conditions once again.  

Fig.5d shows the evolution of the components of these vectors over time.  The components of L change relatively 

slowly, while components oscillate with the rotation period.  Fig.5c is the trajectory of the I3 body-axis in inertial 

space.  The first ~1/2 of the trajectory is in black and the rest in green.  Note the large change in character of this 

trajectory as time proceeds.  Fig.5f shows the trajectory on the orientation sphere, where again the first part is in 

black.   While the trajectory samples a large range of possible orientations, it does so in a manner that varies widely 

over differing portions of the full time interval.  Fig.5e shows that the energy, in units of the minimum possible 

energy 3

2

0 2IL  given the initial angular momentum L0,  changes by a factor of ~6 between maximum and 

minimum values over the entire time interval. 

Fig.6 shows the dynamical results for the pinwheel described above, but in this case the principal moments of inertia 

were artificially set to distinctly triaxial values (I1/I3=.21, I2/I3=.65).  All other conditions are the same as in Fig. 5.  

Since most objects will probably be triaxial, this case may represent an object of typical dimensions, but with a 

relatively large windvanedness.   Initially,   and L precess about the I3 body-axis, but as the evolution proceeds, 

energy is added by solar radiation, such that the higher energy state (for a given L) of precession of   and L about 

Fig.5.  Dynamical evolution of synthetic pinwheel.  See text. 



the I1 body-axis is entered.  This represents crossing of a dynamical separatrix between these two well-known states 

of free rotation [8].  At this point, the character of the rotation state changes drastically (cf. Fig.6d), which causes 

large changes in the nature of the light curve as well, as shown in the next section. The first half of the I3 body-axis  

 Figure 6.   Dynamical evolution of asymmetric pinwheel.  See text. 

Fig.7.  Dynamical evolution of the flake.  See text. 

Separatrix crossing 



trajectory in inertial space (Fig.6c) and the orientation sphere trajectory (Fig.6f) are again highlighted in black, to 

indicate the difference in orientations between the first and second halves of the simulation.  While these trajectories 

sample a large range of the possible states, they clearly do so in a manner that varies widely between the first and 

second halves of the full time interval. 

 

Fig.7 shows the dynamical results for the flake described above (see Fig 4b).  All other conditions are the same as in 

Fig.6.  The components of the inertia tensor were computed using the faceted model from the laser scan and 

processing performed at JSC.  In this simulation   and L first precess about the positive I1 body-axis,  then along 

the negative I1 body-axis.  During this time, the total energy fluctuates by over a factor of ~4 from minimum to 

maximum.  Once again ,the first half of the quaternion and I3 body-axis orientation trajectories are highlighted in 

black.  Midway through the simulation, the rotation state changes from free precession about the positive I1-axis to 

free precession about the negative I1-axis.  As a result, the orientations sampled during the second half of the total 

time differ considerably from those of the first half, in which the trajectory approximates a repeating small circle 

near the surface of the orientation sphere. 

 

7. Effects of dynamical evolution on light curves 

 

Fig. 8a shows the relative visual magnitude versus time corresponding to two portions of the synthetic pinwheel 

dynamical evolution shown in Fig.5.  The green and blue trajectories each represent approximately 75 minutes of the 

earlier and later portions of the evolution, respectively.   Fifty percent Lambertian diffuse and fifty percent specular 

reflectivity were assumed for each case shown in this section.  Near the beginning of the green light curve, several 

specular reflection events occur, each increasing the brightness by approximately three magnitude units (a factor of  

~20 in intensity), which exceeds  the scale limits of the graph.  Figs 8b and 8c are different views of the trajectories 

on the orientation sphere for the same portions of the time evolution, with the diffuse quaternion intensity database 

shown as color-coded points as described in section 2.  Note that the green trajectory generally samples portions of 

orientation space that are farther from the center of the sphere, while the blue trajectory remains close to the x3 

inertial axis (i.e. the vertical axis).  Physically, this means the blue trajectory involves states that are relatively close 

to pure rotations about this axis.   This can also be noted in Fig.5d, where large values of 3 are seen to develop in 

inertial space.   The primary periodic modulation in the visual magnitude of the green curve corresponds to the 

rotation period, which changes by a factor of ~2 over the entire dataset.  In the blue light curve, the rotation period 

Fig.8:  Light curves and orientations corresponding to Fig.5, synthetic pinwheel. See text. 



beats against the free precession period, which is comparable to the rotation period.  This produces a more complex 

waveform.  Interestingly, Fourier analysis of a light curve of this form would yield two frequencies, the ratio of 

which is a measure of the magnitude of the difference between the principal components of inertia.  

 

Fig.9b shows relative visual magnitude versus time corresponding to two portions of the dynamical evolution of the 

triaxial synthetic pinwheel as shown in Fig.6, while Fig.9a shows the same data on a plot of relative intensity rather 

than magnitude, in order to better demonstrate the differences between the two light curve segments.   As in Fig.8, 

the green and blue trajectories each represent approximately 75 minutes of time, earlier and later in the numerical 

integration interval, respectively.  The blue curve in Fig.9b has been artificially raised by two magnitude units to 

promote separation between the curves.  The green curve primarily represents a rotation state with   and L vectors 

precessing about the I3-axis, whereas the blue curve represents the rotational evolution after the crossing of the 

separatrix into a state of rotation about the minimum axis of inertia.  Again, note the large difference in the regions 

of orientation space sampled by the two trajectories in Fig.9c and 9d, and the consequent differences in the light 

curve sequences.  The green trajectory passes repeatedly near the center of the orientation sphere, while the blue 

remains close to the sphere’s surface.  Also note that specular reflections, identifiable by sudden increases and 

decreases in brightness, usually occur at the crests of the smooth, diffuse reflections which characterize the bulk of 

the light curve data, which should be generally true for roughly flat objects.  

Fig.9.  Light curves and orientations for triaxial pinwheel sequence.  See text. 

 

Fig.10 shows the light curve of the flake during the rotational evolution seen in Fig.7. Once again it is evident from 

the lower panels (10b, 10c) that the green and blue portions of the evolution sample very different regions of 

orientation space. The green trajectory, representing precession of the   and L vectors about the positive I1 body-

axis, cycles approximately on a small circle on the outer surface of the orientation sphere, whereas the blue (later) 

trajectory samples a broader range of orientations, while precession occurs around the negative I1 body-axis.   As in 

other cases described above, the resulting light curve data for the first and second parts of the evolution are 

markedly different in character. 

 



 

 

 

8. Discussion and conclusions 

 

It is most probable for space debris objects that a large component of  the initial angular velocity will be directed 

along the intermediate axis of inertia.   Under such conditions,  for freely rotating, significantly triaxial and 

irregular debris objects will change markedly within a single rotation period, illustrating the extreme importance of 

realistic rotational evolution to be considered when attempting to divine object shape and compositional properties 

from unresolved light curves.  Additionally, the torque acting on small debris objects due to solar radiation must be 

considered in any realistic analysis.  To this end, the rotational dynamics of one idealized and one probably realistic 

piece of centimeter-scale space debris under the influence of solar radiation torque have been examined here.  The 

results reveal very significant effects, with large changes in L occurring within hours for these objects when the 

initial rotation period is on the order of minutes.  As illustrated by Eq. 4, the time required for large relative changes 

in L scales inversely as the the rotation period, so that for periods on the order of seconds, major changes in L will 

take typically several days to occur.   The effects increase with area-to-mass ratio, and require irregularityof shape 

and/or reflectivity, vanishing for uniform spheres or uniform rectangular solids. For typical objects,  it is interesting 

to note that a state of free rotation (and consequent precession) can be assumed over a few rotation periods, while 

solar radiation changes L and hence the particular character of the free rotation, over a somewhat longer timescale.   

Thus, over short time intervals,  the well-known states are observed in which  precesses about L in inertial space, 

and where   and L precess about either the I1 or I3 axes in the body coordinate system.   There are no rotation 

states that randomly sample orientation space within a few rotation periods, and even over many rotation periods, 

observation sequences will generally not be represented well by a random subset of all possible orientations.  Under 

solar radiation alone, L appears to vary chaotically, with extreme dependence on initial conditions, although a 

continuum of  initial conditions should be examined in order to identify any possible patterns in eventual rotation 

states of debris objects.   It seems likely that some small debris that have been in orbit for years may be rotating very 

rapidly. Finally, the presence of internal friction and magnetic damping should be considered in future studies.  It is 

believed that these effects, when significant relative to solar radiation, may lead to preferred rotation states and a 

consequent reduction in the suite of likely eventual rotation states. 

 

 

 

 

 

Fig.10.  Lightcurves and orientations for flake rotation sequence.  See text. 
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