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ABSTRACT 

 

Determining orbits of unknown objects is a fundamental space situational awareness activity.  The U.S. Space 

Surveillance Network (SSN) currently relies on ground-based radars, optical telescopes, and the Space Based Space 

Surveillance (SBSS) System.  The SBSS system overcomes many of the pitfalls of optical ground-based systems 

like limited observation times (e.g. weather and time of day) and measurement uncertainty from atmospheric effects.  

However, the SBSS satellite is in a low earth orbit (630 km, sun synchronous), and must look  “up” for GEO 

objects.  This paper analyzes the potential benefits of a GEO observation point for performing metric observations 

that are combined with ground-based data.  Several different scenarios are considered to quantify the reduction in 

orbit uncertainty from these types of observations.  All results are derived using an Extended Kalman filter (EKF) to 

process the observations.  Orbital uncertainties are expressed in terms of the error covariance. 

 

1. INTRODUCTION 

 

This paper analyzes the potential benefits of a GEO observation point for performing metric observations that are 

combined with ground-based data.  Several different scenarios are considered to quantify the reduction in orbit 

uncertainty from these types of observations.  The sensors considered include: earth-based angle-only, earth-based 

angle and range, and space-based angle-only.  All results are derived using an Extended Kalman Filter (EKF) to 

process the observations.  Orbital uncertainties are expressed in terms of the error covariance. 

 

There are several common techniques for orbit estimation: linear least squares, nonlinear least squares, sequential-

batch least squares, the Kalman filter, and the Extended Kalman filter [1].  We selected the Extended Kalman filter 

(EKF) approach to orbit estimation for several reasons.  First, the equations of motion are nonlinear.  In addition, 

previous research has shown that the EKF converges must faster than a least squares approach [1].  Examples of 

EKF’s applied to the orbit estimation problem are found in [1-7].  For the purposes of this analysis, we assume that 

an initial orbit estimation has been performed.  We are most interested in the potential increase in accuracy that a 

geosynchronous observation point might provide.  Section 2 provides an overview of the equations of motion 

employed in this analysis.  Section 3 presents the Extended Kalman filter formulation.  Simulation results are 

summarized in Section 4. 

 

2. EQUATIONS OF MOTION 

 

For this analysis we consider several types of sensors: earth-based angle-only, earth-based angle and range, and 

space-based angle-only.  The same mathematical model, shown in Fig. 2.1, is used for each type of sensor [1].  All 

measurements are made in the local reference frame ( ) of each sensor. Angle-only measurements estimate the 

azimuth and elevation to the target.  Angle and range measurements combine azimuth, elevation, and the range to 

the target contained in the slant range vector .   is the radius vector locating the sensor with respect to earth-

centered inertial (ECI) coordinates.  For ground-based sensors, the length of  is the radius of the earth.  For space-

based sensors, the length of  is the distance from the center of the earth to the sensor.  The right ascension and 

declination of the spacecraft are given by  and , while  is the sidereal time of the observer and  is the latitude of 

the observer.  The east longitude from the sensor to the spacecraft is .  The observation is given by 

 

  (1.1) 

 

In the non-rotating equatorial inertial reference frame the spacecraft location is given by the vector  with 

components  and .  The components of the vector  are given by 

 



 

 

  (1.2) 

 

The conversion from the inertial to the sensor coordinate system ( ) is given by 

 

  (1.3) 

  

For an angle and range sensor (e.g. a radar), the observation equations are given by 

 

  (1.4) 

 

  (1.5) 

   (1.6) 

 
Fig. 2.1, Geometry of Sensor Observations [1] 

 

 

The two-body orbital equations of motion are defined by [1] 

 



 

 

  (1.7) 

 

where  is called the gravitation parameter  

 

  (1.8) 

 

 is the universal gravitation constant,  is the mass of the earth, and  is the process noise.  Examples of 

process noise include perturbing forces like thrusting, drag, solar pressure, and gravitational forces from other 

bodies (e.g. the sun and moon). 

 

There are two approaches to solving the two-body orbital equations of motion.  The first is to apply numerical 

integration techniques to equation (1.7).  When other perturbations like drag are included, this is a reasonable 

approach.  The second is to take advantage of the analytical solution for Keplerian motion.  The six classical orbital 

elements are listed in Table 1 [2].  The transformations between the position/velocity state vector and the orbital 

elements are straightforward and described in [2, 8].  The orbital element reference frame, , and the 

definitions of   and  are defined in Figure 2.2. 

 

 

 

Table 1, Classical Orbital Elements 

  



 

 

 
Figure 2.2, Classical Orbital Elements 

 

If the mean anomaly, , is used instead of the true anomaly in the state vector, the relationship describing the 

equations of motion is given by 

 

  (1.9) 

 

where  is the time between observations.  The conversion between mean anomaly and true anomaly is presented 

in [2, 5, 8].  For this analysis, both approaches for estimating the current state were applied [1].  The MATLAB® 

code integrates the two-body equations of motions in equation (1.7) while the C++ code takes advantage of the 

linear relationship described in equation (1.9). 

 

3. EXTENDED KALMAN FILTER FORMULATION 

 

For the purposes of this analysis, the orbit estimation problem was formulated using an extended Kalman filter [1].  

The system model is given by 

 

  (1.10) 

 

  (1.11) 

 

The state vector  is defined as  

 



 

 

  (1.12) 

 

which contains the positions and velocities in the inertial reference frame.  For a non-maneuvering object, there is no 

input  so the plant dynamics may be expressed as 

 

  (1.13) 

 

We have not included any perturbing forces for this analysis so  and .  The covariance 

matrix describing the uncertainty in the state estimate is .  The measured parameters  are  

 

  (1.14) 

  

  (1.15) 

 

The initialization step is 

 

  (1.16) 

 

  (1.17) 

The Kalman filter gain step is 

 

 

  (1.18) 

 

  (1.19) 

 

For the range and angle measurement, we have 

 



 

 

  (1.20) 

 

From [1],  

 

  (1.21) 
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For angle-only measurements, we have 

 

  (1.30) 

 

The Kalman filter update step is given by 

 

  (1.31) 

 

  (1.32) 

 

Since , the propagation step is given by 



 

 

  (1.33) 

 

  (1.34) 

 

where  is the discrete-time representation of the  matrix defined by 

 

  (1.35) 

 

with 

 

  (1.36) 

 

Details on calculating  via a series expansion can be found in [1]. 

 

 

4.  SIMULATION RESULTS 

 

In order to quantify the potential benefits of a geostationary observation point for improving the accuracy of metric 

observations, the following five scenarios were considered: 

 

 Ground-based angle-only sensors 

 Ground-based angle-only and angle/range sensors 

 Ground-based angle-only and space-based angle-only sensors 

 Ground-based angle/range and space-based angle-only sensors 

 Ground-based angle-only, angle/range and space-based angle-only sensors 

 

A simulated geosynchronous satellite, based on the TDRS (Tracking and Data Relay Satellite) 8 orbit with nodal 

position of -46.67 degrees longitude, was used as the object of interest.  An extended Kalman Filter was used to 

estimate its state.  Monte Carlo simulations were employed to quantify the expected performance of all scenarios.  

Quantities varied over the Monte Carlo simulations include: initial orbit uncertainty, sensor location, and sensor 

noise.  For the first study a set of Monte Carlo runs with the parameters in Table 2 were used. The results are 

summarized in Table 3.  The location of the sensor relative to the satellite track is illustrated in Figure 4.1.  The 

noise parameters for the different sensors were based on the representative calibration values presented in [2]. 

 



 

 

 
 

Figure 4.1, Sensor-Satellite Configuration (green line is the satellite track, the red dots represent the sensor locations 

when a measurement is taken). 

 

Table 2, Configuration for First Study 

Number of Monte Carlo Runs 100 

Nodal position of geostationary target -46.67 degrees 

Latitude of angle-only earth sensor 33.82 degrees 

Latitude of angle-range and second angle-only earth 

sensor 

42.62 degrees 

Longitude of earth sensors Centered at target nodal position separated by a 

randomly selected angle between 0 and 20 degrees 

Nodal position geostationary space based sensor Target node + 120 degrees plus a randomly selected 

offset between -10 and +10 degrees 

Angle-only earth sensor noise σ 0.003 degrees  
Angle-range earth sensor  angle noise σ 0.01 degrees 

Angle-range earth sensor range noise σ 0.15 km 

Angle-only space based sensor noise σ 0.003 degrees 

Initial position error σ 20.0 km 

Initial velocity error σ 0.05 times initial velocity (5 percent of the initial 

velocity) 

 

The roughly 14 km position error for the ground based angle-only sensors case was much larger than the other cases 

because the angle between the sensors was small and provided little resolution in the X direction. The case with 

ground and spaced-based angle only sensors did much better because the angle between the measurements was large 

enough to provide good triangulation for the satellite position. The cases with the angle/range sensor and one angle 



 

 

only sensor are better because the range estimate from this sensor is very good (~.15 km) and is able to significantly 

reduce the X coordinate error. 

 

Table 3, Summary of First Study Monte Carlo Simulation Results 
Parameter Gnd angle-only,  

Gnd angle-only 

Gnd angle-only, 

Gnd angle/range 

Gnd angle-only,  

Space angle-only 

Gnd angle/range,  

Space angle-only 

Gnd angle-only, 

Gnd angle/range, 

Space angle-only 

Mean RMS 

Position 

Error σ 

13.829 km 1.347 km 4.494 km 1.676 km 1.039 km 

Mean X Position 

Error σ 

13.627 km 0.262 km 4.196 km 0.274. km 0.215 km 

Mean Y Position 

Error σ 

1.071 km 0.558 km 1.270 km 1.152 km 0.540 km 

Mean Z Position 

Error σ 

2.078 km 1.198 km 0.968 km 1.183 km 0.861 km 

Mean RMS 

Velocity 

Error σ 

1.348 m/s 0.167 m/s 0.602 m/s 0.182 m/s 0.127 m/s 

Mean X Velocity 

Error σ 

1.194 m/s 0.051 m/s 0.534. m/s 0.089 m/s 0.046 m/s 

Mean Y Velocity 

Error σ 

0.610 m/s 0.048 m/s 0.250 m/s 0.054 m/s 0.047 m/s 

Mean Z Velocity 

Error σ 

0.135 m/s 0.151 m/s 0.120 m/s 0.149 m/s 0.109 m/s 

 

A second study was performed to explore the effect of angular error variations for spaced-based angle-only sensors. 

Cases were run for the space based sensor with angle noise increased by a factor of five (0.015 degrees) and 

decreased by a factor of five (0.0006 degrees). The results are shown in Table 4. Results for the case with earth 

angle-only earth angle/range sensors and space based angle-only sensor with noise of 0.015 degrees are not in the 

table because they were within 2% of the results for the earth angle-only earth angle/range sensors by themselves. 

Comparing Table 4 with Table 3, it is seen that the space based angle only sensor with 0.015 degrees noise is still 

slightly better than the earth based angle-only sensor when paired with either of the ground based sensors.  The 

decreased noise version of the space based sensor when paired with the angle-only earth sensor does about a factor 

of two better than the nominal noise spaced-based sensor. When paired with the angle-range earth sensor it does 

about factor of three better than the nominal noise of a spaced-based sensor. 

 

Table 4, Summary of Second Study Monte Carlo Simulation Results 
Parameter Gnd angle-only,  

Space angle-only 

0.015 degrees 

Gnd angle/range,  

Space angle-only 

0.015 degrees 

Gnd angle-only,  

Space angle-only 

0.0006 degrees 

Gnd angle/range,  

Space angle-only 

0.0006 degrees 

Both Gnd, 

Space angle-only 

0.0006 degrees 

Mean RMS 

Position 

Error σ 

12.289 km 3.932 km 1.948 km 0.511 km 0.468. km 

Mean X Position 

Error σ 

12.039 km 0.653 km 1.630 km 0.146 km 0.141 km 

Mean Y Position 

Error σ 

1.419 km 1.705 km 1.023 km 0.422 km 0.376 km 

Mean Z Position 

Error σ 

2.001 km 3.482 km 0.264 km 0.247 km 0.238 km 

Mean RMS 

Velocity 

Error σ 

1.271 m/s 0.466 m/s 0.266 m/s 0.062 m/s 0.058 m/s 

Mean X Velocity 

Error σ 

1.133 m/s 0.151 m/s 0.217 m/s 0.033 m/s 0.030 m/s 

Mean Y Velocity 

Error σ 

0.544 m/s 0.061 m/s 0.148 m/s 0.042 m/s 0.039 m/s 

Mean Z Velocity 

Error σ 

0.180 m/s 0.437 m/s 0.034 m/s 0.031 m/s 0.030 m/s 



 

 

 

 

 

 

5. SUMMARY AND CONCLUSIONS 

 

In this paper we have compared the expected orbit estimation uncertainty for several different sensor configurations. 

The contribution of a spaced-based angle-only sensor in geostationary orbit to the determination of the orbit of 

another geostationary satellite was explored.  Pairing an earth-based angle-only sensor has advantages over pairing 

two earth-based angle-only sensors because the angle between the target and the spaced-based and earth based 

sensor is much larger than is achievable than that for two earth-based sensor. The advantage remains even if the 

noise for space-based sensor is a factor of five greater than that for the earth-based sensor. When the 

geosynchronous spaced-based sensor noise is a factor five lower than that for the earth-based sensor, the spaced-

based sensor and the earth-based angle-range sensor alone are a factor of two better than the earth-based angle-only, 

earth-based angle-range and spaced-based sensors all with nominal noise. Thus, for the scenario considered, it is 

clearly beneficial to combine information from a geosynchronous observation point when estimating the orbit of 

another geosynchronous object.  Although there are an infinite number of possible scenarios, these preliminary 

results indicate that a geosynchronous observation point provides a quantifiable benefit for estimating the orbits of 

other geosynchronous objects.    

  

6. ACKNOWLEDGEMENTS 

 

This work was funded by the Operationally Responsive Space office in Albuquerque New Mexico.  The MATLAB
®
 

code provided as a supplement to Optimal Estimation of Dynamic Systems [1] was used as a starting point for the 

simulations performed under this effort.  The results were confirmed with C++ code developed independently by 

Michael Griesmeyer. 

 

7. REFERENCES 

 

1. John L. Crassidis and John L. Junkins, Optimal Estimation of Dynamic Systems, Chapman & Hall/CRC, Boca 

Raton, Florida, 2004. 

2. David. A. Vallado, Fundamentals of Astrodynamics and Applications, Microcosm Press, El Segundo, 

California, 2
nd

 Edition, 2004. 

3. Bryon D. Tapley, Bob E. Schutz, and George H. Born, Statistical Orbit Determination, Elsevier Academic 

Press, Burlington, Massachusetts, 2004. 

4. Bruno O.S. Teixeira, Mario A. Santillo, R. Scott Erwin, and Dennis S. Bernstein, “Spacecraft tracking using 

sampled-data Kalman filters,” IEEE Control Systems Magazine,  pp. 78-94, August 2008. 

5. Daniel J. Brett, “Orbital estimation using an extended Kalman filter,” Ph.D. Dissertation, Naval Postgraduate 

School, Monterey, California, December 1992. 

6. D.A. Cicci and G.H. Ballard, “Sensitivity of an extended Kalman filter 1. variation in the number of observers 

and types of observations,” Appl. Math.Comput., vol. 66, pp. 233–246, 1994. 

7. D.A. Cicci and G.H. Ballard, “Sensitivity of an extended Kalman filter 2. variation in the observation error 

levels, observation rates, and types of observations,” Appl. Math. Comput., vol. 66, pp. 247–259, 1994. 

8. Howard A. Curtis, Orbital Mechanics for Engineering Students, Butterworth-Heinemann/Elsevier Ltd., 

Burlington, Massachusetts, 2
nd

 Edition, 2010. 

 

 

  


