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Abstract 
 
Lambert algorithms are used extensively for initial orbit determination, mission planning, 
space debris correlation, and missile targeting, just to name a few applications. Due to the 
significance of the Lambert problem in Astrodynamics, Gauss, Battin, Godal, Lancaster, 
Gooding, Sun and many others (References 1 to 15) have provided numerous 
formulations leading to various analytic solutions and iterative methods. Most Lambert 
algorithms and their computer programs can only work within one revolution, break 
down or converge slowly when the transfer angle is near zero or 180 degrees, and their 
multi-revolution limitations are either ignored or barely addressed. Despite claims of 
robustness, many Lambert algorithms fail without notice, and the users seldom have a 
clue why. 
 
The DerAstrodynamics lambert2 algorithm, which is based on the analytic solution 
formulated by Sun, works for any number of revolutions and converges rapidly at any 
transfer angle. It provides significant capability enhancements over every other Lambert 
algorithm in use today.  These include improved speed, accuracy, robustness, and multi-
revolution capabilities as well as implementation simplicity. Additionally, the lambert2 
algorithm provides a powerful tool for solving the angles-only problem without artificial 
singularities (pointed out by Gooding in Reference 16), which involves 3 lines of sight 
captured by optical sensors, or systems such as the Air Force Space Surveillance System 
(AFSSS). 
 
The analytic solution is derived from the extended Godal’s time equation by Sun, while 
the iterative method of solution is that of Laguerre, modified for robustness. The 
Keplerian solution of a Lambert algorithm can be extended to include the non-Keplerian 
terms of the Vinti algorithm via a simple targeting technique (References 17 to 19). 
Accurate analytic non-Keplerian trajectories can be predicted for satellites and ballistic 
missiles, while performing at least 100 times faster in speed than most numerical 
integration methods.  



Introduction 
 
In 1991, Klumpp of JPL (Reference 10) compared the performance of numerous Lambert 
algorithms over the last two hundred years and declared the Gooding Lambert algorithm 
the winner. The Gooding Lambert algorithm (Reference 7), which originates from the 
Lancaster-Blanchard analytic solution (Reference 6), computes an initial guess of the 
universal iteration parameter for a high order Halley iterative method. Since Klumpp’s 
limited (115 samples) results of the Gooding Lambert algorithm showed speed, accuracy, 
robustness, and applicability for multiple revolutions, one might be inclined to ask how 
DerAstrodynamics lambert2 algorithm can be better. Simply put, it operates on the same 
theory, but with no starting and convergence problems, proven multi-revolution 
capability and includes easily more accurate non-Keplerian solutions of Vinti. The 
outstanding works of the late Professor Sun, regarding the multi-revolution Lambert 
problem, have been invaluable in developing this analytic solution.  
 
Similar to the analytic solution of a Kepler algorithm, the analytic solution of a Lambert 
algorithm is not in closed form; an iterative method must be used to deduce a numerical 
solution. Contrary to the analytic solution of a Kepler algorithm, the analytic solution of a 
Lambert algorithm should be understood and visualized using any formulation, with or 
without universal variables. Any multiple-revolution Lambert problem has only elliptic 
solutions, and the conic solutions for trajectories less than one revolution can be simple, 
if the independent or unknown iteration parameter is chosen wisely. Since the initial 
value for the unknown iteration parameter of the lambert2 algorithm can be visualized 
and bounded within known limits, there is no need for intelligent starters, averaging, or 
binary search methods. High-order iterative methods are needed for robustness, but it can 
be proved that failures still exist as in the examples of the DerAstrodynamics kepler1 
algorithm. In Klumpp’s report, Conway indicated that all other high-order methods fail. 
Conway also claimed, without proof, the Laguerre iterative method has never been 
known to fail. In a space debris study, Der encountered many cases that the Conway-
Laguerre iterative method can fail at the rate of one in a thousand. Der modified the 
implementation of the Laguerre iterative method to ensure Conway’s infallibility claim, 
yet still achieve rapid convergence. 
 
The lambert2 algorithm is the fastest, most accurate, robust and multi-revolution 
Lambert algorithm today. If a Lambert algorithm uses the Newton method for the 
iterative procedure, then it cannot be robust. The principal advantage of the lambert2 
algorithm is that the unknown iteration parameters for any revolution can be visually 
estimated to within a very small range before the iterations begin. This presents a user 
with the feel and some physical meaning of the converged numerical solutions. In the 
unlikely event of failure, the user can easily find out the cause. The lambert2 algorithm 
is also compact and contains only two functions. The lines-of-code for the main function 
is approximately 200, and that of the minimum time subroutine is about 50. It can solve 
for elliptic orbits of any revolution, and parabolic and hyperbolic orbits of less than one 
revolution. 
 



 

Figure 1.  An example of the input and output of a Lambert algorithm  

A Lambert algorithm that computes essentially the Keplerian transfer trajectory as shown in 
Figure 1 can be extended to include non-Keplerian terms ( 2J ,  3J , most of 4J ) of the Vinti 
algorithm via a simple targeting technique. Accurate analytic non-Keplerian trajectories can 
be predicted for satellites and ballistic missiles, while performing at least 100 times faster in 
speed than most numerical integration methods. 

 



General Formulation of the Lambert Problem 
 
The method of solving the problems of Kepler and Lambert are practically the same. The 
Kepler problem is an initial value problem of solving the equations of motion 
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to find the position and velocity vectors )( 2tr  and )( 2tv  at any given time 2t ; given the 
initial position and velocity vectors 11  = t )( rr  and 11  = t )( vv   at a given initial time 1t , and µ 
is the gravitational constant for the central body. The classical theory ends with solving for 
the solution of one unknown, the eccentric anomaly E, in the Kepler Equation: 
 
 F ( E ) = E e sin E 0− − Μ =       (2) 
 
where the mean anomaly M and the eccentricity e can be computed from the given times 1t , 

2t  and the initial state vector of 1r  and 1v . 
 
The Lambert problem is a two-point boundary value problem of solving the same equations 
of motion (1) to find the velocity vectors )( 1tv  at a given initial time 1t  and )( 2tv  at a given 
time 2t ; given the position vectors 1r  and  2r  at the respective times 1t  and 2t  (Figure 1).  
The classical theory (Gauss or Battin) solves two equations for two unknowns, but can be 
deduced to solve for one unknown, the semi-major axis, a, in the Lambert Equation: 
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where t = 2t  and 1t  = 0 without loss of generality, and α  and β  are functions of the semi-
major axis. 
 
Using Sun’s notations of Reference 5, the Lambert Equation for multi-revolution elliptic 
orbits can be expressed as: 
  
 F ( x ) = ( x ) y ) N 0− =φ + φ ( + π τ      (4) 
 
where x is the only unknown or independent variable to be solved for, y is a function of x, τ 
is the normalized time computed from the given 1t , 2t , 1r , 2r , µ, and N 0≥  is the orbit 
revolution number. When N = 0, equation (4) can be reduced to equation (3) with different 
notations, while x is essentially a function of the semi-major axis. This beautiful equation (4) 
provides the foundation to develop an algorithm and computational procedure for any 
revolution of elliptic orbits without difficulty. When N is greater than zero, parabolic and 
hyperbolic transfer orbits do not exist. The actual expressions of equation (4), including those 
for parabolic and hyperbolic orbits, are included in Appendix A. The functions ( x )φ  and 

y )φ (  are defined later by equation (13) in the Computational Procedure section. 



The transcendental Kepler equation (2), and Lambert equations (3) and (4) do not allow any 
opportunity for closed form solutions, even though there is only one unknown. Numerous 
iterative methods that are specific to each formulation and independent variable exist, and the 
use of hyper-geometric functions is one of Battin’s tricks. However, simple iterative methods 
such as those of Newton, Halley and Laguerre are available, if the first and/or the second 
derivatives of the functions, F ( E ) , F (a ) , F ( x ) , can be derived.  
 
The Laguerre method as stated in Reference 13 is intended to solve the roots of a polynomial 
equation of degree n. If the first and second derivatives of F ( x ) are respectively F ( x )′  and 
F ( x )′′ , then the Lambert equation (4) can be solved by the iterative formula 
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where the degree n = 1, 2, . . . The sign ambiguity in equation (5) is resolved by taking the 
sign of the numerical value of F ( x )′ . If n = 1, then equation (5) is reduced to the iterative 
method of Newton. With an open mind and the lightning speed of a modern computer, 
robustness can be achieved by varying n. When Newton’s method is used, a reasonable initial 
guess of 1x  must be estimated, and some authors have developed sophisticated formulae just 
for this purpose. Similarly, Gooding of Reference 7 also used complicated starting guesses 
for the Halley method. Unlike the Newton and Halley methods, the Laguerre method requires 
that the initial starting value, 1x  for i = 1 in equation (5) can be “just a rough guess”, 0.5±  
for any elliptic orbit or revolution. Many Lambert algorithms use the Newton method and 
robustness is compromised. These Lambert algorithms break down if the Newton method 
fails and usually the initial guess is poor. If n is allowed to vary in the Laguerre method, then 
the chance of getting a converged solution increases dramatically. The value of n, which is 
arbitrary, is initially set to 2 in the lambert2 algorithm. 
 
In addition, the physics of the Lambert problem and the specific formulation of a Lambert 
algorithm dictate the limits of the independent variable. The Sun Formulation requires the 
independent variable x be defined as x 1<  for elliptic orbits for all N, and x 1=  for 
parabolic orbits, and x 1>  for hyperbolic orbits when N = 0. When x is bounded within 
limits, the estimate of the initial guess is simple. For example, if the given position vectors 
requires that 1 x 0− < < , then the initial rough guess can be chosen as 1x 0.5= − . The 
Laguerre method, which is very forgiving, has not yet failed to converge to correct solutions. 
If this “rough guess” for x is satisfactory, then the lambert2 algorithm can be used to solve 
multi-revolution Lambert problems with N = 0, 1, 2, ….  
 
The general formulation of the Lambert problem as presented above is simple. Other general 
formulations of solving two equations and two unknowns, which are complicated, will not be 
discussed. The Primer Vector approach (Reference 11) and Series Reversion/Inversion 
method (Reference 12) are also not recommended and discussed later in the Conclusions. For 
completeness, Sun’s expressions for F ( x ) ,  F ( x )′  and F ( x )′′ are given in Appendix A.  



The Sun Theory for the Multi-Revolution Lambert Problem 
 
This section may be skipped for the readers not interested in the details of the Sun theory. 
In the following presentation, only elliptic orbits of multi-revolution will be described and 
Sun’s notations of Reference 5 are used unless otherwise specified. Lancaster and Gooding 
of References 6 and 7 presented almost the same theory with different notations and iterative 
methods. When two position vectors, 1r  and 2r  are given at the respective times 1t  and 2t , 
the central angle or transfer angle, ψ,  between 1r  and 2r  can be identified by a value of 

ψ  less than, equal to or greater than 180 degrees. Let 0
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Figure 2.  Determination of the transfer orbit direction and angle from the given 1r  and 2r  



The special case of the transfer angle, ψ  =  k π, and k is zero or an integer will be discussed in 
the preliminary step of the Computational Procedure. The solutions of the non-degenerate 
case of kψ ≠ π  are illustrated in Figure 2. Before a Lambert algorithm is started, the desired 
transfer orbit to be determined must be specified to be direct (inclination <= 90 degrees) or 
retrograde (180 > inclination > 90 degrees). In addition to the given 1r , 2r , 1t  and 2t , this 
input parameter eliminates all the confusions around the output solution of a Lambert 
problem. In lambert2, this user-specified parameter is direct_torbit set to 1.0 or −1.0, which 
controls the output transfer orbit to be either direct or retrograde. 
 
A second parameter, α, which is computed from the given 1r  and 2r , controls or dictates the 
transfer angle, ψ, to be less than or greater than 180 degrees. It is determined from the third 
component of the angular momentum of the transfer orbit as: 
  1 2x )(0, 0,1) (α = • = •k h r r  
 
This proper starting procedure allows the transfer angle defined in both 0 < ψ  <  π and π <  
ψ  <  2 π  for either a direct or retrograde transfer orbit similar to the method of Reference 14. 
Given 1r , 2r , 1t , 2t  and direct_torbit, one of the four transfer orbit solutions as shown in 
Figure 2 is a solution of the Lambert problem. The “short and long” transfer orbits as 
described in many textbooks are misleading or incomplete, and a user may compute a 
“solution”, without noticing that the transfer orbit has an unexpected inclination! 
 
Introducing an Angle parameter, σ, which is related to ψ by 
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where 1r  and 2r  are the respective magnitudes of the given position vectors, 1r  and 2r , and 
m = 1r + 2r + c, n = 1r + 2r  − c, c = | 1r − 2r |. The Angle parameter σ, which varies with the 
transfer angle ψ, and its sign determined from the given position vectors, α and direct_torbit.  
 
The independent variable or unknown iterative parameter, x, is called the Path parameter. It 
is related to the semi-major axis, a, and can be expressed as 
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The Angle parameter and Path parameter are related to each other by  
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y is a function of σ and x.  The sign of y is chosen as that of σ if 2 0σ ≠ , and | y | = 1 if 
2 0σ = .  



The physical meaning of the Angle parameter and Path parameter and their regions of 
validity are depicted in Figures 3 and 4. Though the case of 1r  = 2r , (when ψ = 0 or 360 
degrees,) has no practical value, it presents the small-angle difficulties for Initial Orbit 
Determination where most Lambert algorithms break down or converge slowly. The other 
situation of difficulty is in Figure 3, Case (b), when ψ = 180 degrees, where some Lambert 
algorithms break down in this close proximity. Case (a) and Case (c) of Figure 3 are solvable, 
as long as the transfer angle ψ is not near the singularities of 0, 180 and 360 degrees. The 
more robust the Lambert algorithm, the closer to the singularities it can approach. For 
practical long range ballistic missile targeting, ψ is usually far away from any singularities, 
and therefore almost any Lambert algorithm can work flawlessly. Most Lambert algorithms 
work only for non-multi-revolution problems. A practical missile-targeting trajectory is 
usually less than one revolution, so there is only one possible Lambert solution. Starting 
procedure and singularities will be discussed further in the Computational Procedure. 
 

 
 
Figure 3.  Definitions of the transfer angle ψ to the Angle parameter σ and the Path 
                parameter x to orbit types 



 
It should be noted that the initial guess for the unknown Path parameter, 1x 1<  for elliptic 
orbits, is required to start the iterative formula of equation (5), and the converged solution of 
x must satisfy the Lambert equation (4). In other words, we need to find the value of the Path 
parameter x that makes the Lambert equation (4), F ( x ) 0= . For any number of revolutions, 
N, Case (a) and Case (c) of Figure 3 also illustrate that the Low Path (x > 0) and the High 
Path (x < 0) are separated by the Minimum Energy (ME) Path (x = 0) for any ψ. The 
determination of the Minimum Energy transfer time, t ME , is simple and is shown later in the 
Computational Procedure section. For a given transfer time, t, between the two given position 
vectors, it is assumed that t = 2t  and 1t  = 0, without loss of generality. The value of (t − t ME ) 
indicates whether x is positive (low Path) or negative (high Path). That is: 
 t   <  t ME   for  x  > 0   (Low Path) 
 t   =  t ME   for  x  = 0   (Minimum Energy Path) 
 t   >  t ME   for  x  < 0   (High Path) 
 

 
 
Figure 4.    Elliptic orbits, multi-revolution and  σ vs x  regions of solution. 



For elliptic orbits of multi-revolution, N 0≥ , the solution regions can be divided into four 
parts as shown in Figure 4.  When the two position vectors are given, σ is unique and can be 
computed. A constant ψ line, which is straight, can then be drawn as shown in Figure 4 (the 
blue line, for example). The remaining problem is to determine the value of x in the Low or 
High Path region, which will intersect the constant ψ line, if a solution exists. Equation (6) 
suggests that a constant σ line is parabolic while a constant ψ line is straight. The obvious 
question, then is: why ask for trouble by working with the more difficult parabolic constant σ 
line, rather than the simple, straight constant ψ line instead? 
 
For N = 0 and σ determined from given initial conditions, the Minimum Energy transfer 
time, t ME , which indicates the sign of x, is the only parameter needed to initiate the initial 
guess of x. If x is positive on the Low Path, a simple guess of 1x = 0.5 is good enough to kick 
start equation (5), and a unique Lambert solution will be computed in a few iterations 
(normally between 3 to 7) by lambert2. If x is negative on the High Path, a simple guess is 

1x = − 0.5. A unique solution is guaranteed, because the given time t is a single-valued and 
monotonic function of x for N = 0. 
 
The Minimum Energy time t ME  is easily determined with x = 0. When t ME  is determined 
for any N, then x is positive or negative according to t less than or greater than t ME . 
 
For multi-revolution, N 1≥ , a single minimum exists for a given σ and t, which is the 
minimum time of flight t MT . The minimum time of flight t MT  can be computed as shown 
later in the Computational Procedure section by a simple iterative method. When N is 
specified such that N 1≥ , then there will be two distinct solutions, a unique solution, or no 
solution according to t greater than, equal to, or less than t MT .  
 
In summary, t ME , which indicates the sign of x, is needed for all N. t MT , which indicates 
the number of possible solutions, is computed only for N 1≥ . In any case, both t ME  and 
t MT  can be easily determined from the given initial conditions of a Lambert problem. 
 
Figures 5 and 6 depict the solution regions in the τ vs x plots for N = 0 and N = 1 and 2. The 
normalized time, τ, in the Lambert equation (4), can be computed from 
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where t = 2t , 1t  = 0, m = 1r + 2r + c, c = | 1r − 2r |, and µ is the gravitational constant. The 
region of solutions for parabolic and hyperbolic orbits of N = 0 are illustrated in Figure 5. 
The numerical values of Sun’s example of Reference 5, which are reproduced in Example 1 
of the Numerical Examples section, are also displayed in Figure 6. The input position 
vectors, 1r  and 2r , are not given in Reference 5. These position vectors are reconstructed, 



resulting in a small difference as those in Reference 5. Comparison of the given value of 
τ, the computed values of t ME  and t MT  in Figure 6, the possible solutions of multi-
revolution Lambert problem for N = 1 can be determined. Similarly, for all N greater than 
one, the concept of determining the possible number of solutions is the same.  
 
Note that in the lambert2 computer program the normalized and non-dimensional time τ 
defined by equation (9) is used throughout for the feel of the magnitudes of time. The input 
time unit is in seconds with t = 2t  and 1t  = 0, without loss of generality. However, for 
illustrations in Figures 5 and 6, it is further divided by π to make the time scale more 
readable, and with the similar scaling factor with the Path parameter, x. 
 

 
 
Figure 5.    Multi-Revolution and  τ  vs  x  Regions of Solution 



 
 
 
 

 
 
Figure 6.    Typical Multi-Revolution and  τ vs x  Regions of Solution 
                   (Elliptic Orbits Only, N = 1 with Example 1 values) 
 
 
 
 



Computational Procedure 
 
Conceptually, all Lambert formulations are similar to those described in the section General 
Formulation of the Lambert Problem. Sun’s choice of the unknown variable, x, not only 
allows for simple expressions of the Lambert equation (4) and its derivatives, F ( x ) ,  F ( x )′  
and F ( x )′′ , but computable equations without ambiguity, and is applicable to multi-
revolution elliptic orbits that few can match. For elliptic orbits, x 1<  must be strictly 
enforced. Parabolic and hyperbolic orbits exist only for less than one revolution (N = 0) and 
x 1≥ . These simple equations are included in Appendix A (reproduced from Reference 5) 
and implemented in the source code. Since only elliptic orbits exist for multi-revolutions, a 
physically understandable and sensibly bounded unknown parameter presents great 
advantage over those formulations using other universal variables. Notice that Gooding of 
Reference 7 defined this same unknown variable x as the unknown universal variable. 
 
Furthermore the unknown (Path) parameter x is related to or identified by the physical Low 
and High Paths separated by the Minimum Energy trajectory. Sun’s formulation for multi-
revolution elliptic transfer orbits can be reduced to the following steps: 
 
0. Preliminary step: Before a Lambert algorithm is started, the transfer orbit to be determined 

must be specified to be direct (inclination <= 90 degrees) or retrograde (inclination > 90 
degrees). This is a hard-coded line in lambert2 instead of an input parameter in order to 
keep the normal input parameters of two position vectors and two times. That is: 

       direct_torbit = 1.0 for direct transfer orbit with inclination <= 90 degrees 
       direct_torbit = -1.0 for retrograde transfer orbit with inclination > 90 degrees 
 

A second parameter, α, which controls or dictates the transfer angle to be less than or 
greater than 180 degrees, is determined from the third component of the angular 
momentum of the transfer orbit. That is: 
  1 2x )(0, 0,1) (α = • r r  
 
This proper starting step allows the transfer angle defined in both 0 < ψ  <  π and π <  
ψ  <  2 π  for either a direct or retrograde transfer orbit. Figure 2 shows four transfer 
orbits, not the two transfer orbits, “short and long”, as described in many textbooks. 
Again, the two solutions of “short and long” transfer orbits are misleading or incomplete, 
and a user may unintentionally compute a transfer orbit of an unexpected inclination! 
 
When the transfer angle, ψ  =  k π, and k is even or zero, transfer orbits are degenerate or 
physically meaningless. They will not be treated. If k is odd, the transfer orbits are non-
degenerate and real, but there are infinite numbers. For this “singular” case, the inclination 
of the transfer orbit must be specified first. The special case that the inclination is zero, the 
transfer orbit is that of the Hohmann. For this reason, lambert2 only provides multi-
revolution Lambert solutions for real transfer orbits for all kψ ≠ π . The simple 
Hohmann-type transfers, which are treated in many text books, are left as an exercise for 
the readers. 

 



1. Compute the transfer angle 1 1 2
0

1 2
cos [ ]
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r r

 between the two given position vectors, 

1r  and 2r , and choose 0  <  ψ  = 0ψ  <  π.  
For direct transfer orbit:  ψ  =  2π − 0ψ ,  if  0α <  
For retrograde transfer orbit: ψ  =  2π − 0ψ ,  if  0α >  

 
Once ψ is determined after the parameters direct_torbit and α, the positive or negative 
value of the Angle parameter, σ, computed from equation (6) and its sign is determined 
from ψ as:   

 (a) σ  >  0   for  0  <  ψ  <  π  (Case a, Fig. 1) 
 (b) σ  =  0   for  ψ  =  π   (Case b, Fig. 1) 
 (c) σ  <  0   for  π  <  ψ  <  2 π  (Case c, Fig. 1) 
 

2. Compute the normalized time τ  using equation (9), with t = 2t  = ( 2t  − 1t ), 1t  = 0, m = 

1r + 2r + c, c = | 1r − 2r |. 
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m
µ

τ = 4           

 
3. Compute the parabolic normalized time pτ  from the parabolic orbit equation (A3) as: 

3
p

2 ( 1 σ )
3

τ = −                   (A3) 

 
4. Determine orbit type: 

If   p( ) elliptic,τ > τ ⇒  otherwise parabola or hyperbolic    
 
5. In the following, only elliptic orbits are considered (parabolic and hyperbolic orbits are 

computed in lambert2). Compute the maximum number of possible revolutions: 
maxN Integer ( / )= τ π  

      if  maxN 1≥ , then start a do-loop  with  maxnrev 0, N= . 
 

6. This step is needed only for multi-revolutions, N nrev 1= ≥ . Compute the normalized 
minimum time of flight τ MT . From Equation (A5), by setting F ( x ) 0′ =  gives 

32 1 σ= ( )
3 x y

τ −MT
MT MT

                 (10) 

where τ MT  is the solution of the minimum time equation and its first derivative: 
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where  
1 2 2

2

u 1( u ) cot [ ] (2 u ) (1 u ) , ( u x or y )
3u(1 u )

−φ = − + − =
−

       (13) 

and the arc-cotangent function is subjected to the restriction of equation (A4). Since the 
normalized minimum time of flight τ MT  is almost known with respect to x  as shown in 
Figure 6 for N = 1 (similar for N 1> ), only the Newton method is used instead of the 
Laguerre method. If the Laguerre method is desired, equation (12) can be differentiated 
with respect to x to obtain the second derivative of Φ . The solution of equation (11) are 
x MT  and yMT , which in turn give the normalized minimum time of flight τ MT  of 

equation (10). Note that 2 2y = [1 (1 x ) ]± − σ −MT MT . The sign of yMT  is chosen as 

that of σ if 2 0σ ≠ , and | yMT  | = 1 if 2 0σ = . If an unbounded independent variable is 
used as in References 9 and 11, then at certain transfer angle ψ the locus of τ  is flat for a 
wide range of x making x MT  and τ MT  difficult to obtain. 

 
7. Compute the normalized Minimum Energy time τ ME  from the Minimum Energy equation 

for all N nrev 0= ≥ : 
21= N cos ( ) [1 ]−τ π + σ + σ − σME                                    (14) 

 
8. Since τ  and τ ME  are determined from Steps 2 and 7 respectively, then ( τ  − τ ME ) 

indicates whether x is positive (Low Path) or negative (High Path). That is:  
 τ    <  τ ME   for  x  > 0   (Low Path), giving 1x 0.5=  
 τ    =  τ ME   for  x  = 0   (Minimum Energy Path) 
 τ    >  τ ME   for  x  < 0   (High Path), giving 1x 0.5= −  

Using this simple initial value of 1x , equation (5) can be started, and a reasonable 
Lambert solution for N 0=  can be obtained. If the initial guess of 1x 1≥  for an 
elliptic orbit, then 1x  should be reset to either 0.5 or 0.5−  depending on the Low or High 

Path. The simple estimate of Reference 15, 1
1x = ( 1)
2

τ
τ −

τ
ME

ME , which is 

unnecessary, is included as a test of efficiency and robustness. The complicated starting 
formulae developed by Gooding of Reference 7 are eliminated. The reader should know 
the initial values of  x  for all N nrev 1= ≥ . 

 
9.  Determine the output velocities at 1t  and 2t  from the converged x and y: 
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where ( )cv y n x m= +µ ,  ( )rv y n x m= −µ ,  2 1( ) /c c= −e r r , 

1 1/r1 r=e r  , 2 2/r2 r=e r ,  m = 1r + 2r + c,  n = 1r + 2r  − c,  and  c = | 1r − 2r |. 



Lambert Numerical Examples 
 
Example 1: Sun’s Example in Reference 5 with estimated position vectors at times 1t  
and 2t , and their respective magnitudes are 30072 km and 9990 km. They are 
reconstructed from a Molniya Orbit, since 1r  and 2r  are not given in Reference 5. Table 
1 shows the summary of key parameters, and Figure 7 depicts the trajectories with 

0.5σ = ± . These are only the two solutions in Sun paper of Reference 5. Notice that the 
two trajectories of N = 0 for 0.5σ = ±  are lofted high so that more transfer time can be 
“wasted.” For N = 1, all the High Path and Low Path trajectories have to travel more than 
one orbit before reaching position vector 2r  at 2t , and therefore they are close to the 
Minimum Energy trajectories. 
 
 

 
Figure 7.    Multi-revolution solutions of Example 1 (Elliptic orbits only, N = 0 and 1) 
 
 
Table 1 shows the summary of key parameters of Example 1 that are Sun’s solutions in 
Reference 5. Table 1x shows the summary of key parameters of the “other two solutions” 
that are missing in most textbooks. 



Given:   t = 2t  = 36,000 seconds (10 hours), and 1t  = 0    
ECI position vectors: 
















=

0619783.9505-
91599.91523-

0322592.1456
)(t1r ,     
















=

58925.72746-
14054.15705
71922.06769

)(t 2r  

 
Input: direct_torbit = 1.0 in lambert2, to force a direct transfer orbit resulting in the 

inclination of  63.38801958 degrees 
 
Computed: Transfer Angle: ψ = 44.7  (deg), Angle parameter: σ = 0.5 

 
N = 0  (less than one revolution, one solution) 
ECI velocity vectors: (only solution of N = 0, Path parameter x < 0, high) 

1

2.000652697
(t ) 0.387688615

-2.666947760

 
 =  
  

v ,     2

-3.79246619
(t ) -1.77707641

6.856814395

 
 =  
  

v  

 
  N = 1  (one+ revolution, two solutions) 

ECI velocity vectors: (first solution of N = 1, Path parameter x < 0, high) 

1

0.50335770
(t ) 0.61869408

-1.57176904

 
 =  
  

v ,     2

-4.18334626
(t ) -1.13262727

6.13307091

 
 =  
  

v  

 
  N = 1  (one+ revolution, two solutions) 

ECI velocity vectors: (second solution of N = 1, Path parameter x > 0, low) 

1

-2.45759553
(t ) 1.16945801

0.43161258

 
 =  
  

v ,     















=

5.49641054
0.01822220
5.53841370-

)(t 2v  

 
 

Input: direct_torbit = −1.0 in lambert2, to force a retrograde transfer orbit resulting 
in the inclination of  116.61198041 degrees 

 
Computed: Transfer Angle: ψ = 315.3  (deg), Angle parameter: σ = − 0.5 

N = 0  (less than one revolution, one solution) 
ECI velocity vectors: (only solution of N = 0, Path parameter x < 0, high) 

1

2.96616042
(t ) -1.27577231

-0.75545632

 
 =  
  

v ,     2

5.84375455
(t ) -0.20047673

-5.48615883

 
 =  
  

v  

 
  N = 1  (one+ revolution, two solutions) 



ECI velocity vectors: (first solution of N = 1, Path parameter x < 0, high) 

1

1.33645655
(t ) -0.94654565

0.30211211

 
 =  
  

v ,     2

4.93628678
(t ) 0.39863416

-5.61593092

 
 =  
  

v  

 
  N = 1  (one+ revolution, two solutions) 

ECI velocity vectors: (second solution of N = 1, Path parameter x > 0, low) 

1

-1.38861608
(t ) -0.47836611

2.21280154

 
 =  
  

v ,     2

3.92901545
(t ) 1.50871943

-6.52926969

 
 =  
  

v  

 
 direct_torbit  =  1.0;  i = 63.4 (deg) direct_torbit  =  −1.0;  i =116.6 (deg) 

Transfer Angle: ψ = 44.705  (deg) Transfer Angle: ψ = 315.295  (deg) 
Angle parameter: σ = 0.5 Angle parameter: σ = − 0.5 
N = 0 N = 1 N = 1 N = 0 N = 1 N = 1 

Path p.: x1  − 0.5 − 0.31116   0.44791 − 0.5 − 0.30678   0.44808 
Converged x − 0.62233 − 0.24362   0.48960 − 0.61358 − 0.21437   0.46690 
Converged y   0.92014   0.87440   0.89984 − 0.91867 − 0.87248 − 0.89682 
ME time: τ ME    1.48005   4.62164   4.62164   1.66154   4.80314   4.80314 
Min time: τ MT    ---   4.47610   4.47610 ---   4.65723   4.65723 
v1mag   3.35642   1.76256   2.75567   3.31608   1.66533   2.65586 
v2mag   8.03472   7.50985   7.80288   8.01800   7.48762   7.76819 
Kind of Path   high   high   low   high   high   low 
 
Table 1.    Summary of Sun’s solutions of Example 1 
 
 
 direct_torbit  =  1.0;  i = 63.4 (deg) direct_torbit  =  −1.0;  i =116.6 (deg) 

Transfer Angle: ψ = 315.295  (deg) Transfer Angle: ψ = 44.705  (deg) 
Angle parameter: σ = − 0.40815 Angle parameter: σ = 0.40815 
N = 0 N = 1 N = 1 N = 0 N = 1 N = 1 

Path p.: x1  − 0.5 − 0.31919   0.44802 − 0.5 − 0.32120   0.44796 
Converged x − 0.63837 − 0.29136   0.52668 − 0.64240 − 0.30304   0.53546 
Converged y − 0.94936 − 0.92062 − 0.93788   0.94982   0.92125   0.93870 
ME time: τ ME    1.61861   4.76021   4.76021   1.52297   4.66456   4.66456 
Min time: τ MT  ---   4.61442   4. 61442   ---   4.51890   4.51890 
v1mag   3.37006   1.76255   2.83363   3.38958   1.81222   2.87541 
v2mag 10.56047 10.16233 10.40172 10.56672 10.17106 10.41318 
Kind of Path   high   high   low   high   high   low 
 
Table 1x.    Summary of the “other two solutions” of Example 1 missing in most textbooks 



Example 2: This Example is to test how close the lambert2 algorithm can get near the 
singularity point of zero degree transfer angle. The given position vectors, 1r  and 2r  are 
constructed from a Low Earth Orbit (LEO) with the transfer angle, ψ, at 0.32335 degrees. 
The Angle parameter is 0.99092σ = + . Since τ π/  is 5.53 indicating five revolutions, 
and therefore there are 11 possible solutions for the constant σ . The first solution is 
depicted in Figure 8, and is in the solution region of the High Path. The initial guess of x 
was far from the correct solution, but the robustness of the Laguerre’s method ensured 
convergence. Similar to Example 1, some of the key parameters of the first five 
trajectories with N = 0, 1 and 2 are shown in Table 2. The High Path ones are, as 
expected, lofted extremely high (as in Figure 8 for N = 0) to account for the long transfer 
times and very short distance between the two position vectors.  
 
If the transfer time is short, this small angle problem is reduced to those of the Initial 
Orbit Determination (IOD) using radar data. The N 1≥  solutions computed by the 
lambert2 algorithm will be close to the Minimum Energy one in Figure 8. In general, the 
IOD solutions are those depicted in Case (a) and Case (c) of Figure 3. 
 
It is interesting to note that the initial estimate of the Path parameter, 1x , from Reference 
(15)  may  be less than −1. However, for N = 0, 1x  is set to 0.5 or − 0.5, and the iterative 
equation (5) of the Laguerre method converged rapidly with almost any reasonable first 
guess within 1.±  The maximum number of iterations for thousands of test cases was 
seldom greater than seven, and the solutions are reasonable. For the test case of ψ = 0.07 
degrees, the number of iterations was 12. With the difficult test of Example 2 and the 
thousands of test cases, the lambert2 algorithm is robust. Many other Lambert 
algorithms tested by the author failed to converge even at N = 0 using this Example. 
 
 
Given:   t = 2t  = 12300 seconds and 1t  = 0    

ECI position vectors: 

1

7231.58074563487
(t ) 218.02523761425

11.79251215952

 
 =  
  

r ,     2

7357.06485698842
(t ) 253.55724281562

38.81222241557

 
 =  
  

r  

 
Input: direct_torbit = 1.0 in lambert2, to force a direct transfer orbit resulting in the 

inclination of  40.19574532 degrees 
 
Computed: Transfer Angle: ψ = 0.32335  (deg), Angle parameter: σ = 0.99092 

N = 0  (less than one revolution, one solution) 
ECI velocity vectors: (only solution of N = 0, Path parameter x < 0, high) 
 

1

8.79257809
(t ) 0.27867677

0.02581527

 
 =  
  

v ,     2

-8.68383320
(t ) -0.28592643

-0.03453010

 
 =  
  

v  



N = 1  (one+ revolution, two solutions) 
ECI velocity vectors: (first solution of N = 1, Path parameter x < 0, high) 

1

7.63353091
(t ) 0.24582764

0.02569470

 
 =  
  

v ,     2

-7.50840227
(t ) -0.24335652

-0.02658981

 
 =  
  

v  

 
  N = 1  (one+ revolution, two solutions) 

ECI velocity vectors: (second solution of N = 1, Path parameter x > 0, low) 

1

8.19519089
(t ) 2.30595215

1.75229388

 
 =  
  

v ,     2

8.07984345
(t ) 2.30222567

1.75189559

 
 =  
  

v  

 
  N = 2  (two+ revolution, two solutions) 

ECI velocity vectors: (first solution of N = 2, Path parameter x < 0, high) 

1

6.51890385
(t ) 0.21496104

0.02618989

 
 =  
  

v ,     2

-6.37230007
(t ) -0.20150975

-0.01832295

 
 =  
  

v  

 
  N = 2  (two+ revolution, two solutions) 

ECI velocity vectors: (second solution of N = 2, Path parameter x > 0, low) 

1

7.00660748
(t ) 1.96687296

1.49423471

 
 =  
  

v ,     2

6.87133644
(t ) 1.96250281

1.49376762

 
 =  
  

v  

 
 
 Transfer Angle: ψ = 0.32335  (deg) Transfer Angle: ψ = 0.32335  (deg) 

Angle parameter: σ = 0.99092 Angle parameter: σ = 0.99092 
N = 0 N = 1 N = 1  N = 2 N = 2 

Path p.: 1x  −0.5 −0.41742   0.42047 −0. 27487   0.40561 
Converged x −0.83485 −0.72176   0.82461 −0.61242   0.70139 
Converged y   0.83813   0.72773   0.82812   0.62159   0.70790 
ME time: τ ME    0.26814   3.40974   3.40974   6.55133   6.55133 
Min time: τ MT    ---   3.32344   3.32344   6.49126   6.49126 
v1mag   8.79703   7.63753   8.69190   6.52250   7.42926 
v2mag   8.68860   7.51239   8.58215   6.37551   7.30055 
Semi-major axis 12152.14 7686.574 11507.10 5892.482 7247.976 
Eccentricity 0.999998 0.999996 0.957687 0.999994 0.950987 
Inclination 40.19575 40.19575 40.19575 40.19575 40.19575 
Kind of Path   high   high   low   high   low 
 
Table 2.    Summary of solutions of Example 2 to challenge any Lambert algorithm 



 

 
 
Figure 8.    First Solution of Example 2 with very poor initial guess of x to stress the 

Laguerre’s iterative method. (Elliptic Orbit, N = 0) 
 
 
 
For N nrev 1= ≥ , the initial guess of 1x  for the High and Low Paths can be easily 
estimated with the use of Figures 5 and 6. For the High Path ( 1x < 0 ),  

1x x / (nrev 1)= − + , where x is the last value of x. For the Low Path ( 1x > 0 ), using 
the value associated with the minimum time x MT (see Figure 6) of nrev gives 

1x ( x 0.75) / 2= +MT . 
 
It is important to understand that the computed multi-revolution Lambert solutions of 
N 1≥  may not agree with real motion. The user should make sure that the perigee radius 
is greater than the Earth/central-body radius for real trajectories. 



Lambert - Vinti Targeting 
 
The Keplerian solution of the Lambert algorithm can be easily extended to include the non-
Keplerian terms ( 2J , 3J  and most of 4J ) of the Vinti algorithm of Reference 17 via a simple 
targeting technique. This targeting method, which is commonly used in Applied Optimal 
Control Theory of Reference 18, is also known as Pseudo-Targeting, Neighboring Trajectory 
and State Transition methods in other applications. 
 

 
 
Figure 9.    Theory of Pseudo-Targeting using the Vinti algorithm 
 
 
Figure 9 illustrates the theory of the Pseudo-Targeting method using the given Lambert 
inputs, the computed Lambert solution (initial guess for Vinti) and the desired Vinti solution. 
Conceptually it is desired to hit the target 2r  or point A using a Vinti trajectory with transfer 
orbit velocities v1v  and v2v , instead of a Lambert trajectory that also goes through 1r  and 

2r  with transfer orbit velocities t1v  and t2v .  
 



The initial inputs to the Vinti algorithm are the given position vector 1r , the computed 
Lambert transfer orbit velocity t1v  from the lambert2 algorithm, and the given times 1t  and 

2t . The initial Vinti trajectory, which includes 2J , 3J  and most of 4J , ends at point B at 2t  
as shown in Step 1 of Figure 9. To correct the position offset, the new target point C of Step 
2 of Figure 9 is chosen exactly on the opposite side of point B with respect to point A. Along 
the way, a 3x3 partial derivative matrix or a state transition matrix is constructed by varying 
the transfer orbit velocity vector at 1t  and the resulting changes in the position vector at 2t . 
The small correction due to Vinti targeting results in the change of the transfer orbit velocity 
by 1δ v  at 1t , which is the product of the inverse of the state transition matrix and the vector 

difference of position 2δr  at 2t . The desired final Vinti trajectory can be obtained by 

repeating Steps 1 and 2 of Figure 9. Upon convergence, the Keplerian solution of the 
Lambert algorithm, ( t1v , t2v ), is replaced by the more accurate non-Keplerian solution of the 

Vinti algorithm, ( v1v , v2v ). 
 
The key to convergence and robustness is that the initial guess of the Keplerian transfer orbit 
velocity t1v  is reasonably close to the non-Keplerian solution of Vinti and the transition 
matrix is computed by the accurate numerical partials technique of Reference 19. Let the 
state vector at any time t be denoted as [ ]T=x r v , where r is the position vector and v 
is the velocity vector. The iterative steps are summarized as follows: 
 
1. Compute the Keplerian Lambert solution, ( t1v , t2v ) by the lambert2 algorithm. 

2. Compute the nominal Vinti state vector 
T* * *

2 2 2 =  x r v at 2t  using the given 

position vector 1r , the nominal transfer orbit velocity 1
*

t1=v v , and the given times  1t  
and 2t  as inputs to the Vinti algorithm. 

3. Evaluate the nominal differential correction of the position vector (point A − point B) at 
2t  as 

  *
2 2 2δ = −r r r  

4. Compute the transition matrix, T, by accurate numerical partials. Using the Vinti 
algorithm successively for three times in the neighborhood of the nominal trajectory by 
perturbing one at a time, each of the three Cartesian components of the nominal transfer 
orbit velocity vector *

1v  at 1t  with a step-size of  ih  , ( i = 1, 2, 3 ). That is 

  T* * * 1 1 11 11i 1i ih   = + δ = +v v v v  

 The step-size ih  is usually set to 610 −  only for the thi  Cartesian component. For j  i≠ , 

then jh 0= . Using the accurate numerical partials technique, each of the thi   neighboring 

trajectory invokes four more trajectories with the four step-sizes of ih 2 , ih 2− , 

ih 2ρ , ih 2− ρ , where a good choice of ρ  is 0.5. Let the corresponding four position 



vectors 2ir  at 2t  computed by the Vinti algorithm be denoted as 1y , 2y , 3y  and 4y .  

The three partial derivatives of the  thi  column of T is given by 
 

  ( ) ( )
( )

3
3 4 1 2

2
2i
*
1i i

 

h

∂ − − ρ −
=

∂ ρ 1− ρ

r y y y y
v

      

  
The 3 x 3 transition matrix can be approximated as  

 

  
1 11 12 13

2 21 22 23
* * * *
    ∂ ∂ ∂ ∂  

= = =   
∂ ∂ ∂ ∂   

r r r r
T

v v v v
    

  
 
 In computing T, 12 predictions by the Vinti algorithm are required (four for each i).   
 
5. Update the nominal 1

*v  at 1t  as 
 
  1

1 1 1
* * *

1 2new old old
−= + δ = + δv v v v T r  

  
Steps 2 to 5 are repeated until the magnitude of 2δr  is reduced to an acceptably small 

value (eg., 1210 −  km).  Note that in Step 2, the new nominal transfer orbit velocity is 

1 1
* *

new
=v v  after the first iteration. Normally only three iterations are required. Upon 

convergence, the desired Vinti velocities of the transfer orbit are 1
*

v1 = vv  and 

2
*

v2 = vv . 
 
 
The accurate numerical partials technique of computing the state transition matrix T requires 
four times more evaluations than the tradition partial derivative method. However, the rate of 
convergence is much faster and the choice of the step-size ih  is more forgiving, and 
therefore improves robustness. The Lambert and Vinti trajectories are both analytic. The non-
Keplerian solution of the Lambert-Vinti targeting that includes the gravitational potential 
terms of 2J , 3J  and most of 4J  can be computed almost instantly. If higher accuracy is 
desired, then the nominal trajectory and/or the state transition matrix may be computed by 
numerical integration with all the desired perturbed accelerations. The resulting non-
Keplerian velocities of the transfer orbit by Lambert-Numerical targeting will be more 
accurate than that of the Lambert-Vinti targeting, but at the expense of considerably more 
CPU times. 
 
 
 



Lambert-Vinti Targeting Numerical Examples 
 
Example 1a: Extension of Example 1, N = 1, High Path solution 
Given:   t = 2t  = 36,000 seconds (10 hours), and 1t  = 0    

ECI position vectors: 

1

22592.145603
(t ) 1599.915239

19783.950506

 
 = − 
 − 

r ,     2

1922.067697
(t ) 4054.157051

8925.727465

 
 =  
 − 

r  

Input: direct_torbit = 1.0 in lambert2, to force a direct transfer orbit resulting in the 
inclination of  63.38801958 degrees 

Computed: Transfer Angle: ψ = 44.7  (deg), Angle parameter: σ = 0.5 
 

Lambert ECI velocity vectors:  

1t1

0.50335770
(t ) 0.61869408

1.57176904

 
 = =  
 − 

vv ,     2t2

4.18334626
(t ) 1.13262727

6.13307091

− 
 = = − 
  

vv  

Vinti targeting ECI velocity vectors:  

1v1

0.48947268
(t ) 0.62699255

1.57594642

 
 = =  
 − 

vv ,     2v2

4.18527250
(t ) 1.05070711

6.14512956

− 
 = = − 
  

vv  

 
 
Example 2a: Extension of Example 2, N = 0, High Path solution 
Given:   t = 2t  = 12300 seconds and 1t  = 0    

ECI position vectors: 

1

7231.58074563487
(t ) 218.02523761425

11.79251215952

 
 =  
  

r ,     2

7357.06485698842
(t ) 253.55724281562

38.81222241557

 
 =  
  

r  

Input: direct_torbit = 1.0 in lambert2, to force a direct transfer orbit resulting in the 
inclination of  40.19574532 degrees 

Computed: Transfer Angle: ψ = 0.32335  (deg), Angle parameter: σ = 0.99092 
 

Lambert ECI velocity vectors:  

1t1

8.7925780946
(t ) 0.2786767564

0.0258152736

 
 = =  
  

vv ,     2t2

8.6838331963
(t ) 0.2859264266

0.0345301039

− 
 = = − 
 − 

vv  

Vinti targeting ECI velocity vectors:  

1v1

8.7925788197
(t ) 0.2786767791

0.0258152755

 
 = =  
  

vv ,     2v2

8.6838339145
(t ) 0.2859264505

0.0345301070

− 
 = = − 
 − 

vv



Conclusions 
 
The DerAstrodynamics lambert2 algorithm can also be used for interplanetary trajectories, if 
the gravitational constant is replaced by that of the Sun. The four recommendations for 
further works by Klumpp (Reference 10) in 1991 are accomplished by the elegant 
formulation of Professor Sun of Reference 5 and the “modified” iterative method of 
Laguerre. The complicated starting formulae, third derivative evaluation for the Halley 
method, and the convergence testing developed by Gooding of Reference 7 are eliminated.  
 
In summary: 

1. No starter algorithm is needed. The initial guess of the unknown iterative parameter x 
for N = 0 can be simply set to 0.5± . For any N, x is positive or negative according to 
the given time t = ( 2t  − 1t ),  less than or greater than the Minimum Energy time t ME . 

2. No averaging and/or lower and upper limits are computed or needed. 
3. No Newton method is used; otherwise the algorithm will not be robust. 
4. No fixed higher-order/degree iteration equation is designated, but the degree of the 

polynomial equation of the Laguerre method is allowed to vary. 
 
Despite Conway’s claim of robustness by using a “fixed” fifth-degree iterative equation of 
Laguerre for solving the Kepler equation (Reference 13), it is shown to fail in the 
DerAstrodynamics kepler1 examples. In fact, the “fixed” fifth-degree iterative equation of 
Laguerre failed to predict a correct Kepler solution approximately one out of a thousand 
using the initial state vectors from any day of the NORAD Space Catalog and prediction 
times of almost any number of days. Similarly Halley’s cubic iteration process cannot 
guarantee robustness, because it is a “fixed” cubic iterative equation. 
 
Since the lambert2 algorithm has the same independent “universal variable” parameter x as 
that of Gooding, strictly speaking Sun’s formulation is universal.  
 
The Primer Vector approach of Reference 11 has difficulties in the initial guess and 
convergence due to the unbounded independent parameter, and therefore solutions are not 
guaranteed. The Series Reversion/Inversion method of Reference 12 presents implementation 
difficulty of matrix manipulations, and is limited to less than one revolution. Instead of 
solving a Lambert equation, References 8 and 9 deduce the unknown from a cubic Kepler 
equation. Since the unknown is unbounded, solutions are not guaranteed. None of these 
Lambert algorithms and many others can guarantee accuracy and robustness. 
 
The Gooding Lambert algorithm may be the best as suggested by Klumpp of JPL in 1991. 
The superior lambert2 algorithm, which has eliminated all the difficulties of the Gooding 
Lambert algorithm, is the fastest, most accurate and robust, multi-revolution Lambert 
algorithm in 2011 and beyond. Using the analytic DerAstrodynamics vinti algorithm and 
simple targeting, the Keplerian solution of the lambert2 algorithm can be extended to 
include the non-Keplerian terms of Vinti to achieve orders of magnitude accuracy 
improvement. 



Appendix A 
 
The Lambert equation from Reference 5 can be expressed as: 
 

1 1 2 2
2 3 2 2

1 1 2 2
2 3 2 2

3

1 x ycot [ ] cot [ ] x (1 x ) y (1 y ) N
(1 x ) (1 x ) (1 y )

( elliptic, x 1 ) (A1)

1 x ycoth [ ] coth [ ] x (x 1) y (y 1)
F(x) = (x 1) (x 1) (y 1)

( hyperbolic, x 1 ) (A2)
2 ( 1 σ )
3

( parabolic,

− −

− −

  − − − + − + π − τ 
− − −  

<

  − + + − − − − τ 
− − −  

>

− − τ

x 1 ) (A3)
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










 =



 

 
 

 1 1
2 2

x y0 cot [ ] , cot [ ]
2 2(1 x ) (1 y )

− −π π
≤ ≤ π − ≤ ≤

− −
                  (A4) 

 
The first and second derivatives of the Lambert equation (A1) for multi-revolution 
elliptic trajectories can be expressed as:       
            

3
2

1 xF ( x ) = = 3x 2(1 )
x y(1 x )

 ∂ τ  ′ τ − − σ ∂ −   
        (A5) 

2 3
2 5

2 2 3
1 xF ( x ) = = (1 4x ) F ( x ) 2(1 )

x x (1 x ) y

 ∂ τ  ′′ ′+ + − σ 
∂ −   

        (A6) 

 

where 2 2y = [1 (1 x ) ]± − σ − . The sign of y is chosen as that of σ if 2 0σ ≠ , and | y | 

= 1 if 2 0σ = . When N is specified and τ is given, the multi-revolution elliptic orbits 
equations (A1), (A5) and (A6) can be substituted into the Laguerre’s iterative formula of 
equation (5). Together with the guessed value of 1x  in Step 8 of the Computational 
Procedure and any value of n of the polynomial degree (starting at n = 2), the lambert2 
algorithm can be initiated for any revolution N 0≥ . When x and y are substituted into 
equation (A1), equation (A4) must be strictly enforced, otherwise F ( x )  will be computed 
incorrectly. 
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