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ABSTRACT 

The art and science of space situational awareness (SSA) has been practised and developed from the time of 

Sputnik.  However, recent developments, such as the accelerating pace of satellite launch, the proliferation of 

launch capable agencies, both commercial and sovereign, and recent well-publicised collisions involving 

man-made space objects, has further magnified the importance of timely and accurate SSA. 

The United States Strategic Command (USSTRATCOM) operates the Space Surveillance Network (SSN), a 

global network of sensors tasked with maintaining SSA.  The rapidly increasing number of resident space 

objects will require commensurate improvements in the SSN.  Sensors are scarce resources that must be 

scheduled judiciously to obtain measurements of maximum utility.  Improvements in sensor scheduling and 

fusion, can serve to reduce the number of additional sensors that may be required. 

Recently, Hill et al. [1] have proposed and developed a simulation environment named TASMAN (Tasking 

Autonomous Sensors in a Multiple Application Network) to enable testing of alternative scheduling 

strategies within a simulated multi-sensor, multi-target environment. TASMAN simulates a high-fidelity, 

hardware-in-the-loop system by running multiple machines with different roles in parallel. At present, 

TASMAN is limited to simulations involving electro-optic sensors.  Its high fidelity is at once a feature and a 

limitation, since supercomputing is required to run simulations of appreciable scale. 

In this paper, we describe an alternative, modular and scalable SSA simulation system that can extend the 

work of Hill et al with reduced complexity, albeit also with reduced fidelity.  The tool has been developed in 

MATLAB and therefore can be run on a very wide range of computing platforms. It can also make use of 

MATLAB’s parallel processing capabilities to obtain considerable speed-up.   The speed and flexibility so 

obtained can be used to quickly test scheduling algorithms even with a relatively large number of space 

objects.  

We further describe an application of the tool by exploring how the relative mixture of electro-optical and 

radar sensors can impact the scheduling, fusion and achievable accuracy of an SSA system. By varying the 

mixture of sensor types, we are able to characterise the main advantages and disadvantages of each 

configuration. 

1. INTRODUCTION 

For over half a century, the Earth-Orbiting-Satellite population has consistently risen. Along with each satellite has 

come a trail of rocket stages, separation devices, fairings and rocket exhaust products that are typically discarded 

and left to drift about the Earth. The resulting cloud of man-made objects orbiting around the Earth at great speed 

and along a variety of trajectories threatens to collide with space-borne assets the world has become reliant upon for 

enabling microgravity research, telecommunications, weather forecasting, Earth observations and navigation. 

Crucially, the problem is expected to increase in severity for the foreseeable future. The ability to effectively detect 

and track these objects for mission planning and collision avoidance is therefore of increasing significance.  

Groups such as United States Strategic Command (USSTRATCOM) have endeavoured to maintain Space 

Situational Awareness (SSA) by tracking all man-made objects since the 1950s. The continual growth of the 

Resident Space Object (RSO) population necessitates USSTRATCOM’s strategy for staying one step ahead. By 

commissioning research regarding the improvement of SSA maintenance capabilities before it is necessary, 

USSTRATCOM aim to meet future demand. Due to the enormous overheads associated with trialling improved 

methodologies for maintaining SSA using an existing sensor network for space surveillance (SNSS), it is a logical 

choice to initially simulate the problem, to permit efficient research of an optimal solution. Initial attempts at this 



simulation, are described in a recent paper by Hill et al. [1] who have named their simulation Tasking Autonomous 

Sensors in a Multiple Application Network (TASMAN). 

To ensure comparable results to experimentation with a genuine SNSS are produced, TASMAN has been designed 

to imitate reality as closely as possible. TASMAN simulates a high-fidelity, hardware-in-the-loop system that 

maintains an RSO catalogue of manmade objects orbiting the Earth. This system is realised by running multiple 

machines with different roles in parallel. These roles include orbit determination, truth orbit propagation, object 

catalogue preservation as well as sensor modelling and mission planning. TASMAN achieves its high fidelity 

information from well-established orbit propagators and physics engines. Creating this level of fidelity however, 

necessitates supercomputing, which inflates the cost and timeline required for researching and testing alternative 

methods. 

This paper describes a new tool for SSA research named MASSAS or MATLAB Space Situational Awareness 

Simulation. MASSAS’s purpose is the timely and efficient characterisation of alternative SSA maintenance 

methodologies with a reduced focus on high fidelity simulation. For this reason MASSAS was designed to produce 

similar results to TASMAN [1] while only requiring low fidelity models and a single computer running MATLAB. 

MASSAS has also been designed for modularity, to enable efficient addition or modification of its constituent 

components. As a demonstration of this ability, this paper also presents a characterisation study of optical and radar 

SSA sensors by means of interchanging the system sensor model. It is proposed that with this tool, competing 

methods and alternative approaches can be researched and characterised with significantly less resources and in a 

reduced amount of time. In addition, when an optimal approach is achieved, fidelity can be increased for 

performance prediction prior to incorporation into high fidelity simulations such as TASMAN or a true SNSS. 

The paper begins with a general description of the methods used to develop and evaluate TASMAN by Hill et al. 

that are necessary for reproduction on MASSAS for comparison of results. The subsequent section provides an 

overview of the development of MASSAS paying special interest to any differences between the simulations. The 

result of consequent comparative tests between TASMAN and MASSAS are revealed in the following section. In 

addition, results of comparative tests between MASSAS’s optical and radar models used in a number of 

configurations are also produced. Conclusions are drawn in the final section as to the viability of the proposed low-

fidelity research and ideas for proposed future work are discussed. 

2. TASMAN RESULT REPLICATION 

To ensure MASSAS can deliver comparable results to TASMAN, MASSAS was initially configured to simulate the 

same methodologies and initialisation parameters as chosen by Hill et al. [1].  

2.1 Simulation Initialisation 

TASMAN’s recent results [1] were produced by performing a number of 8-day simulations. A tasking period of 24 

hours was used for mission planning of sensors. After each tasking period, the catalogue was reassessed and mission 

planning for the next period commenced. Observations of RSOs were obtained exclusively by simulated electro-

optical sensors which provided 120 second tracks, consisting of five angle pairs representing right ascension and 

declination. 

TASMAN truth orbits and state information for the RSO catalogue [1] were obtained from the Space-Track website 

[2] in the form of Two Line Element (TLE) sets on December 15, 2009. The list of RSOs to be catalogued for the 

simulation was selected using the criteria found in Table 1. 

Table 1. Criteria for selection of simulated RSOs 

 Semi-major axis (km) Eccentricity Inclination (deg) Radius of perigee (km) 

Minimum 25 000 0 50 25 000 

Maximum 28 000 0.05 70 28 000 

The resulting list of Medium Earth Orbit (MEO) objects contained 214 entries. The 214 object TLEs were again 

obtained from the Space-Track website [2] for the purposes of ensuring the results of this paper are comparable.  

The state vector chosen for this paper is, 

   [    ̇  ̇  ̇ ]  (1)  



consisting of three position and three velocity components in rectangular Earth centred, inertial coordinates and is 

consistent with Hill et al.’s approach [1]. RSO catalogue state estimate  ̂ and covariance   were artificially devised 

by means of Gaussian random value generators with standard deviations of    and   . The generated random values 

were appropriately assigned to a 6×1 vector    enabling computation of the resulting state estimate using 

  ̂        (2)  

   and    were chosen sufficiently large to test the method’s ability to improve the RSO catalogue from a poor state 

of maintenance. Initial independence assumptions enabled the generation of the 6×6 covariance matrix   by, 

       [  
   

   
   

   
   

 ]  (3)  

Sensor functionality was intentionally limited to ensure simulated observations were physically realisable by 

existing hardware. The limitations imposed on sensors by terrestrial occlusion and atmospheric distortion were 

realised by restricting sensors from obtaining observations at elevations lower than 20 degrees above horizontal. 

Optical sensor angle pairs obtained from truth data were each added with one arc second standard deviation of 

random Gaussian error. In addition, each sensor was limited to a maximum of 200 observations per tasking period. 

This limitation was applied to ensure the resulting relative accuracies were solely a consequence of effective sensor 

scheduling. 

Sensor locations were selected at authentic space surveillance sites that also provide adequate global coverage. In 

agreement with Hill et al. [1], the selected sites are presented in Table 2. 

Table 2. Sensor Site Locations 

Site East Longitude (deg) North Latitude (deg) Height Above Ellipsoid
*
 (m) 

Kwajalein, Pacific Ocean 167.7333
†
 8.716667 50 

Albuquerque, USA 253.502717 34.96305 1725 

Moron, Spain 354.41194 37.1511 101 

2.2 SSA Methodologies 

Hill et al. [1] presented three alternate sensor network tasking/scheduling methodologies named Scenario 1-3. The 

principal differences between each scenario were defined by the network topology and the availability of data 

throughout the simulated SNSS. 

Scenario 1  

The first scenario is designed to imitate the mission planning strategies implemented by USSTRATCOM’s own 

SNSS named the Space Surveillance Network (SSN) [1]. Tasking is performed in the same geographical location as 

the RSO catalogue is compiled. Crucially, although the tasker has access to the RSO catalogue and the orbit error 

covariance information contained within, it has only rudimentary knowledge of each sensor’s capabilities. The 

tasker creates a prioritised list of objects to be passed onto the scheduler by assigning each object to a category 

according to its orbit error covariance. Each scheduler is co-located with a sensor and has detailed knowledge of its 

sensor’s capabilities. Each scheduler/sensor pair is placed at geographically disparate locations, providing adequate 

global coverage. Each scheduler progresses through the tasking list and determines when to observe an object. 

Scheduling is accomplished through the application of sensor specific weighting criteria designed to achieve 

optimality with the available data. Scheduling criteria include probability of detection, target visibility overlap and 

remaining opportunities for orbit observation diversity. 

Scenario 2 

Although the RSO catalogue remains centralized in Scenario 2, the distinction between tasker and scheduler is lost 

as the role of the tasker is effectively absorbed into each scheduler. In addition, each scheduler now has access to the 

orbit error covariance information contained in the RSO catalogue. This enables the schedulers to take advantage of 

a covariance based, observation effectiveness scheduling algorithm further explained in section 2.3. Covariance 

based scheduling enables the schedulers to not only select the RSO in most need of observation, but also decide 

                                                           
*
 Elliptical Earth model assumed World Geodetic System – 1984 (WGS-84). 

†
 The East longitude for Kwajalein was erroneously published [1] as 192.2667 degrees. 



when to make an observation to achieve the greatest reduction in orbit error covariance. Additionally, once each 

scheduler has chosen an object and an appropriate time, the scheduler can predict how the newly scheduled 

observation will affect the observation effectiveness of the same object at an alternate time. This feat is achieved by 

reverse time propagation of the predicted object covariance and enables the scheduler to effectively assign multiple 

observations to the same object within a single observation period. The weakness of this Scenario however is the 

lack of coordination between schedulers. Each scheduler does not know how the schedules of other sensors will 

affect the catalogue. This results in redundant observations of some objects from multiple sites, which has the 

secondary effect of reducing the total number of objects that could have been observed for maximum benefit. 

Scenario 3 

The final scenario introduces the centralized mission planner which performs the role of tasker and scheduler for all 

sensors. The mission planner has access to the RSO catalogue as well as detailed knowledge of each sensor’s 

capabilities. Similar to Scenario 2, the mission planner uses a covariance based, observation effectiveness metric to 

perform tasking and scheduling. The vital difference however, is the mission planner’s ability to overcome Scenario 

2’s weakness by comparing the observation effectiveness of all sensors for a single RSO. Scenario 3’s mission 

planner can therefore predict how the scheduling of a sensor-object-time combination will affect the orbit error 

covariance of a catalogued RSO and use this prediction when performing subsequent scheduling. 

2.3 Covariance Based Scheduling 

The observation effectiveness method employed by TASMAN [1] for mission planning was devised from a fusion 

of methods presented by Blackman [3] and Tapley [4] resulting in multi-target covariance based sensor scheduling. 

The chosen technique employs the measurement update of an Extended Kalman Filter (EKF) [4] or Unscented 

Kalman Filter (UKF) [5-7] to determine a value representative of the reduction in 3D position error variance from a 

single observation. The applicable EKF measurement update equations are, 

            
            

       (4)  

 and                        . (5)  

Where   is the Kalman gain,   is the observation model and [] denotes the matrix transpose operator.        is the 

covariance matrix produced by the time update while      is the measurement update covariance matrix. The matrix 

  is the measurement noise covariance matrix. The measurement errors are assumed independent and identically 

distributed (i.i.d.) Gaussian noise. The standard deviations of optical measurements right ascension and declination 

denoted as    and    respectively.   is therefore generated by implementing 
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 ]. (6)  

Notably in Eq. (5), the updated covariance equals a priori covariance minus the matrix           . The matrix 

           is therefore the predicted reduction in covariance due to a measurement update. The orbit update 

effectiveness metric, denoted     , is computed by obtaining a scalar representation of the position component of 

the matrix           . Noting the state element positions in Eq. (1),      is obtained by taking the     trace of 

the upper left quadrant of the     covariance reduction matrix            as follows 

        ([          ]     
). (7)  

Alternatively if a UKF is used,      can be obtained by using    , the innovations covariance matrix [1] by using 

        ([        
    

 ]
     

). (8)  

The UKF method presented in Eq. (8) was used for observation effectiveness computation for this paper. The 

covariance based scheduling method, enables the computation of the      observation effectiveness metric at all 

possible observation epochs during each tasking period. This method enables the scheduler to pick the most 

appropriate time to schedule an observation to have the greatest effect on the orbit error covariance. The result 

however is admittedly suboptimal, as it tends to favour observation late in the tasking period, once the error has had 



time to grow [1]. This characteristic affords the scheduler a behaviour which focuses on error reduction rather than 

minimisation, which necessitates effective observation at the earliest opportunity. 

2.4 Catalogue Accuracy 

The final noteworthy parameters to be replicated by this paper for comparative purposes are the catalogue accuracy 

metrics, which are computed throughout the simulation to determine the state of the catalogue. Two metrics are 

defined by Hill et al. [1]; Catalogue Median and Catalogue Worst Case. Both metrics are obtained by firstly 

determining the largest 3D position error between the propagated truth and catalogue estimated states of each RSO 

over the prevailing 24 hour period. Once these errors are compiled, Catalogue Median and Catalogue Worst Case 

are then obtained by computing the median and maximum of the compilation. 

3. MATLAB SSA RESEARCH TOOL 

3.1 Research Environment 

MASSAS is a MATLAB program, written to simulate an SNSS attempting to maintain SSA. It is flexible in 

functionality, due to high levels of modularity, as well as computation, due to advanced control over data storage 

and parallel processing afforded by the use of a high level language. Because of MASSAS’s adaptability, 

components such as tasking/scheduling modules, sensor models, orbit propagators, orbit determination modules, 

physics modules and visualization features can be easily and/or dynamically interchanged and adapted to varying 

grades of fidelity. The flexibility afforded enables a large degree of control over simulation efficiency. 

3.2 Truth Data 

Depending on computational power and scenario constraints, MASSAS can be modified so that truth data is 

precompiled or dynamically evaluated during simulation. The benefit of precompiled truth data is the reduction of 

execution time when running alternate scenarios with the same initialisation parameters. Due to the specified 

scenario constraints, MASSAS has been configured to precompile with 30 second temporal resolution. 

Similar to TASMAN [1], simulated truth orbit data is obtained from TLEs by performing simplified mean orbital 

element conversions to Cartesian positions and velocities. Subsequent conversion from the six Keplerian orbital 

elements to Cartesian elements provides the initial truth state vector of the object. Once established, propagation of 

state vectors and the application of sensor models enable computation of observation angles and object visibility at 

desirable epochs. 

3.3 Orbit Propagation 

High fidelity orbit propagation is a very complex and costly exercise [8]. This is exaggerated by the amount of orbit 

propagation necessary for computation of truth orbits, observation effectiveness, orbit determination and catalogue 

accuracy metrics in TASMAN and MASSAS. Because of the approximations made in the scenario methodologies, 

the current length of simulation and the important fact that both truth orbit data and orbit determination models are 

configured to use the same propagator, there is arguably little to be gained from high fidelity propagation when the 

cost is so high. 

For the reasons considered, MASSAS was configured to use the very simple two-body Keplerian orbit propagation 

model presented by Vallado [8]. As necessary, the propagator’s complexity can be increased to account for 

assumption changes such as the inclusion of high-drag low-earth-orbit (LEO) objects or increased simulation 

duration.  

3.4 Sensor Model 

MASSAS and TASMAN use sensor models to identify if and to what quality a particular sensor will be capable of 

obtaining an observation of an RSO. An important difference between MASSAS and TASMAN is the emphasis on 

alternative sensor model integration. Therefore as an initial step, MASSAS has been supplemented with a simplified 

radar sensor model in addition to an optical sensor model.  

Furthermore, it is postulated [8, 9] that due to differences in observational information and accuracy, optical and 

radar observations provide disparate yet complimentary orbit track update information. In the absence of observation 

diversity, optical sensors are likely to reduce in-track error while supplying poor radial information due to accurate 

angle measurement and the absence of range data. Conversely radar is likely to provide increased radial error 

performance while lacking precision for in-track error reduction due to accurate range determination, yet inferior 

angle information.  



 

Optical 

The optical sensor model provides highly accurate angle measurements using passive optically visible radiation. The 

optical sensor model therefore relies on knowledge of sensor capability as well as a solar illumination model. The 

solar illumination model requires spatial knowledge of the Sun, Earth, sensor site and RSO. With this information, 

factors influencing illumination of the RSO such as solar eclipse, sensor/RSO phase angle
‡
 and sensor-nightfall are 

computed. The complexities of a high fidelity illumination model are simplified with a number of rudimentary 

conditions such as a single solar light source, optimal weather, negligible light time, uniform RSO illumination and 

a conical Earth shadow model for eclipse and nightfall. 

Radar 

In contrast to the optical model, the radar model employed for this paper requires only knowledge of each sensor’s 

specific capabilities. Radars in general can return a number of alternative observation parameters [8]. However the 

initial model will provide three parameters: range, azimuth and elevation measurements. Each radar measurement 

for this paper has i.i.d. Gaussian noise added to produce an error standard deviation of 30 metres for range and 54 

arc seconds for angle as representative error values from genuine SSN radars [3, 9]. 

3.5 Orbit Determination 

The problem of orbit determination is very old, yet the breadth of methods continues to expand today [3, 8]. Because 

each method has its own unique benefits and disadvantageous and because the initial aim of this study is to compare 

results with TASMAN [1], the chosen method of orbit determination implemented for this paper is achieved through 

the use of a UKF. The UKF is relatively simple to implement requiring knowledge only of the nonlinear equations, 

     [           ] (9)  

     [    ]     (10)  

where     represents the previous state update epoch,   the observation epoch,   represents the     state of the 

system,   is the state propagation model,   the process noise,   is the     measurement vector,   relates the 

system state to the observation model and   the measurement noise. It is assumed that the noise vectors    and    

contain zero-mean i.i.d Gaussian noise, and 

 
 [         ]           [         ]           

 [         ]          
(11)  

The particular implementation of the UKF used for this paper has been customised for this study to ensure robust 

operation when subjected to the chosen artificially induced noise. Due to Gaussian noise and six state parameters, 

   , the scalar weighting parameter   [6] has been assigned the value -3, in accordance with the equation, 

        (12)  

Ideally, employing this method minimizes the mean-squared-error up to the fourth order. It is however 

acknowledged that after nonlinear transformation, the probability distribution is no longer Gaussian and sub-optimal 

solutions may result. It was empirically determined however that   = -3 provided a consistently stable result. 

Stability was also enhanced  by introducing a modified form of covariance evaluation [5] that prevents the matrix 

    from losing positive definiteness due to a negative value for  . Modification is achieved by changing 

covariance evaluation about the estimated mean to evaluation about a central sigma point. The central sigma point is 

positioned, prior to transformation, at the a priori system state mean. 

Intuitively, if an alternative sensor is used, observation function h(.) and   must be appropriately adapted to 

represent the appropriate observation model. In the case of radar, a range parameter is computed in h(.) and 

appropriate measurement covariance information is added as a first row and column of  .   

                                                           
‡
 For the purposes of this paper, phase angle is defined as the angle between the site-sun and site-RSO vectors. 



4. RESULTS 

The catalogue initialisation noise statistics suggested by Hill et al. [1] was    equal to 1×10
3
 m and    equal to 

1×10
-4

 ms
-1

. It was empirically determined however that values    equal to 3.5×10
3
 m and    equal to 1×10

-4
 ms

-1
 

were necessary to achieve a proportionate Catalogue Median. The results presented show the catalogue metrics, 

Catalogue Worst Case and Catalogue Median for both systems at the end of each 24 hr tasking period. 

 

Fig. 1. MASSAS-TASMAN Comparison - Scenario 1 

 

Fig. 2. MASSAS-TASMAN Comparison - Scenario 2 

 

Fig. 3. MASSAS-TASMAN Comparison - Scenario 3 
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MASSAS’s radar model was also tested against its optical model for behavioural comparison. The catalogue was 

reinitialised to suggested statistical values of    equal to 1×10
3
 m and    equal to 1×10

-4
 ms

-1
. 

 

Fig. 4. Optical-Radar Comparison - Scenario 1 

 

Fig. 5. Optical-Radar Comparison - Scenario 2 

 

Fig. 6. Optical-Radar Comparison - Scenario 3 
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final sensor labelled Optically Augmented Radar (OAR) is a fused result combining optical and radar measurements 

for all sensors within the UKF orbit determination computation. Evaluation of      was similarly augmented to 

represent the available measurement information. The results presented show the catalogue metrics, Catalogue 

Worst Case and Catalogue Median for each sensor configuration broken down into three orthogonal error types: In-

track error, along the object’s velocity vector; cross-track error, parallel to the orbital plain’s angular momentum 

vector  ; and normal error, the error component orthogonal to the first two components, which is approximately 

radial for near circular orbits. 

 

Fig. 7. Sensor Configuration Comparison of Catalogue Worst Case on Day 8 - Scenario 3 

 

Fig. 8. Sensor Configuration Comparison of Catalogue Median on Day 8 - Scenario 3 

5. CONCLUSION 
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repercussions for large catalogues requiring fast covariance reduction. Finally, the results provide further support for 

the increased effectiveness of each subsequent scenario. This is especially evident in Scenario 1 where the Catalogue 

Worst Case actually grows due entirely to poor sensor allocation. 

Due to Scenario 3’s superior performance, it was chosen as the focus for the comparison of multiple sensor 

configurations presented in Fig. 7 and Fig. 8. The results confirm that radar measurements suffer from a large 

amount of in-track error and to a lesser extent also suffer from cross-track error. Interestingly, the optical model’s 

range error does not appear significantly larger than radar’s when processed through the UKF. The Hybrid 2:1 

configuration has proven to be an excellent compromise between the optical-only and radar-only SNSS. Including a 

single radar sensor significantly reduces the optical visibility limitations exposed by the optical-radar comparisons 

but does not suffer from such high levels of in-track and cross-track error. The best performance however, was 

achieved by the OAR sensor. The fused information has exceeded or met the levels of accuracy achieved by all 

other sensor configurations.  

In general, MASSAS’s low fidelity result has successfully provided commensurate scenario behaviour to that 

originally produced on TASMAN. The greatest indication of an influence on the result due any kind of model miss-

match is the apparent lack of visibility of a small number of objects by the optical model; which is unobserved in the 

TASMAN results. Other differences are likely attributed to best-guess initialisation parameters and the variability of 

each realisation of a stochastic process. The introduction of MASSAS’s disparate sensor analysis supports the 

necessity for further analysis of the benefits of the cooperative use of disparate sensors within an SNSS for the 

purposes of SSA. 

Hill et al. have offered a number of suggestions for the improvement of TASMAN [1], that are equally valid for 

MASSAS. Some of these include alternative scheduling processes and associated metrics, including different orbital 

regimes, investigating effects of sensor outages and missed detections, inclusion of search and catalogue 

maintenance modes as well as satellite characterisation capabilities. Alternative prospective work better aimed at 

MASSAS and its capabilities should include characterising the benefits of sensor-fusion with alternative 

measurements and data association strategies. Additionally, MASSAS’s speed should be taken advantage of, to 

explore steady state system behaviour and catalogue building techniques. 
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