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The Disturbed Storm Time (Dst) index is a measure of the magnetic field (in nT) created by the ring current, an 
electric current carried by charged particles trapped in the Earth’s magnetosphere.  The index is calculated from 
measurements at 4 magnetometer stations near the equator and referenced to zero on “internationally designated 
quiet days.”  As with other geomagnetic indices, the Dst index exhibits a high degree of correlation from one value 
to the next.   In fact, existing forecast models that strictly use solar wind and interplanetary magnetic field data as 
inputs have a difficult time matching the performance of simple persistence when evaluating the model by the linear 
correlation coefficient and the root mean square error between forecast values and actual values.  A model using the 
unscented Kalman filter (UKF) as the forecast engine was developed in an attempt to improve on simple persistence 
and existing models.  This UKF model is very similar to the model we used to forecast the planetary geomagnetic 
index (Kp) last year (Wetterer et al. [2010]) that outperformed all other existing Kp forecast models.  Initial results 
using this UKF forecast model to forecast Dst shows a similar performance and are detailed in this paper.  The UKF-
based model offers the opportunity for further forecast improvement by adding new inputs and refining the state and 
measurement functions in the filter. 
 

1.  INTRODUCTION 
 
The Disturbed Storm Time (Dst) index is one of the commonly used geomagnetic indices to indicate the severity of 
global magnetic disturbances.  It is a measure of the magnetic field (in nT) created by the ring current caused by 
trapped particles around the Earth.  Specifically, hourly values are derived from measurements by 4 magnetometer 
stations (Figure 1) near the equator and referenced to zero on “internationally designated quiet days.”  The World 
Data Center for Geomagnetism, Kyoto (http://wdc.kugi.kyoto-u.ac.jp/dst_realtime/presentmonth/index.html) 
provides a near real-time “Quicklook” value, a provisional value after approximately two years, and a final value 
after approximately six years. 
 

 

Fig. 1. Magnetometer stations used to calculate various geomagnetic indicies:  
Polar Cap (PC) – red, Auroral Electroject (AE) – green, Planetary Geomagnetic 
(Kp) – purple, Disturbed Storm Time (Dst) - blue. 

http://wdc.kugi.kyoto-u.ac.jp/ae_realtime/presentmonth/index.html


 
Last year we used the unscented Kalman filter (UKF) as the engine behind forecasting the planetary geomagnetic 
index, Kp.  The resulting forecasts had a higher correlation and lower root-mean square error between forecast 
values and actual values than all previously published forecast models.  This paper again uses the UKF as the 
forecast engine, but this time for the Dst index.  As with our previous paper, we will first use simple persistence as a 
forecast model to establish a baseline and then compare the performance of the UKF-based forecast model to this 
baseline and previously published empirical neural network-based forecast models. 
 
 

2.  THE Dst SIMPLE PERSISTENCE MODEL 
  
The hourly Dst index values were tabulated using the archives at the World Data Center for Geomagnetism, Kyoto 
(http://swdcwww.kugi.kyoto-u.ac.jp/index.html).  Fig. 2 displays the frequency distribution of Dst during the period 
covered (1957-2006).  Dst < -65 nT is considered storm-time values and occur infrequently compared to the quiet 
day values of Dst ≈ 0 nT.   
 

 
Fig. 2 – Frequency distribution of Dst values for 1957-2006. 

 
A forecast model based on the nowcast Dst will be evaluated to form a baseline to compare all other forecast 
models.  Three measures will be used to measure the performance of the forecast models:  linear correlation between 
the forecast values and actual values (Eq. 1), root-mean square error (RMSE) between the forecast values and actual 
values (Eq. 2), and the storm-onset Heidke Skill Score (Eq. 3). 
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where Dsta are actual Dst values, Dstf are forecast values, and n is the number of actual Dst values.  
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, 
T is an “increase threshold” corresponding to the change in Dst required for the onset of a geomagnetic storm and S 
is a “tolerable error” in forecasting the magnitude of the onset.  By this measure, simple persistence will always have 
a storm onset skill score of SS = 0, for storm threshold of Dst = -65 nT, T = -10 nT, and S = -3 nT. 
 

 
Fig. 3 –Dst simple persistence model 1-hour ahead performance.  (a) predicted 
versus actual and (b) RMSE 

 
Fig. 3a shows the forecast versus actual results of running the models on all the data (1 hour time interval) to 
provide a forecast 1 hour ahead.  The linear correlation coefficient is 0.979.  Fig. 3b shows the root-mean square 
error (RMSE) in the predicted values as a function of the actual Dst values.  The average RMSE is 5.09 nT.  The 
high correlation coefficient and relatively low RMSE is due to the preponderance of Dst values near quiet-time and 
low frequency of storm-time values. 
 
 

3.  PREVIOUS FORECAST MODELS 
  
Burton et al. [2] developed an empirical function to calculate the Dst index based on measurements of the solar wind 
and interplanetary magnetic field (Eqs. 4-7). 
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τ
εα **

−Ε−=  (4) 

where 

 ( ) cPbDstDst dyn +−= 2/1*  (5) 

 ( ) ( ) ( )tBtvt zx=ε  (6) 

 ( ) ( ) ( )2tvtntP xdyn =  (7) 



 
The Volland-Stern electric field (ε) is calculated using the x-component of the solar wind velocity and the z-
component of the IMF.  The dynamic pressure (Pdyn) is calculated using the solar wind density and the x-component 
of the solar wind velocity.  The empirically determined values are α (in units of [nT/hr]/[mV/m]), τ (in units of hrs), 
E (in units of mV/m), b (in units of nT/(eV/cm3)1/2), and c (in units of nT).  Fenrich and Luhmann [3] and O’Brien 
and McPherron [4] based their empirical models on these same equations.  Table 1 lists the values used for each of 
these models. 

 
Table 1.  Empirical values for models 

Name Burton et al. [2] Fenrich and Luhmann [3] O’Brien and McPherron [4] 

α ([nT/hr]/[mV/m]) -5.4 ( )( ) 3132.4 tPdyn−  -4.4 

τ (hours) 7.7 ( ) ( )
( ) ( ) 43

47.7
>
≤

tBtv
tBtv

zx

zx  
( ) ( )









+ tBtv zx69.4

74.94.2  

E (mV/m) 0.5 0.5 0.5 
b (nT/(eV/cm3)1/2) 0.2 0.158 0.0726 

c (nT) 20 20 11 
 
If the solar wind and IMF data used are those measured at the L1 point between the Sun and Earth, these models can 
be used to forecast the next hourly value for the Dst index.  The models can be run either by simulation or 
extrapolation.  In simulation, only the sentinel solar wind and IMF data is used to calculate the Dst values and 
change in Dst during the time step.  In extrapolation, the nowcast Dst value measured for a particular hour is 
substituted for the previous Dst value. 
 
Two other forecast models will be compared.  Lundstedt et al. [5] uses a neural network with solar wind and IMF 
inputs to generate their forecast in simulation mode, and Temerin and Li [6] uses a complicated empirical model 
with approximately 100 free parameters to generate their forecast in simulation mode. 
 
 

4.  THE UKF FORECAST MODEL 
  
The Kalman filter will be used to generate a forecast for Dst by extrapolation.  The basic steps in a Kalman filter are: 
1. the state vector and covariance from the current time step are passed through a state function that translates the 
values to the next time step creating an “a priori” state vector and covariance, 2. the “a priori” state vector and 
covariance are used in a measurement function that translates the values to a corresponding predicted measurement 
and covariance, 3. the predicted measurements and covariance are then compared to the actual measurements and 
covariance at that time step and this difference along with the so-called “Kalman gain” are used to adjust the values 
in the a priori state vector and covariance to an “a posteriori” state vector and covariance, and 4. this a posteriori 
state vector and covariance are then used at the start of the next step.  The predicted measurement in step 2 can be 
used as a forecast value and repeated use of the state and measurement functions at this point in the Kalman filter 
cycle can create forecasts any number of time steps into the future for the current step.   
 
In a regular Kalman filter, the state function and measurement function must be linear.  Various methods have been 
employed to extend the Kalman filter for use with nonlinear functions.  We will use the Unscented Kalman Filter 
(UKF) (also called the Sigma-Point Kalman Filter) that employs the unscented transform [7].  The UKF combines 
Kalman filtering, the optimal filter for estimating linear systems, with the unscented transform, which uses 
deterministic sampling to estimate the state and covariance of the system through a nonlinear function.  The UKF 
has seen extensive use in spacecraft attitude determination [8,9,10,11].  In this study, we use the nomenclature of [9] 
and set the UKF tuning parameters to 1=α , 0=β  and 0=κ . 
 

The key to using the UKF as a forecast model will be in creating a state vector ( kx̂ ) and covariance ( kP ), a state 

function ( ( )kk wxf ,ˆ ) and a measurement function ( ( )kk vxh ,ˆ ).  In the model described below, we use an n×1 
state vector given by 



 ++ = kk cx ˆ  (8) 

where +
kc is a vector of parameters to be used in the measurement function.  The noiseless state function used is 

 ( ) kkk xxfx ˆ0,ˆˆ 1 ==+  (9) 

which simply means the parameters in the state vector are assumed to be constant within the time step.  The 
noiseless measurement function used is: 

( )
( ) ( ) ( )( )

( ) ( ) ( ) ( ) ( )[ ]
( ) ( ) ( )kkxkk

kkzkxkzkx

kkxkkk

kk xvnx
xBvBv

xvnxD st
xhy 6

2
5

711

6
2

1151

2
12

12
12

0,ˆ~ −+



















−+
+

++−
+
−

==

−−

−−−

τ
α
τ
τ

 (10) 

where 

 ( ) ( ) ( ) 3/122
11

1 2 








 +
= −− kxkkxk

k

vnvn
xα  (11) 

 ( ) ( )
( ) ( ) ( )( )










+
=

kzkxk

k
k Bvx

x
x

,0m ax
exp

4

3
2τ  (12) 

 
Eq. 10 is based on the general formula from [2], while Eq. 11 uses the formula for α as in [3] and Eq. 12 uses the 
formula for τ as in [4].  In all cases, the empirical values have been replaced by a state vector parameter for a total of 
seven. 
 
The +1hr forecast at step k is kŷ in the nomenclature of the UKF.  Additional forecasts (for +2hr, +3hr, etc…) at 
step k are accomplished by using Equation 9 and 10 iteratively at that point in the UKF cycle.  The values of the 
solar wind and IMF values used in Eq. 10 for these extended forecasts were kept constant. 
 
In this study, the initial state was set to values consistent with Table 1.  The components of the covariance matrix 
associated with the seven parameters are initially set high to allow the UKF room to adjust them accordingly. 
 
The solar wind and IMF hourly data were tabulated using the Level 2 On-line data archives at the Advanced 
Composition Explorer (ACE) website (http://www.srl.caltech.edu/ACE/ASC/level2/index.html).  Any missing 
hourly ACE data was replaced with the last valid value for that quantity.  All the data was processed with the UKF 
multiple times using the final state vector of the current iteration as the initial state vector of the next iteration until 
the resulting linear correlation coefficient from one iteration to the next remained essentially constant.  In this way, 
the final iteration starts with parameter values close to their optimal values.  The UKF model performance is 
measured from this final iteration.  The other models were analyzed using the same set of data. 
 
Fig. 4 reproduces Fig 3b for the 1998 to 2006 data and compares the performance of simple persistence to the UKF 
forecast.  It is clear the UKF model improves the RMSE overall and for storm-time Dst values. 
 

http://www.srl.caltech.edu/ACE/ASC/level2/index.html


 
Figure 4 – Root-mean square error as function of actual Dst for simple 
persistence (filled diamonds) and UKF model (open diamonds). 

 
Table 2 and Fig. 5 compare the performance of all the various forecast models to simple persistence.  The UKF 
model slightly outperforms the next best model (O’Brien and McPherron run in extrapolation mode).  The results 
for Temerin and Li are those from their paper. 
 

Table 3.  3-hr forecast correlation coefficient for simple persistence model 
Time period r RMSE (nT) SS 

Simple persistence (ext) 0.978 5.454 0.000 
UKF (ext) 0.986 4.368 0.626 

Burton et al. (sim) 0.760 18.878 0.061 
Burton et al. (ext) 0.982 4.914 0.600 

Fenrich and Luhmann (sim) 0.697 21.851 0.170 
Fenrich and Luhmann (ext) 0.964 7.064 0.617 

O’Brien and McPherron (sim) 0.833 14.739 0.033 
O’Brien and McPherron (ext) 0.985 4.440 0.604 

Lundstedt et al. (sim) 0.842 14.662 0.429 
Temerin and Li (sim) 0.958 6.875  



 

 
Figure 5 –Model x-hour ahead (a) correlation coefficient and (b) RMSE as a function 
of x (forecast in hours).  Simple persistence model (line), and UKF model (filled 
ciricles) compared to all previous models run in simulation and extrapolation (X’s 
and labeled). 

 
 



5.  CONCLUSIONS 
 

The disturbed storm time (Dst) index displays a high degree of persistence.  Once again, the unscented Kalman filter 
(UKF) was used as the engine behind a forecast model and performs slightly better than all previously published 
forecast models.  
 
The utility of using the UKF as the engine behind a forecast model for geomagnetic indices is now well established. 
The possibility of incorporating a host of other inputs to the model and exploring the use of other state and 
measurement functions is straight forward, and so improvement in performance is achievable. 

 
 

6.  ACKNOWLEDGEMENTS 
 

This work was accomplished as a Colorado Professional Resources, LLC employee under subcontract JT515 to 
TEAS contract FA9200-07-C-0006 on task order TEASV-08-1204.  The author would also like to acknowledge 
valuable discussions with Dr. Moriba Jah (Director, Advanced Sciences and Technology Research Institute for 
Astrodynamics (ASTRIA), AFRL, Albuquerque, New Mexico, USA) and Mr. Kevin Scro (Defense Meteorological 
Satellite Program Systems Group Technical Director, Peterson AFB, Colorado Springs, Colorado, USA). 

 
 

7.  REFERENCES 
 

1.  Wetterer, C. J., M. K. Jah, and K. Scro (2010), Kp Forecast Model Using Unscented Kalman Filtering, 11th 
Advanced Maui Optical and Space Surveillance Technologies (AMOS) Conference, [Maui Economic Development 
Board], http://www.amostech.com/TechnicalPapers/2010/Modeling/Wetterer.pdf 
 
2.  Burton, R. K., R. L. McPherron, and C. T. Russell (1975), An empirical relationship between interplanetary 
conditions and Dst, J. Geophys. Res., 80, 4204. 
 
3.  Fenrich, F.R. and J.G. Luhmann (1998), Geomagnetic response to magnetic clouds of different polarity, 
Geophysical Research Letters, 25(15), 2999-3002 
 
4.  O’Brien, T.P. and R.L. McPherron (2000), Forecasting the ring current index Dst in real time, Journal of  
Atmospheric and Solar-Terrestrial Physics, Vol. 62, Issue 14, 1295-1299 
 
5.  Lundstedt, H., H. Gleisner, and P. Wintoft (2002), Operational forecasts of the geomagnetic Dst index, 
Geophysical Research Letters, Vol. 29, No. 24, 2181, doi:10.1029/2002GL016151 
 
6.  Temerin, M., and X. Li (2006), Dst model for 1995-2002, Journal of Geophysical Research, Vol. 111, A04221, 
doi:10.1029/2005JA011257 
 
7.  Julier, S. G., and J. K. Uhlmann (1997), A new extension of the Kalman filter to nonlinear systems, Proceedings 
of SPIE: The International Society for Optical Engineers, Vol. 3068, 182-193 
 
8.  van der Merwe, R., and E.A Wan (2001), The square root unscented Kalman filter for state and parameter-
estimation, 2001 IEEE International Conference on Acoustics, Speech, and Signal Processing, Vol. 6, 3461-3464 
 
9.  Crassidis, J. L., and F. L. Markley (2003), Unscented filtering for spacecraft attitude estimation, Journal of 
Guidance, Control, and Dynamics, Vol. 26, No. 4, pp. 536-542 
 
10.  Jah, M. K., Lisano, M. E., II, Born, G.H., and Axelrad, P. (2008), Mars aerobraking spacecraft state estimation 
by processing inertial measurement unit data, Journal of Guidance, Control, and Dynamics, Vol. 31, No. 6, pp. 
1802-1813 
 
11.  Wetterer, C. J., and M. K. Jah (2009), Attitude estimation from light curves, Journal of Guidance, Control, and 
Dynamics, Vol. 32, No. 5, pp. 1648-1651 


