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This paper evaluates the ITIQUE image quality modeling framework for SSA applications.  Based on Bovik and 
Sheik’s VIF metric, ITIQUE evaluates the Shannon mutual information (MI) at multiple spatial scales between a 
pristine object and the image output from a detailed image formation chain simulation.  Integrating the MI at each 
spatial scale and applying a calibration offset produces a prediction of NIIRS image quality indicating the level of 
interpretation tasks that could be supported.  The model enables prediction of NIIRS quality obtainable as dependent 
on image collection conditions and image system design including both hardware and processing algorithms.  The 
ITIQUE framework could facilitate concept evaluation and engineering design by quantitatively relating image 
formation performance directly in terms of end end-user mission needs.  Previous work focused on overhead 
imagery of terrestrial scenes and linear processing only.  This paper considers ground-based imaging of SSA objects 
and extends the previous study to include non-linear processing.  A range of turbulence strengths and SNRs are 
included.   ITIQUE predictions are shown to match well to results from a human visual assessment study in which a 
panel of observes rated NIIRS quality of the same imagery. 
 
 

1. INTRODUCTION 
 
Image quality metrics can be broadly classified into subjective and objective.  The former refer to ratings of image 
quality obtained by a human observer.  In contrast, objective image quality metrics are numerically computed from 
the image data or a mathematical description of the relevant imaging system.   Objective image quality metrics can 
be a useful tool in the design and evaluation of new imaging systems.  Of particular interest are objective quality 
metrics that predict the value of imagery in terms of image analysis tasks that can be successfully accomplished.  
 
The overhead and tactical imaging communities have successfully used several task-based image quality metrics 
over the past few decades.   For example, the National Imagery Interpretability Rating Scale (NIIRS) and the 
General Image Quality Equation can be used to evaluate an image in terms of its utility for 
detection/classification/identification tasks.  The probability of combat ID (PCID) and the closely related Johnson 
criteria provide the probability of correct combat identification for objects based on the resolution elements across 
the object. 
 
For Space Situational Awareness (SSA) applications, objective image quality metrics are sorely needed.  There have 
been several attempts to develop subjective image quality metrics based loosely on the NIIRS approach.  In this 
paper, we describe an information theoretic framework to numerically predict image quality (ITIQUE) and its 
extension to evaluate SSA imaging system performance in terms of end-user mission needs. 
 
The rest of the paper is organized as follows:  Section 2 presents background information on NIIRS and its 
predictive tool the GIQE.  Also, an alternative method based on an Engineering NIIRS Ruler which allows for 
human subject studies without resorting to trained imagery analysts.  Section 3 presents the ITIQUE framework and 
notes its successful application in previous studies focused on the overhead imagery domain.  Section 4 presents 
results of a new study demonstrating its applicability to the SSA arena.  Section 5 concludes the paper.  
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2. BACKGROUND 
 

2.1 National Image Interpretability Rating Scale (NIIRS) 
The NIIRS scale was introduced in 1974 and has had a long history of successful application in the evaluation of the 
informational potential of images[1-3].  The scale indicates the level of analysis task that can be performed with a 
particular image.  NIIRS is a 10 level scale with ratings ranging from 0 (useless) to 9 with each level corresponds to 
a particular type of image analysis task.  The criteria associated with each level have been adapted to provide 
different versions of the NIIRS scale for particular applications and sensing modalities[3].   
 
Fig. 1 below has some example overhead images with corresponding NIIRS.  The image on the left has a NIIRS 
rating of 4 which allows identification of farm buildings as barns, silos or residences for example.  The center image 
is NIIRS 5 which allows identification of individual Christmas tree plantations.  Finally, the image on the right is 
NIIRS 8 which allows identification of grill detailing and/or license plates on a passenger vehicle or truck.  An 
increase in a level of NIIRS corresponds roughly to a doubling of resolution.  This criteria-based scale directly 
relates NIIRS to human interpretability and mission utility and value.  Unfortunately, to be accepted within large 
defense programs image quality performance studies typically require ratings by a panel of formally trained image 
analysts. This presents a practical limitation on the frequency with which NIIRS evaluation can be used as a tool for 
engineering analysis and system design. 

 
Fig. 1. Sample overhead imagery and its corresponding NIIRS ratings illustrate the level of image analysis tasks that 

could be supported.  Description of NIIRS level criteria are provided in the text above. 
 
2.2 General Image Quality Equation (GIQE) 
The NIIRS scale is very useful in describing the information utility of an image.  However, it is not a practical tool 
for characterizing the performance of imaging systems given the need for trained imagery analysts.  To overcome 
this, the GIQE[2] can be used to predict NIIRS values based on image system parameters.  The original GIQE is 
given by, 

1011.81 3.32 log 1.48GM
GIQE GM

GM

RER G
NIIRS H

GSD SNR

 
    

 
  ,         (1) 

where RERGM is the geometric mean of the relative edge response of the system, GSDGM is the geometric mean of 
the ground-sample-distance, HGM is the geometric mean of the edge response overshoot caused by MTF 
compensation, G is the gain of the MTFC kernel and SNR is the signal-to-noise ratio.  The equation captures the key 
trade between sharpness and noise-amplification.   
 
The coefficients for each of the terms in Eq. 1 above were obtained by regression to fit the results of an image 
evaluation study conducted with 10 trained imagery analysts.  A major restriction of the GIQE is that its predictions 
are only valid over the range of degradation types and levels considered for the underlying IA rating study.   These 
were limited in scope to conventional systems with well-behaved stable PSFs without severe wavefront aberrations 
or motion induced blurring.  New imaging conditions require additional IA studies and statistical analysis[4].  
Furthermore, the form of the equation requires that the system can be accurately modeled as linear.  Thus it is not 
applicable to systems that include non-linear image reconstruction or enhancement processing.  In its current form, 
the GIQE has limited applicability to the evaluation of SSA imagery. 
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2.3 Engineering NIIRS Scale (ENS) 
 
A major limitation in use of the NIIRS scale to imaging system performance evaluation is the limited availability of 
trained imagery analysts to obtain formally recognized ratings.  A viable alternative is to utilize an engineering 
NIIRS scale to obtain image ratings using an untrained panel of observers. The images are evaluated by subjects 
using an image selection GUI such as the one shown in Fig. 2.  The subjects are asked to choose from a sequence of 
reference images to find the one that most closely matches the image under evaluation on the basis of ability to 
match or detect features.  The reference image sequence forms a calibrated “NIIRS ruler” consisting of a set of 
images generated at fixed Δ-NIIRS steps.  Fig. 3 illustrates the NIIRS ruler concept.  Thus each reference image 
translates directly to a NIIRS rating.  In the illustrated GUI, the subjects use a slider to scan through the ruler to find 
the best match.  The right panel of the GUI can be set to flicker between the reference ruler and test image to 
facilitate comparison.   
 

 
Fig. 2: Image selection GUI facilitates NIIRS assessment without the need for trained imagery analysts. 

 

 
Fig. 3:   Calibrated images at fixed -NIIRS steps comprising a NIIRS ruler.  
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3. INFORMATION THEORETIC IMAGE QUALITY EQUATION (ITIQUE) 
 

3.1 ITIQUE Framework 
 

Information based image quality metrics have been introduced in [5-7].  In [8] the concept of an Information 
Theoretic Image Quality Equation (ITIQUE) relating mutual information to NIIRS was introduced.  The ITIQUE 
framework utilizes the Visual Information Fidelity (VIF) introduced in [5] to measure the perceptually relevant 
mutual information between a reference and pristine image.  The framework is depicted graphically in Fig. 4. 
 

 
Fig. 4. ITIQUE framework uses VIF concept to measure perceptually relevant mutual information 

at several feature scale sizes and predict NIIRS 
 
The reference image is the pristine input scene as seen through a model of the Human Visual System (HVS).  The 
test image is the degraded image acquired by the imaging system, possibly post-processed by restoration or 
enhancement algorithms, as perceived by the HVS.  The HVS model excludes any perceptually irrelevant 
information contained in the image data.  The MI is calculated in the wavelet domain for both reference and test 
images.   
 
At each wavelet sub-band, the VIF is calculated as the ratio of the MI between the pristine original object and the 
perceived image after measurement and enhancement processing by the imaging system to the MI between the 
pristine original object and the perceived object as viewed in situ.   The VIF is only influenced by object features 
relevant to perception by the HVS and allows for possible information gain resulting from image enhancement. 
 
ITIQUE predicts NIIRS values by combining the VIF at multiple feature size scales according to 
 

ܴܫܫܰ  ூ்ܵூொ௎ா ൌ ଵܥ െ log2		ଶܥ ൬
ଵ

∑ ௏ூிሺ௙,ಹሻ೑
൰	,                (2) 

 
where C1 is a bias coefficient,  C2 is a scaling coefficient, the sensitivity of the human visual system is characterized 
in terms of an effective noise level ு characterizes, and the denominator inside the logarithm is the sum of the VIF 
computed at various relevant feature scale sizes.  The value of the coefficients in Eq. 2 can be obtained by regression 
against NIIRS ratings obtained by the ENS method described previously or a formal assessment using imagery 
analysts. 
 
An assessment of the ITIQUE framework for predicting NIIRS was presented in [8].  In that work, the authors 
obtained NIIRS ratings using an ENS methodology including 13 subjects and 160 images.  The images were a 
subset of a larger dataset comprising a variety of terrain types and imaging conditions relevant for overhead imaging 
of terrestrial scenes.  The NIIRs predictions obtained with ITIQUE agreed well with the ENS scores of the study 
with root mean square error (RMSE) and mean absolute errors (MAE) of 0.230 and 0.182 NIIRS respectively.  
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Over the wide range of blur types and strengths and SNR levels considered the ITIQUE metric exhibited a stronger 
correlation to the ENS scores than GIQE predictions.   
 

4. EXTENSION OF THE ITIQUE FRAMEWORK TO THE SSA DOMAIN 
 
A study was designed to assess the accuracy of the ITIQUE metric for SSA domain imagery.  A set of 480 images 
were generated using a high-fidelity image simulation model.  This set included two different objects, 6 levels of 
degradation for 4 different degradation mechanisms, and five methods of image reconstruction processing.  Details 
are listed in Tables 1 and 2.  The image set was comprised of four sub-sets.  The first set contained 210 images and 
was designed to study the sensitivity the unprocessed and restored images to each single degradation mechanism 
(e.g. all but one degradation set to its minimum level).  The second set of 20 were simply repeats of the first set, 
which were included to enable characterization of the self-consistency of each subject’s scoring.  The third set 
contained 125 images with the object, processing method, and level of each degradation type chosen completely 
randomly from the full space of possibilities listed in Tables 2 and 3.  The last set also contained 125 images with 
degradation levels for each mechanism chosen randomly, but restricted so the sum of the degradation level indexes 
was less than 8 (where degradation level for each type was indexed from 1-6 from, larger numbers corresponding to 
more severe loss to image quality). 
 

 
Table 1. Image degradation mechanisms and levels included in the study. 

 

 
Table 2. Image restoration processing methods included in the study. 

 
The images were rated using the GUI tool illustrated in Fig. 2 by a panel of 12 volunteer subjects drawn from 
several different divisions of Boeing (most of which had participated in previous studies).  The images were 
presented in groups of 20 sub-sets each of 20.  Image order was randomly shuffled between subjects.  Each sub-test 
took around 10 minutes.  The subjects were instructed to intersperse taking the sub-tests between other activities 
over a period of several days to ensure adequate breaks were taken between tests to avoid eye and mental fatigue or 
decline in attention.  For each image the ENS scores over all subjects were averaged after throwing out the 

Degradation Type Description Range

Jitter Gaussian blur 
(parameterized by full width at 1/e point)

{0,2,3.1,4.9,7.7,12} 
Units = pixels

Wavefront Kolmogorov statistics scaled to desired D/ro. 
Wavefronts were uncorrelated between each of 
16 images used in a reconstruction.

{0,1.7,3.0,5.3,9.2,16}
Units = D/ro

Aperture size
(Diffraction)

Diffraction from full circular aperture. {0.25,0.38,0.57,0.87 
1.3,2.0},
Units=meters

SNR (Signal ) / (noise )
Noise is mixture of Gaussian read noise and 
Poisson shot noise.  
SNR scaled by adjusting exposure time.

{1,2.5,6.3,15.8,39.8,
100}
Units = SNR

Processing Method Description
None

Shift-and-Add Images registered by correlation then averaged

Wiener Multi-frame linear Wiener filter deconvolution

Multi-Frame Deconvolution Non-linear iterative Maximum Likelihood 
deconvolution with perfect knowledge of PSFs for 
each frame

Multi-Frame Blind Deconvolution Same as MFD but PSFs are estimated as 
parameterized by wavefront Zernike coefficients
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minimum and maximum scores to mitigate outliers.   Evaluation of the repeated images did not indicate any subjects 
to be anomalously inconsistent.  ITIQUE scores for each image were calculated using Eq. (2) with the parameters, 

C1, C2, and H optimized to achieve the best fit to the ENS scores.  The RMS error between the ITIQUE and ENS 
scores was not found to differ significantly whether the fit was performed using all 480 images or just the first set of 
210.  The scatter plot in Fig. 5 shows a strong correlation between ITIQUE predictions and ENS ratings over the full 
range of degradation types, levels, and restoration methods.  The RMSE and MAE between the ITIQUE scores and 
ENS ratings were 0.34 and 0.26 respectively.  This is not quite as good as the ~0.2 NIIRS accuracy achieved with 
ITIQUE for the overhead imagery domain[8] but is still deemed an acceptable accuracy to be highly useful for 
engineering studies.  However, direct comparison isn’t fair since that the overhead domain studies did not include as 
severe range of degradation levels and did not include non-linear restoration methods.  Note that 0.1 NIIRS 
represents a just noticeable difference.  There does appear to be a consistent bias for ITIQUE to over-predict image 
quality at the lowest range in image quality considered.  A good understanding of the cause for this has not been 
reached. 
 

 
Fig. 5. ITIQUE metric scores are well correlated with ENS ratings. 

 
Fig. 6 compares the ITIQUE metric scores against the ENS study trends for the impact of the each individual 
degradation type to restored image quality for the various algorithms considered.  The trends are seen to be highly 
consistent with the discrepancies in the curves being dominated by displacement by a constant.  Fig. 7 plots the 
differences between the ITIQUE and ENS scores.  No systematic biases are observed with the exception of a relative 
decrease in the ITIQUE values for all processing methods at SNRs  4.  Fig. 8 plots the improvement gained by the 
different processing methods over the raw imagery and shows strong agreement of the ITIQUE curves to those 
resulting from the ENS scores.  This illustrates the utility of ITIQUE as an analysis tool for system and algorithm 
design, optimization, comparison, and selection. 
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Fig. 6. Comparison ITIQUE to ENS curves versus degradation levels show highly consistent trends between them 

for all processing methods. 
 

0.5 1 1.5 2
5

5.5

6

6.5

7

7.5

8

8.5

9

Aperture Diameter

N
IIR

S

 

 

0 2 4 6 8 10 12
5

5.5

6

6.5

7

7.5

8

8.5

9

Jitter

N
IIR

S

 

 

0 20 40 60 80 100
6

6.5

7

7.5

8

8.5

9

SNR

N
IIR

S

 

 

0 2 4 6 8 10 12
5

5.5

6

6.5

7

7.5

8

8.5

9

Jitter

N
IIR

S

 

 

ENS Shift and Add
ENS MF Wiener
ENS MFD
ENS MFBD
ITIQUE Shift and Add
ITIQUE MF Wiener
ITIQUE MFD
ITIQUE MFBD



8 
 

 
Fig. 7. Differences between ITIQUE and ENS scores do not indicate systematic biases. 

 
 

 
Fig. 8 plots the improvement gained by different image restoration algorithms over the raw imagery, illustrating the 

utility of ITIQUE as an analysis tool for system and algorithm design, optimization, comparison, and selection. 
 
 

 
5. CONCLUSION 
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The described study establishes ITIQUE as a viable metric and engineering tool for system for supporting analysis 
of Space Situational Awareness domain imaging systems and image reconstruction algorithms.  ITIQUE scores 
agreed well with ENS scores obtained using a panel of human subjects and spanning a wide range of degradation 
types and levels and image restoration methods.  ITIQUE reliably predicted quantitative trends of the impact of 
different degradations on each reconstruction algorithm considered.  Of strong importance this included severe 
wavefront aberrations and non-linear algorithms, neither of which can be treated by the current GIQE NIIRS 
prediction model.  This is a strong step forward in filling a deficiency in computer calculable metrics that correlate 
well with the level of an image’s visual information content.  
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