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ABSTRACT

Situational awareness of Earth-orbiting particles is known to be both a data starved and well-modeled
problem. These two ideas are combined in this paper: a method of analytically propagating non-linear
orbit uncertainties is discussed. In particular, the uncertainty is expressed as an analytic probability density
function for all time, which is powerful as propagation is only a matter of changing the time parameter.
Even when closed-form expressions are not available for a given system, solutions in tractable series form
exist. Due to the large uncertainties and potentially long mapping time-spans, even initially Gaussian
PDFs may become significantly non-Gaussian.

1. INTRODUCTION

Situational awareness of Earth-orbiting particles such as active satellites and space debris is known to be a data
starved problem compared to traditional orbit estimation problems in that objects may not be observed for days if
not weeks [7]. Therefore, consistent characterization of the uncertainty associated with these objects is crucial in
maintaining an accurate catalog of objects in Earth orbit. As such, recently in astrodynamics, much attention has been
given to the non-linear deformation of uncertainty for the orbiter problem [3, 5, 6, 8]. Simultaneously, the motion of
satellites in Earth orbit is well-modeled in that it is particularly amenable to having their solution and their uncertainty
described through analytic or semi-analytic techniques [2, 17]. Even when stronger non-gravitational perturbations
such as solar radiation pressure and atmospheric drag are encountered, these perturbations generally have deterministic
components that are substantially larger than their time-varying stochastic components [9, 11].

These two ideas are combined in this paper: a method of analytically propagating non-linear orbit uncertainties is
discussed. In particular, the uncertainty is expressed as an analytic probability density function (pdf) for all time. For a
deterministic system model, such pdfs may be obtained if the initial pdf and the system states for all time are also given
analytically. Even when closed-form solutions are not available, approximate solutions exist in the form of Edgeworth
series for pdfs and Taylor series for the states. The coefficients of the latter expansion are referred to as state transition
tensors (STTs), which are a generalization of state transition matrices to arbitrary order. Due to the large uncertainties
and potentially long mapping time-spans, even initially Gaussian pdfs become significantly non-Gaussian.

Analytically expressed pdfs can be incorporated in many practical tasks in space situational awareness (SSA). One
can compute the mean and covariance of the uncertainty, for example, with the moments of the initial pdf as inputs.
This process does not involve any sampling and under two-body dynamics, its accuracy can be determined a priori [5].
Analytical pdfs may also be incorporated in a non-linear Bayesian estimator for orbit determination and conjunction
assessment [16]. Finally, model parameter uncertainty, such as those for atmospheric drag, is readily implemented
with little additional computational burden by adding the parameters in the state vector.

The outline of this paper is as follows. Necessary mathematical concepts are first introduced (Background), such as
the Fokker-Plank equation, STTs, and King-Hele’s analytical theory of orbital motion in an atmosphere (Background).
This theoretical framework is implemented numerically in MATLAB (Results). For a circular orbit, the 3-σ error
ellipsoid, mean, and covariance of a Gaussian distribution in both state and parameter space is propagated using the
STT approach. These results are compared with those obtained from Monte Carlo simulations using the NRLMSISE-
00 density model [13]. We find that the STT is an efficient method of uncertainty propagation even when non-
conservative forces exist in the dynamics.



2. BACKGROUND

In this section, the solution of the Fokker-Planck equation for a deterministic dynamical system including non-
conservative forces as well as the state transition tensor concept are formally introduced.

2.1. Solution of the Fokker-Planck Equation For a Deterministic Dynamical System
Suppose the dynamics of some system is expressed as

Ẋ = f(t,X), (1)

where X is the state vector and f are the equations of motion [5, 12]. Then, the solution of (1) is expressed as

X(t) = φ(t;X0, t0), (2)

where superscript 0 indicates initial conditions. φ must satisfy the following conditions

dφ

dt
= f(t,φ(t;X0, t)) (3)

φ(t0;X0, t0) = X0. (4)

One can define the inverse solution flow ψ(t,X; t0)

X0 = ψ(t,X; t0) (5)

which maps a current state back to the initial epoch. For a general solution flow, the inverse flow can be found by
interchanging the initial and final states

ψ(t,X; t0) = φ(t0;X, t). (6)

For a system that satisfies the Itô stochastic differential equation, the time evolution of a probability density func-
tion (pdf) p(X, t) over X at time t is described by the Fokker-Planck equation [10]

∂p(X, t)

∂t
= −

n∑
i=1

∂

∂Xi
{p(X, t)fi(X, t)}+

1

2

n∑
i=1

n∑
j=1

∂2

∂Xi∂Xj

[
p(X, t)

{
G(X, t)Q(t)GT(X, t)

}
ij

]
, (7)

where a single subscript indicates vector components and a double subscript indicates matrix components. Matrices
G and Q characterize the diffusion. For a deterministic dynamical system, whether or not it is Hamiltonian, it can be
shown that the probability Pr(X ∈ B) over some volume B in phase space is an integral invariant [12, 14, 15]

Pr(X ∈ B) =

∫
B
p[X(t)]dX =

∫
B0

p[φ(t;X0, t0)]

∣∣∣∣ ∂X∂X0

∣∣∣∣dX0 =

∫
B0

p(X0)dX0, (8)

where p[X(t)] is the probability density function (pdf), B0 is the volume that corresponds to B at the initial time, and
| · | is the determinant operator. Consequently, [1]

p[φ(t;X0, t0)] = p(X0)

∣∣∣∣ ∂X∂X0

∣∣∣∣−1 . (9)

The inverse of the determinant makes up for the change in phase volume due to the non-conservative forces in the
system. For a Hamiltonian system, |∂X/∂X0| = 1 from Liouville’s Theorem (i.e. phase volume is conserved), so we
find

p[φ(t;X0, t0)] = p(X0). (10)

Note that for any deterministic system, as long as both the solution flow of the dynamics and the initial pdf are know
analytically, the pdf for all time can also be expressed analytically. If one cannot obtain an analytical solution flow,
it nevertheless may be approximated by a Taylor series expansion via state transition tensors: details on this method
are explained in subsequent sections. Analytical expressions of the pdf are useful because propagation is then only a
matter of changing the time parameter t.



2.2. Non-Linear Mapping of System Dynamics using State Transition Tensors

One method of obtaining an analytical, non-linear approximation to solution flow φ(t;X0, t0) is to use a concept
called the state transition tensor (STT). If a Taylor series expansion of the solution function (2) is taken about some
reference trajectory X∗, the state deviation x = X−X∗ is

xi(t) =

m∑
p=1

1

p!
Φi,k1...kpx

0
k1 . . .x

0
kp , (11)

where the subscripts indicate the component of each tensor, m is the order of the expansion and Φ is defined to be the
STT of order p [12]. Einstein’s summation notation is used, and the comma in the subscript simply denotes that the
i-th component is not summed over. Note that the STT is a generalization of the state transition matrix to any arbitrary
order. For m = 1, the result is familiar:

xi(t) = Φi,k1x
0
k1 ⇒ x(t) = [Φ]x0. (12)

Given the solution flow φ, the STT can be explicitly solved for:

Φi,k1...kp =
∂pXi

∂X0
k1
. . . ∂X0

kp

∣∣∣∣∣
∗

, (13)

where the subscript ∗ indicates that Φ is evaluated over the reference trajectory X∗. If X is not given as a function of
X0, then the following differential equation can be solved

Φ̇i,k1...kp = G(Ai,k1 , . . . , Ai,k1...kp ; Φi,k1 , . . . ,Φi,k1...kp), (14)

where

Ai,k1...kp =
∂pfi

∂Xk1 . . .Xkp

∣∣∣∣
∗

(15)

is the local dynamics tensor, and G is a function described in Fujimoto, et al [5]. Note that A and G are the general-
ization of the linear dynamics matrix to any arbitrary order. Again, when m = 1, the result is familiar:

Φ̇i,k1 = Ai,l1Φl1,k1 ⇒ [Φ̇] = [A][Φ]. (16)

2.3. Non-Linear Mapping of Probability Cumulants using State Transition Tensors
Combining results from the above two sections, the mean M(t) = m(t) + X∗(t) of a pdf p[X(t)] can be propagated
non-linearly as

M(t) =

∫
∞

X(t)p[X(t)]dX =

∫
∞
φ(t;X0, t0)p(X0)

∣∣∣∣ ∂X∂X0

∣∣∣∣−1 dX0 (17)
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∫
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0
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Similarly, the covariance matrix [P ](t) is propagated as

[P ](t) =

∫
∞

[X(t)−M(t)]T[X(t)−M(t)]p[X(t)]dX (19)

=

∫
∞

[φ(t;X0, t0)−M(t)]T[φ(t;X0, t0)−M(t)]p(X0)
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∣∣∣∣−1 dX0 (20)
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Again, for Hamiltonian systems, |∂X/∂X0| = 1, so the results simplifies to

mi(t) =
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p=1

1
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0
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]
(22)
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where E is the expected value operator

E[f(x)] =

∫
∞
f(x)p[x(t)]dx. (24)

2.4. Analytic Dynamics For a Circular Orbit With Atmospheric Drag
Here, we introduce the analytical motion of an object in a circular orbit subject to atmospheric drag as derived by King-
Hele [9]. We then derive the STTs. Similar results are available for elliptic orbits [4]. Some important assumptions
are:

• The atmosphere is spherically symmetrical

• The atmospheric density model is exponential with constant parameters in time

• The atmosphere rotates at the same angular rate as the Earth

• The Earth’s gravitational field is approximated as a point mass

If a more detailed dynamical model is desired, the STTs may still be computed semi-analytically via (14). Note that
secular effects due to the J2 oblateness term in the gravitational potential may be readily included [5]. The following
initial states and dynamical system parameters are used in this section unless otherwise noted

a0 = 6678.1 km, i0 = 0.26179 rad, ωE = 7.2722× 10−5 rad/s, µ = 398600 km3s−2, (25)

where a is semi-major axis, i is the inclination, ωE is the Earth’s rotational rate, and µ is the standard gravitational
parameter. The initial orbit period is thus 90.52 minutes. The atmospheric parameters are

H = 40 km, ρ∗ = 10−2 kg/km3,BC = 102 kg/m2, (26)

where H is scale height, ρ is atmospheric density, BC is the ballistic coefficient, and superscript * indicates that the
value is at the reference altitude of 300 km; i.e. a∗ = 6678.1 km.

For an initial circular orbit, only the semi-major axis, and consequently the mean anomaly, change with time due
to drag effects. The semi-major axis is given as a function of time as

a(t; a0) = a0 +H ln

[
1− 2πδρ∗(a0)2eβ(a

∗−a0)t

HT 0

]
= a0 +H ln(1 + εt), (27)

where

T 0 = 2π

√
(a0)3

µ
(28)

δ =
(1− a0ωE

√
a0/µ cos i0)2

BC
(29)

ε = −2πδρ∗(a0)2eβ(a
∗−a0)

HT 0
, (30)

Next, to find the mean anomaly, the mean motion n(t) is integrated over time

M(t; a0,M0) = M0 +

∫ t

0

n(t)dτ = M0 +

∫ t

0

√
µ

a(τ)3
dτ. (31)
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Figure 1: The difference in the numerically and analytically integrated mean anomaly (i.e. “Error”) for different orders
of expansion of mean motion n. The reference orbit is a 300 km altitude circular orbit with an inclination of 15◦. The
errors are plotted for up to 100 orbit periods of the initial orbit.

Now, for a ∼ 6700 km and greater, ε is often very small (∼ 10−8). Therefore, n may be expanded as a polynomial of
ε:

n(t)
√
µ

=
1

(a0)3/2
− 3Hεt

2(a0)5/2
+O(ε2), (32)

which allows for the analytical integration of (31)

M ≈M0 +

√
µ

(a0)3
t− 3Hε

4

√
µ

(a0)5
t2. (33)

Note that for a 300 km altitude circular orbit, a fourth-order expansion of n with respect to ε results in ∼ 10−7 radian
accuracy in mean anomaly (∼ 100 meter accuracy in in-track position) after 100 periods of the initial orbit; refer to
Figure 1 for details. The object drops about 2.5 km in altitude over this time.

Regarding the STTs, the only non-zero values are

∂M

∂M0
,
∂ia

∂(a0)i
,
∂iM

∂(a0)i
, (34)

where i goes up to the order of the expansion. Since a(t; a0) and M(t; a0,M0) are known explicitly, the STTs can
also be solved for via (13). Now, for this system, we note that |∂X/∂X0| = ∂a/∂a0, which simplifies to the form

∂a

∂a0
= 1 +

N1/N2 − 1

N3/N2 t−1 + 1
, (35)

where

N1 =
Ha0

2
ρ∗e(a

∗−a0)/H
[
−
√

µ

a0
µ+ 8a0µωE cos i0 − 7(a0)3

√
µ

a0
ω2
E cos2 i0

]
(36)

N2 = −(a0)2ρ∗e(a
∗−a0)/H

[√
µ

a0
µ− 2a0µωE cos i0 + (a0)3

√
µ

a0
ω2
E cos2 i0

]
(37)

N3 = a0HBCµ (38)
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Figure 2: Atmospheric density at the reference state and the hourly Ap index startng February 8, 2009 (left, Calm) and
July 11, 2000 (right, Storm). Units of time in orbit periods of the initial orbit (≈ 90.52 minutes).

But if we substitute values in (25), we find

N1

N2
= 0.0018333,

N3

N2
= −8.7877× 106, (39)

and so ∂a/∂a0 = 1 + ε for practical values of propagation time t, where the absolute value ‖ε‖ � 1. In other words,
the change in phase volume is negligible. When the cumulants are to be computed analytically, the problem may be
simplified as being Hamiltonian without large errors: refer to Section 3.2 for details.

If we would like to consider uncertainty in parameter space, such as the ballistic coefficient, we add the parameters
to the state variables. Again, assuming that atmospheric parameters are constant in time, the dynamics are simply

d BC

dt
= 0. (40)

The partial derivatives (i.e. STTs) of the states with respect to the ballistic coefficient may still be solved explicitly.

3. RESULTS

In this section, results of a MATLAB implementation of the analytical theory discussed above is shown. A graphical
representation is first given through the propagation of the 3-σ error ellipse. The propagation of cumulants of the pdf
is then explored. Each result is compared to a numerically propagated Monte Carlo (MC) simulation.

3.1. Propagation of the 3-σ Ellipse
Demonstrated in this section is the analytical propagation of a 3-σ ellipse of an initial Gaussian distribution in the
semi-major axis (a) / mean anomaly (M ) / ballistic coefficient (BC) space. We consider the same circular orbit as in
(25) with BC = 102 kg/m2 as the nominal orbit. Two simulation epoch are tested: February 8, 2009, which will be
referred to as Calm, and July 11, 2000, referred to as Storm to indicate the intensity of geomagnetic activity. In each
case, the uncertainty is propagated for 6.286 days. The central body is approximated as a point mass. Figure 2 shows
the density and Ap geomagnetic index history for both epochs. Figure 3 is a representation of the initial distribution
in the orbit elements. The data points are generated as follows:

MC Simulation 2,000 sample points are first distributed normally in the a-M space with a covariance

[P ] =

[
σ2
a µaM

σ2
M

]
=

[
(20 km)2 0

(0.01◦)2

]
. (41)



Figure 3: Initial Gaussian distribution in the a-M plane (sampled with the blue points) with the corresponding 3-σ
ellipse (red curve).

The BC is allowed to fluctuate over time as a sinusoid

BC(t) = BC0 +ABC sin(
2π

τBC
t+ φBC), (42)

and the parametersABC ∈ [−2×10, 2×10] kg/m2, τBC ∈ [100, 10000] sec, φBC ∈ [0, 2π] are picked randomly
for each sample point. The drag accelerations are given as

r̈drag =
1

2BC
ρVV, (43)

where V is the relative velocity of the spacecraft relative to the atmosphere. We assume that the atmosphere is
spherical and rotates at the same rate as the Earth’s daily rotation about its axis. The density ρ is simulated with
the NRLMSISE-00 model [13].

STT Propagation 103 points are taken on the initial 3-σ ellipsoid where the uncertainty in the orbit elements is
the same as the MC simulation and σBC = 5 kg/m2. Expansion of King-Hele’s theory up to 4th order is
considered. The reference density ρ∗ and scale height H are determined by fitting the NRLMSISE-00 com-
puted densities between altitudes of 240 km and 360 km over the first orbital period. We find (ρ∗, H) =
(7.262 · 10−12 kg/km3, 36.49 km) for the Calm scenario and (3.897 · 10−11 kg/km3, 55.22 km) for Storm. For
simplicity, n is expanded only up to first order in ε.

Figure 4 shows the results of the propagation. As expected, since probability is an integral invariant regardless of
whether the system is conservative, the 3-σ curve converges upon the distribution of MC points as the order of the
STT is increased. Indeed, due to the highly non-linear nature of the dynamics, many MC points fall outside of the
linearly propagated uncertainty ellipsoid. Furthermore, by explicitly accounting for the uncertainty in BC, the analytic
model succeeds in capturing the effects of time-varying ρ and BC. This result suggests that even though the drag force
is stochastic, it has a dominant deterministic component whose uncertainties are sufficiently expressed as parametric
errors. Therefore, computationally efficient analytic techniques are attractive option for uncertainty propagation.

3.2. Propagation of the Cumulants
In this section, we discuss a MATLAB implementation of the theory introduced in Section 2.3. Here, the initial
uncertainty is assumed to be Gaussian as in (41) but only in the semi-major axis (a) and mean anomaly (M ) directions;



Figure 4: An initial Gaussian distribution propagated numerically (MC) and analytically (STT; number indicates
expansion order) over 6.286 days for the Calm (left) and Storm (right) scenarios. The results are projected on the
semi-major axis (a) / mean anomaly (M ) space in units of km-rad and subsequently rotated so that the axes of the plot
corresponds to the principal axis directions of the linearly propagated ellipse.

the ballistic coefficient is assumed to be constant at BC = 102 kg/m2. The central body is again approximated as a
point mass. The mean and covariance are computed using both a numerical MC simulation and the analytical dynamics
via the STT method:

MC simulation The initial distribution is sampled at 104 sample points that span across ±6σ in both a and M . The
moments of the pdf along with the Jacobian determinant are numerically integrated with (16), (17), and (20).
We consider these results as the truth.

STT propagation Since the contraction of the state space is slow for objects with realistic parameters such as in (25),
we assume |∂X/∂X0| ≈ 1 and thus compute the mean and covariance with (22) and (23), respectively. The
dynamics are expanded up to 4th order, with the mean motion n expanded up to 1st order. All computation is
analytic.

The same two epochs were tested (Calm and Stormy) and the uncertainty is propagated for 1.257 days; a shorter
propagation time is chosen only to ensure that the Monte Carlo converges in a reasonable time. Table 1 shows the
relative error of the STT propagated cumulants with respect to the MC simulation. Overall, the analytically propagated
cumulants are within 1% relative error for all coordinate directions. The accuracy of the analytical covariance is
consistently worse than the mean by an order of magnitude. A possible explanation is that the covariance can be
thought of as a direct measure of the “volume” of the uncertainty, and thus is more strongly influenced by the phase
volume contraction than the mean. Nevertheless, we may conclude that approximating the phase volume as constant
when computing for pdf cumulants analytically is acceptable for many low area-to-mass ratio objects in LEO.

Table 1: Relative error of analytically propagated cumulants compared to a numerically computed truth.

Rel. Err. Mean [%] Rel. Err. Cov. [%]
Scenario ā M̄ σ2

a µaM σ2
M

Calm 0.0127 -0.0145 -0.5417 -0.1815 -0.3042
Stormy 0.0004 -0.0220 -0.7657 -0.5939 -0.4225

Finally, Table 2 compares computation time of cumulants between the Monte Carlo and STT methods on a Mac
Pro workstation for the above example. Again, since the STTs are purely analytic, once the STTs have been solved
for, all that is required for propagation is to change the time parameter accordingly. As a result, the STT propagation
is not only many orders of magnitude faster than the Monte Carlo but also does not scale with propagation time



nor sampling resolution of the state space. Overall, the STT method is both accurate and efficient in non-linearly
propagating uncertainty even in the presence of non-conservative forces.

Table 2: Computation time required to compute the mean and covariance with the Monte Carlo (MC) and STT tech-
niques. The process is split up into uncertainty propagation (Prop.), and mean (Mean) and covariance computation
(Cov.) The results are an average over the two simulation epochs considered.

MC STT
Prop. [s] 2.643× 104 4.635× 10−2

Mean [s] 2.802× 100 2.310× 10−4

Cov. [s] 2.429× 100 3.580× 10−4

Total [s] 2.644× 104 4.694× 10−2

4. CONCLUSIONS

In this paper, an analytical method of non-linear uncertainty propagation including non-conservative effects was dis-
cussed. A special solution to the Fokker-Planck equations for deterministic systems and the state transition tensor
concept are combined so that, given an analytical expression of both the initial probability distribution and the dynam-
ics, the probability distribution may be expressed analytically for all time. Propagation of uncertainty is then only a
matter of changing the time parameter t. In particular, King-Hele’s theory on orbital motion influenced by atmospheric
drag was applied to the above framework and its propagation results were compared with a numerical Monte Carlo
simulation with a realistic density model. This example demonstrated the potential efficiency and accuracy of analyt-
ical uncertainty propagation. Future work is to further incorporate additional perturbations relevant to Earth-orbiting
objects, such as effects due to the oblateness of the Earth.
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