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ABSTRACT

This paper investigates the effectiveness of a ground-based bistatic decametric line-of-sight radar for orbit determina-
tion of low Earth orbit satellites. Methods are developed for initial orbit determination. The approach is demonstrated
using radar observations of the Hubble Space Telescope. The suitability of this class of radar for wide-field space
situational awareness is considered, along with a SSA architecture that uses this class of radar to cue high-accuracy
narrow field-of-view optical sensors as part of a wide-field high-accuracy system for SSA.

1 INTRODUCTION

This paper describes the use of high-frequency line-of-sight radar (HF-LOSR) to detect, track and establish an ephemeris
of the Hubble space telescope (HST). While the HST is used as a case study in this paper, it is a target of opportunity
and the radar’s operation and the orbit determination procedures could be equally well applied to other satellites of
interest, within the capabilities of the radar.

The radar has been developed by the Defence Science and Technology Organisation (DSTO) to investigate scat-
tering phenomenology at HF frequencies. HF radars are typically deployed as over-the-horizon sensors, using the
refractive properties of the earth’s ionosphere for propagation beyond the line-of-sight horizon [1]. In contrast, the
radar described in this paper has been designed for line-of-sight operation, using frequencies at the upper end of the
HF spectrum to minimise ionospheric refraction. The radar has a wide field-of-view, having a 90° arc of coverage.
While not being the radar’s primary purpose, satellite transits are observed and specific measurement collections have
been made of both the International Space Station (ISS) [2] and HST.

The radar measures range, Doppler and azimuth (coning angle). Two stages for orbit determination: extract
associated detections from a potential target and then use those detections to calculate orbital parameters. Use a
geometrical argument to form an initial orbit from two pairs of measurements of range and angle, separated in time.
This orbit is then refined using the remainder of the measurements, including Doppler.

The paper is organised as follows. Section 2 is a description of the radar equipment. Section 3 describes the
method for extracting target-associated detections from the radar data. A summary of the method used for initial orbit
determination is given in Section 4, while Section 5 describes how that initial orbit is refined using the remaining
measurements, including a comparison with the expected measurement from the publicly available TLE. Section 6
gives a preliminary analysis of measurement biases due to ionospheric effects. A summary of the results and an
outline of future work is discussed in Section 7.

2 HF-LOS RADAR DESCRIPTION

The description of the HF Line-of-Sight Radar (HF-LOSR) in the following paragraphs relates to the particular con-
figuration used in a test deployment in northern Australia undertaken by DSTO during 2013. Further details of this
system, including energy budget, coverage calculations and predicted signal-to-noise ratio for the ISS can be found in
a companion paper [2].

HF-LOSR is a bistatic high frequency radar designed to operate at a centre frequency selected between 29MHz
and 31MHz depending on clear channel availability at the time of operation. The transmitter system was located
approximately 1.8km from the receiver system. The radar used an amplitude tapered sweep linear frequency modulated
continuous wave waveform with 100% duty-cycle. The operating bandwidth was 20KHz and the waveform repetition
frequency (WRF) 100Hz. Total transmitter power was 16kW (continuous). The radar coherent integration time was
1s. The per-channel receiver system internal noise figure was 8dB and the external to internal noise ratio typically
in the range 8-10dB depending on time-of-day ensuring that the receiver system was always externally noise limited.
The receiver array used 20 receivers in a receiver per element configuration.



(a) Transmitter array. (b) Receiver array.

Figure 1: Radar arrays used in HF-LOSR. Each element is a four-element Yagi antenna optimised for operation in the
frequency range from 29MHz to 31MHz.

The transmitter antenna consisted of a four element array where each element in the array consisted of a four-
element Yagi antenna. The transmitter system comprised sixteen 1kW power amplifers combined into four outputs,
one for each element in the array. Each 1kW power amplifier was driven by an appropriate radar waveform generator.
The spacing between elements was 10m for a total array aperture of 30m. The array spacing was such that the array
was spatially undersampled by a factor of approximately two. The transmitter array is shown in the photograph in
Fig. 1a which shows the upward tilt of the elements at an angle of approximately 55° with respect to the horizon.

The receiver antenna consisted of an array of 28 four-element Yagi antenna elements identical to the transmitter
array elements with the exception of the feeder and feeder matching arrangements. The receiver array elements were
spaced 9m apart so that the array was spatially undersampled. The antenna elements were connected to direct digital
receivers in a receiver per element configuration. There was an additional receiver and vertical monopole antenna
to provide spectrum surveillance for clear channel selection. The receiver per element arrangement allowed multiple
simultaneous receiver beams to be formed and hence the receiver field of regard was covered simultaneously with full
array gain. The receiver array is shown in the photograph in Fig. 1b.

Fig. 2 shows the effect of sphere size on RCS for a radar operating at 30MHz [3]. Spheres of diameter less than
2m are in the Rayleigh scattering region where RCS reduces dramatically as diameter is reduced. The resonance (or
Mie) scattering region extends from sphere sizes of approximately 2m to 50m with the optical scattering region for
sphere sizes larger than approximately 50m. To put this in context, the companion paper [2] predicts that this system
could be capable of detecting objects in the order of 2m in physical size at 500km range and objects of approximately
4m at 1000km range.

3 TRACKING IN RADAR MEASUREMENT SPACE

As described in the introduction, the first step in reconstructing the orbit from HF-LOS observations was to extract de-
tections associated with the target. While the target returns have typically large SNR, environmental effects, including
ground clutter and background noise, result in false detections. In addition, the radar operational parameters are such
that the Doppler returns are ambiguous, that is the target’s range-rate cannot be directly inferred from the Doppler.

The tracking stage achieves two outcomes. Firstly, the output from the tracker is a set of detections which are
likely to have originated from the same target, with a single detection per time-step. Secondly the Doppler ambiguity
is resolved, such that the Doppler component of the associated detections can be interpreted as the range-rate of the
target.

The algorithm used to achieve this is based on the probabilistic multi-hypothesis tracker (PMHT). PMHT is a
data association algorithm derived from the application of the Expectation Maximisation (EM) algorithm [4] to target
tracking. EM is used to model the assignment of measurements to targets as hidden variables and estimates target
states by taking the expectation over the assignments [5]. The advantage of the PMHT over other conventional data
association techniques is that it has linear complexity in the number of targets, the number of measurements per frame
and in the number of frames, by assuming independence between the association hypotheses.
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Figure 2: RCS of perfectly conducting spheres of varying diameters evaluated at a radar operating frequency of
30MHz.

Fig. 3 shows all of the radar detections for the observation period, for range, Doppler and coning angle, with those
detections associated with the target in red.

4 INITIAL ORBIT DETERMINATION

The combination of range and coning angle, from two observation times, are used to calculate an initial circular orbit
using a geometrical argument. By neglecting the Doppler measurement for initial orbit determination the resulting
system has four measurement equations, which can be solved for the four orbital parameters. The initial solution can
then be refined using the remainder of the data, as described in Section 5.

Define the relationship between the satellite position, ps, and velocity, vs, in geocentric Earth-fixed Cartesian
coordinates, and measured range, ρ , range-rate, ρ̇ , and azimuth, α as

ρ = |ps−prx | (1)

ρ̇ =
(ps−prx) ·vs

ρ
(2)

α = arccos
{
(ps−prx) ·ua

ρ

}
, (3)

where prx is the radar receiver position, ua is a vector parallel to the receiver array, a ·b is the vector dot product of a
and b, and |a | is the magnitude of vector a.

For a given measured range, ρ , and coning angle, α , the set of possible target locations trace out a circle in 3D, as
shown in Figure 4. The equation for this circle can be defined by the centre of the circle

c = prx+ρ cos(α)ua, (4)

the radius
r = ρ sin(α) (5)

and a unit normal vector describing the plane of the circle, which in this case is given by ua, the vector along the array.
These quantities can be rotated into an inertial coordinate frame in order to calculate the orbital parameters.

For a circular orbit with a known orbital radius, the target location corresponding to a range and coning angle is
given by the intersection of a sphere and the circle defined above. There are two solutions to this intersection problem,
as outlined in Appendix A. In this case the radar is designed to minimise directive gain away from the array boresight.
This allows one of the solutions, the solution “behind” the radar to be neglected. Thus, given a range, a coning angle
and an orbital radius, the target location can be calculated unambiguously.
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(b) Doppler.
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(c) Coning angle.

Figure 3: Associated detections (in red) and false alarms (in blue) for (a) range, (b) Doppler and (c) coning angle.

Figure 4: Coning angle: azimuth measured by a linear array.



Using two pairs of range/angle measurements gives two target locations at two instants in time, p̂s1 and p̂s2,
assuming an orbital radius a. The circular orbit assumption means that the angle between these positions is directly
related to the orbit’s mean motion and hence the orbital radius.

η =
1

|t2− t1|
arccos

{
p̂s1 · p̂s2

a2

}
(6)

a =

(
µ

η2

) 1
3
, (7)

where t1 and t2 are the corresponding measurement times. The orbital radius can be found by solving (6) and (7) for a.
Since the solution to (6) and (7) is clearly not analytically tractable, the equations form the basis of a numerical

algorithm for initial orbit determination. The steps of the algorithm are

1. Hypothesise an orbital radius, a, and calculate the circle-sphere intersection, p̂s1 and p̂s2, for both pairs of
measurements.

2. Calculate the orbital radius, a′, equivalent to the mean motion implied by the two positions.

3. Use a numerical optimisation procedure to find a radius such that a = a′.

4. From the two position vectors calculate the velocity vectors, tangential to the orbit and in the plane of the orbit,
with magnitude given by the vis-viva equation [6].

5 REFINING THE INITIAL ORBIT

As described in the previous section, an initial orbit is calculated from two measurements, well-spaced in time to
give range and azimuth diversity. This initial orbit is used as the starting condition for a least-squares (differential
correction) procedure to refine the circular orbit using the entire batch of measurements. Unlike the initial orbit
determination step, the refinement step uses Doppler (range-rate) along with range and coning angle. The SNR of the
signal is used to calculate the expected accuracy of the measurement so that higher SNR detections are favoured over
lower SNR detections in the least-squares fit. A Levenberg-Marquardt algorithm [7] has been used to perform the
optimisation.

Results of the fitted orbit in this case are shown in Fig. 5, plotted against the radar measurements. It can be seen
that the resulting orbit is consistent with the observations. However, when compared with the expected measurements
from the NORAD TLE for the same time period, there is a bias of between 10 and 15km in range, up to 100m/s in
range-rate and 1 to 2 degrees in angle. In Cartesian space these biases translate to a position error of between 21km
and 29km and a velocity error of around 127m/s, shown in Fig. 6.

The differences between the observations and expected measurements are predominantly due to un-modelled sen-
sor biases. While understanding and mitigating of these biases is an ongoing component of our research program,
Section 6 addresses a major source of potential bias.

The accuracy of predictions made with the reconstructed orbit is important for queuing of narrow-field-of-view
sensors. Differences between the predictions made with the fitted orbit and the NORAD TLE are plotted in Fig. 7,
assuming that the TLE is a sufficient representation of the true orbit. Because of the circular orbit assumption and
the unavoidable mismatch between the estimated orbital radius and the orbit’s semi-major axis, the most significant
error is an along-track error, which we have referred to as a timing error. A delay is calculated between the fitted
orbit and the NORAD TLE in order to bring the predicted positions as close as possible. The plots in Fig. 7 show the
timing error as a separate quantity. The remaining error is displayed using satellite-based NTW (radial, along-track,
across-track) coordinates [6], where the along-track component points along the velocity vector. As a comparison,
measurements have been simulated from the TLE, and the same orbital estimation procedure has been applied. This
gives an indication of the best performance possible for this orbital estimation algorithm.

The results in Fig. 7 show that while the timing error increases steadily over time, the remaining error stays
bounded over several orbital periods. It can also be seen that, despite the sensor biases evident in Fig. 5, the majority
of the error in the predictions are due to the circular orbit constraint. In particular the radial error shows little deviation
from the ideal case. Errors are periodic in the orbital period resulting in the smallest error at the same latitude as the
radar.
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(a) Range.

0 10 20 30 40 50 60 70
−1000

−500

0

500

1000

1500

2000

2500

3000

R
an

ge
−r

at
e 

(m
/s

)

Time (s)

 

 
Detections
Fitted Orbit
NORAD TLE

(b) Doppler.
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(c) Coning angle.

Figure 5: Target detections plotted along with the fitted circular orbit and the measurements expected according the
NORAD TLE.
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(a) Position error.
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(b) Velocity error.

Figure 6: Position and velocity errors between the fitted orbit and the the NORAD TLE.
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Figure 7: Prediction error between the fitted orbit and the NORAD TLE (blue), compared with an orbit fitted to
simulated measurements from the TLE (green).
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Figure 8: Distance between line-of-sight and a ray refracted through the ionosphere.

6 IONOSPHERIC BIAS EFFECTS

Most HF radars are designed to use the refractive properties of the ionosphere for over-the-horizon surveillance. The
radar described in this paper uses a frequency toward the upper end of the HF band, typically around 30MHz, such
that ionospheric refraction is minimised and line-of-sight operation can be achieved. The analysis in the preceding
sections has assumed that the ionospheric refraction in this regime is negligible.

A preliminary investigation into the effects of the ionosphere at these frequencies has been conducted. For this
purpose, the International Reference Ionosphere, IRI2012 [8], has been used to provide ionospheric and geomagnetic
models. This model does not incorporate local measurements of the ionosphere, but is based on long-term historical
data. So, while this model will give an indication of the lower-order effects of the ionosphere it will only be an
approximation of the propagation conditions that existed at the time of the radar collection.

Modelling of HF propagation through the ionosphere is computed through the numerical integration of the under-
lying differential equations describing electromagnetic waves through a spatially varying plasma [9]. This is typically
referred to as ionospheric ray-tracing. Fig. 8 shows the spatial separation between the direct line-of-sight calculation
and a ray initialised with the same azimuth and elevation. It can be seen that as the ray approaches the target, there is
a difference in position of about 19km. Ionospheric refraction is clearly not a negligible effect.

Rather than propagate a ray in the direction of the LOS path, the problem can be inverted, that is a ray direction can
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Figure 9: A comparison of the range measurements and the expected range from the TLE using direct line-of-sight
and ionospheric refraction.

be found such that the ray intersects the satellite location. This method can be used to simulate radar measurements
from the satellite position and velocity. The LOS mapping used to simulate radar measurements in the previous section
can be replaced with a model than includes ionospheric refraction. Fig. 9 shows the range measurements of the HST
plotted with the expected range from the NORAD TLE under LOS assumptions compared with using ionospheric
ray-tracing. The effect of the refraction in this case is to reduce the range bias from over 10km down to less than 3km.

While this is a single example using a coarse model of the ionosphere, the results show that ionospheric effects
could account for a significant component of the difference observed between the measurements and the TLE.

7 SUMMARY AND FUTURE WORK

This paper has presented a HF line-of-sight radar that is capable of detecting the Hubble space telescope. The com-
panion paper concludes that this class of radar could be used for surveillance of space for objects of moderate size and
range up to 1000km [2]. Automatic methods have been described for extracting detections associated with a potential
satellite-like target and the determination of an orbit from those detections. In particular the techniques presented in
this paper can be used for orbit determination using HF-LOSR without prior information, such as NORAD TLEs. The
radar measurements, along with the orbit calculated from those measurements, shows significant differences to the
published TLE. Analysis has shown that neglecting these biases, under the assumption that the TLE is consistent with
the true orbit, results in an orbit with an approximately 20km separation from the published location.

Work in orbit determination with this class of radar will continue, including

• investigation of the ionospheric effects, including ray-tracing through a model ionosphere which uses measure-
ments of local ionospheric conditions from vertical incidence sounders,

• investigation of the use of this type of radar to cue higher precision, but much lower field of regard, sensors to
improve the estimates of the ephemeris, and

• more sophisticated estimation techniques, such as sequential Monte Carlo methods [10], which can capture the
uncertainty in the resulting ephemeris.
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A CIRCLE-SPHERE INTERSECTION

This section outlines an algorithm for finding the intersections of a circle in 3-dimensions and a sphere. The circle is
defined by its centre c, radius r lying on a plane with unit normal u. The sphere is assumed to be centred at the origin
with radius R.

For intersection points x, lying on both the sphere and the circle

x ·x = R2, (8)

and
(x−c) · (x−c) = r2. (9)

Since both x and c are on the plane of the circle, the projection of either of these vectors onto u is the distance, α , from
the origin to the plane, which can be written

x ·u = c ·u = α. (10)

Forming an orthogonal coordinate system in the circle’s plane using vectors (c−α u) and (u×[c−α u]) an equation
for x can be written as

x = α u+β (c−α u)+ γ(u×[c−α u]) (11)
= (1−β )α u+β c+γ(u×c). (12)

Then (8) – (11) can be used to solve for β and γ . Taking the dot product of (12) with c gives

x ·c = (1−β )α u ·c+β c ·c+γ(u×c) · c (13)

β =
1
2

R2− r2 + |c |2−2α2

|c |2−α2 , (14)

where (9) has been used to form an expression for x ·c. Now forming the dot product of both sides of (12)

x ·x = [(1−β )α u+β c+γ(u×c)] · [(1−β )α u+β c+γ(u×c)] (15)



which simplifies to

R2 = (1−β )2
α

2 +(1−β )α2
β +(1−β )α2

β +β
2|c |2 + γ

2|u×c |2 (16)

γ
2 =

R2−α2 +β 2α2−β 2|c |2

|u×c |2
. (17)

To summarise, given vectors u and c and radii r and R the two points of intersection, x, can be found using

x = (1−β )α u+β c+γ(u×c), (18)

where

α = u ·c (19)

β =
1
2

R2− r2 + |c |2−2α2

|c |2−α2 (20)

γ =±
√

R2−α2 +β 2α2−β 2|c |2
|u×c |

. (21)

Note that if u and c are parallel, that is c= k u for some scalar k, then there will be no solutions, or, for k =
√

R2− r2

the circle will lie completely on the sphere, giving an infinite number of solutions. Similarly, the argument of the
square-root in (21) must be positive for a geometric solution.


