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ABSTRACT 
 

The problem of track initiation is addressed for optical ground or space-based observation of space objects. Angles 
are the primary quantities available from line-of-sight measurements, but angle rates may also be derived if the data 
are of sufficient quantity and quality. For a specified rectangular partition in the space of orbital elements, explicit 
bounds on range and range rate are derived for a given observation based on angles and angle rates. Discretizing the 
resulting range-range rate hypothesis region allows candidate orbits to be generated in an embarrassingly parallel 
fashion. The number of hypotheses for track initiation is further constrained by imposing conditions derived from 
special solutions of Lambert’s problem for pairs of observations. Initial results are presented for perfect and noisy 
simulated data. Also included is an analysis of the sensitivity of the range-range rate bounds with respect to errors in 
angle rates. 
 

1. INTRODUCTION 
 
The advent of high-sensitivity, high-capacity optical sensors for space surveillance presents us with interesting and 
challenging tracking problems. Accounting for the origin of every detection made by such systems is generally 
agreed to belong to the “most difficult” category of tracking problems. Especially in the early phases of the tracking 
scenario, when a catalog of space objects is being compiled, or when many new objects appear in space because of 
on-orbit explosion or collision, one faces a combinatorially large number of tracking hypotheses to evaluate. The 
number of hypotheses is reduced to a more feasible number if observations close together in time can, with high 
confidence, be associated by the sensor into extended tracks on single objects. Most current space surveillance 
techniques are predicated on the sensor systems’ ability to form such tracks reliably. However, the required 
operational tempo of space surveillance, the very large number of objects in Earth orbit and the difficulties of 
detecting dim, fast-moving objects at long ranges mean that individual sensor track reports are often inadequate for 
computing initial orbit hypotheses. In fact, this situation can occur with optical sensors even when the probability of 
detection is high. For example, the arc of orbit that has been observed may be too short or may have been sampled 
too sparsely to allow well-conditioned, usable orbit estimates from single tracks. In that case, one has no choice but 
to solve a data association problem involving an unknown number of objects and many widely spaced observations 
of uncertain origin. In the present paper, we are motivated by this more difficult aspect of the satellite cataloging 
problem. However, the results of this analysis may find use in a variety of less stressing tracking applications. 
 
We begin with the angles-only case, in which angle rate values are not available or are too inaccurate for reliable 
use. One possible method to deal with such data is to assign a number of range hypotheses to each observation and 
develop data association hypotheses to be either confirmed or eliminated by comparisons with other data. Assume 
that we have a pair of line-of-sight unit vectors 𝐮1 and  𝐮2 , measured at time 𝑡1 at station position 𝐑1 and time 𝑡2 at 
station position 𝐑2, respectively (shown schematically in Fig. 1). Assume, without loss of generality, that   𝑡2 > 𝑡1. 
We want to test the hypothesis that these two observations are associated with the same space object. To this end, 
we attach a set of hypothetical range values, �𝜌1,𝑚 ,𝑚 = 1,2, … � and �𝜌2,𝑛 ,𝑛 = 1,2, … � respectively, to each of 
these measured unit vectors and then generate candidate orbits by solving Lambert’s problem for each of the pair-
wise combinations of hypothetical orbital position vectors 𝐫1,𝑚 and 𝐫2,𝑛. Even with a large dataset of measured line-
of-sight unit vectors, we can, in principle, consider all possible pairs of observations and solve the family of Lambert 
problems for each pair. Then each hypothetical orbit from the solution of Lambert’s problem is a data association 
hypothesis that must be either confirmed or eliminated through comparisons with other observational data. This 
approach allows us to make use of an already proven method (the Search and Determine algorithm and software, 
SAD) that was designed for generating and testing data association hypotheses for position-type observations typical 
of radar sensors [1–3]. Given enough range hypotheses for each observed line of sight, we are guaranteed to 
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generate a viable candidate orbit for every object that has 
been observed at two or more distinct times. However, 
the Cartesian product of the set of range values for each 
observed line of sight with the sets of range values from 
every other line of sight implies a possibly prohibitive 
number of Lambert solutions to generate and check. The 
computational complexity for generating hypothetical 
orbits on this approach is quadratic in the number of 
observed lines of sight and also quadratic in the number 
of range hypotheses that we attach to the observations.  
 
How should we limit the number of range hypotheses to 
make the total number of candidate orbits manageable 
while also generating candidates that are likely to 
correspond to real orbits of interest? For example, we 
may be most interested in generating candidate orbits 
near the geosynchronous equatorial orbital (GEO) belt. 
Let us seek to generate hypotheses for orbits that lie only 

in a bounded region of semimajor axis  𝑎 , eccentricity  𝑒 , inclination  𝐼 and right ascension of the ascending node Ω 
, namely, within a partition specified by the intervals  [𝑎MIN , 𝑎MAX] , [𝑒MIN , 𝑒MAX] ,  [𝐼MIN , 𝐼MAX] and  
[ΩMIN ,ΩMAX] . (For the purposes of this discussion, we leave the other orbital elements unconstrained. It will turn 
out that these four elements constrain the possible values of range in simple ways without our having any recourse to 
angle rate information.) Then, to the extent that we can restrict the generation of hypothetical orbits to a specified 
partition of the space of orbital elements, we have parallelized the task of building a catalog of objects detected 
within that partition. The reason is that any partition of the space of orbital elements, including the whole space 
itself, can be sub-divided into smaller partitions, and each sub-partition can be handled independently. In the 
approach outlined here, all the observations would have to be considered for each sub-partition of the space of orbit 
elements. However, by constructing upper and lower bounds on range for each measured line of sight for each sub-
partition of the element space, we limit the number of range hypotheses that have to be considered for each sub-
partition. This approach allows us to consider a manageable number of range hypotheses for each sub-partition 
before we generate candidate orbits, simply by making the sub-partitions small enough, so that the overall 
computation is feasible. 
 
Our emphasis on generating candidate orbits with a Lambert-based approach in the angles-only case is not merely a 
matter of convenience in extending an existing method such as SAD. Certainly, the bounds on range that we present 
here could be used in a variety of ways with other angles-based initial orbit determination (IOD) methods. Both the 
traditional methods of angles-only orbit determination [4] and modern methods such as those of Gooding [5,6] and 
Karimi and Mortari [7] and others [8] rely on solving for the range by either root-finding or optimization. Such 
algorithms can always be made to work more reliably when rigorous upper and lower bounds on the unknown 
quantity are available. However, one encounters at least three difficulties in applying direct angles-only methods to a 
large, multiple-target catalog-building scenario. 
 
First, although the range bounds presented here allow one to reject candidate solutions based on range, with a direct 
angles-only method one still has to compute the range in terms of the observations in order to find out if it satisfies 
the bounds. This turns out to be most of the computation needed to produce the candidate orbits themselves. In the 
Lambert-based approach, the range bounds allow us to avoid most of the potential computation for the candidate 
orbits. 
 
Second, the direct angles-only methods do not scale to large problems as well as a Lambert-based method does. 
Given 𝑁 observations of line of sight, not necessarily close together in time, the computational load of Lambert-
based methods is asymptotically proportional to 𝑁2 (N-choose-2 combinations), because two observations per data 
association hypothesis are needed. The total computational load of such a method is then proportional to 𝑁2𝑀2 
where 𝑀 is the number of range hypotheses assigned to each observation. The “constant” of proportionality is itself 
quadratic in the number of range hypotheses that must be considered for each line of sight. However, as noted 
above, the latter number can be driven down to manageable size in each partition of the element space by making 
the partitions small. With traditional methods of angles-only IOD, including that of Gooding [5,6], one faces a 
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computational load that is asymptotically proportional to 𝑁3 (N-choose-3 combinations), because 3 observations 
must be associated together to compute the range and hence the candidate orbit. The methods developed by Mortari 
and Karimi are more robust than traditional methods, but these also require at least 3 observations per association 
hypothesis. In fact, the approach of Karimi and Mortari [7] works better with more observations per association 
hypothesis, but then one faces a computational load that scales like 𝑁4, 𝑁5, or even higher. In general, the 
computational complexity is polynomial in the number of observations, with the polynomial degree equal to the 
number of observations per data association hypothesis. Of course, it may not be clear in any particular case which 
approach finally requires fewer processors to achieve a desired production rate of orbit solutions. Higher-degree 
scaling requires more processors on the traditional range-solution approach and smaller element partitions require 
more processors on the range-hypothesis approach. The choice may depend on the size and character of the dataset 
itself and the element partitions of interest. 
 
Third, a Lambert-based method, ideally implemented, will produce a candidate orbit for every real object that has 
been observed at least twice. In comparison, a direct angles-based method, such as Gooding’s, will produce 
candidate orbits only for those real objects that have been observed at least 3 times. An 𝑁4 method will produce 
candidate orbits only for those real objects that have been observed at least 4 times, and so on. Hence, the Lambert-
based method may do a more complete job of generating viable candidate orbits from real datasets, while scaling 
more favorably than the direct angles-based methods for large numbers of observations. 
 
The use of angle rate, when it is available, is especially important. If angle rates are available or can be derived from 
the observation data, a complete orbit hypothesis can be formed for each observation without any iterative solutions, 
merely by choosing a value of range and a value of range rate. This is the approach outlined by DeMars et al. [9,10]. 
As in the angles-only case, this track-initiation problem is parallel with respect to element partitions. If we can 
provide bounds on range and range rate for each element partition, then we can reduce the number of orbit 
hypotheses needed for each partition simply by making the partitions smaller and using more processors to cover the 
whole element space. Bounds depending on angle rate will complement the range bounds already available from the 
angles-only case, and can be expected to further restrict the set of possible range hypotheses. 
 
Most importantly, with accurate angle rate the track initiation job scales linearly with the number of observations 
rather than as the square or cube, with a computational load proportional to 𝑁𝑀𝐿 if 𝐿 is the number of range rate 
hypotheses assigned to each observation. One could hardly expect to do any better than this in solving a large track-
initiation problem using optical data. Of course, nothing prevents us from using the improved bounds on range, and 
possibly range rate, to improve the efficiency of a Lambert-based approach. This choice may depend on whether the 
angle rates are accurate enough to represent the orbital state directly, or whether they should be used merely to 
provide extra bounds on the range. 
 
We are seeking explicit bounds on range and possibly range rate that can be applied for each individual angle-based 
observation, or at most to pairs of angle-based observations. Even with the further restriction that hypothetical orbits 
be elliptical and Keplerian (which we accept) and even allowing the possibility that the observation may include 
angle rate values (which we will examine at length), it may not be obvious that efficient bounds having these 
properties can be obtained. Exact bounds would have to be based on some admissible-region analysis of the type 
developed by Milani et al. [11], Milani and Knezevic [12], Tommei, Milani, and Rossi [13], Tommei et al. [14], 
Fujimoto, Maruskin, and Sheeres [15], Farnocchia et al. [16], and Gronchi, Dimare, and Milani [17]. For example, 
denoting the gravitational parameter by  𝜇 , we write the first integrals of Keplerian motion as 
   

 energy:    𝐸 =  (�̇� ∙ �̇�) 2⁄ − 𝜇 ‖𝐫‖⁄  (1) 
 angular momentum:         𝐡 = 𝐫 × �̇� (2) 
 Laplace vector:       𝜇𝐞 = �̇� × (𝐫 × �̇�) − 𝜇𝐫 ‖𝐫‖⁄  (3) 
   

Given the vector triangle relation 𝐫 = 𝐑 + 𝜌𝐮 and its time derivative for each observation, we can define admissible 
regions in the (𝜌, �̇�)  plane for each partition in the space of elements by means of inequalities such as 
   

 −𝜇 (2𝑎MIN)⁄ ≤ 𝐸 ≤ −𝜇 (2𝑎MAX)⁄  (4) 
 cos 𝐼MAX ≤ (𝐡 ‖𝐡‖⁄ ) ∙ 𝐤 ≤ cos 𝐼MIN (5) 
 𝑒MIN ≤ ‖𝐞‖ ≤ 𝑒MAX (6) 
   



Here 𝐤 is the north polar unit vector in the Earth-centered inertial frame. For each observation, the values of range 
and range rate that satisfy these inequalities will result in orbits that lie only within the given partition of the space of 
elements. DeMars and Jah [18] have shown what the admissible regions look like for partitions of semimajor axis 
and eccentricity by a numerical treatment of the above inequalities. Maruskin, Scheeres, and Alfriend [19] have 
shown how the admissible regions evolve in time and how the overlap of the admissible regions for different 
observations can help solve the data association problem. However, even though expressions (1) through (6) can be 
reduced to polynomial forms in range and range rate, each relation is coupled in both variables and the polynomial 
degree is high, preventing us from obtaining explicit expressions for range and range rate in terms of the given data. 
Moreover, the usual admissible-region analysis leads nowhere if angle rates are not available. For example, the 
track-initiation method of DeMars et al. [9], involving multiple hypotheses on range and range rate, requires both 
angle and angle rate values. Similarly, the correlation and orbit determination study performed by Milani et al. [20], 
which used an admissible-region analysis, used simultaneous angle and angle rate data. 
 
In the case where angles are the only observable, it is possible to define a region in the (𝜌1,𝜌2) plane for a pair of 
observations, analogous to the (𝜌, �̇�) admissible region described above. We call this region the range, range 
admissible region (as opposed to the range, range-rate admissible region). Without explicit closed-form solutions for 
Lambert’s problem, we cannot provide closed-form expressions for the boundaries of the range, range admissible 
regions. Nevertheless, these regions can be exhibited numerically, and there is plenty of opportunity for future study 
of the geometrical and topological properties of these regions. In the present analysis, we aim lower and take a 
simpler geometric and kinematic approach that leads to explicit upper and lower bounds on the possible values of 
range for each observation or pair of observations, given only angle data at discrete times. In fact, we find several 
inequalities that must be satisfied simultaneously, and we can take the most restrictive superposition of the different 
bounds as our working result. In case angle rates are available, we can find additional bounding regions in the range, 
range rate plane. It may happen that, for a given observation, there are no values of the range or range rate that lead 
to orbits within the given element-space partition, so that the observation can be eliminated from further 
consideration. We obtain explicit conditions for the existence of possible values of range and range rate in terms of 
the observation itself. 
 
The price for obtaining explicit bounds on range is that the bounds are not exact but somewhat conservative. We call 
the region defined by these bounds the range, range hypothesis region. We construct it so that it always contains the 
exact range, range admissible region. Although every orbit within the element-space partition corresponds to values 
of range that lie within the bounds given here, some values of range that satisfy the bounds may lead to orbits that lie 
outside the given partition. Naturally, similar statements hold for the more usual range, range rate admissible regions 
and their corresponding hypothesis regions. The situation is shown schematically in Fig. 2.  
 
This circumstance represents inefficiency in the parallelization of building the catalog: nearly the same candidate 
orbits near the boundaries of the element-space partitions may be generated in both of the adjacent partitions, if the 
range or range rate hypotheses are planted densely enough. How to sample the hypothesis regions is, in fact, still an 
open question for hypothesis methods such as this: typical approaches use either a rectangular grid or a Delaunay 
triangulation [13], but an alternate approach using an iso-energy grid has been suggested recently by Siminski et al. 
[21,22] In any case, no candidate orbits within the given element-space partitions will be missed because of the 
bounds given here. The extent and cost of the inefficient duplication of candidate orbits will depend on the particular 
datasets and element partitions of interest, and may require further study if the tracking scenario is computationally 

 
Fig. 2. Relationship between hypothesis region (blue) and admissible region (orange). 
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stressing. In practice, of course, within any element partition, any of these extra orbit hypotheses can be either kept 
or discarded. If they are kept, we would have, at most, a bookkeeping problem of transferring the extra orbit 
solutions to the correct element partition. The trade-off in this case is that merely moving data between processors 
always takes time. We note also that each candidate orbit is used in exactly the same way, and the overall tracking 
job proceeds in the same way, regardless of whether any candidate orbits happen to originate in the “wrong” element 
partition, as long as all observations are available to each processor. 
 

2. BOUNDS ON RANGE IMPLIED BY ANGLE VALUES 
 
Here we present bounds on range that must hold for each observed line of sight. Assuming that all orbits of interest 
are elliptical, require that the orbital radii lie between the maximum specified apogee and the minimum specified 
perigee: 
   

 [𝑎MIN (1 − 𝑒MAX)]2 ≤ ‖𝐫‖2 ≤ [𝑎MAX(1 + 𝑒MAX)]2 (7) 
   

The values of range that correspond to these limits on orbital radius can be found explicitly using the vector triangle 
relationship  𝐫 = 𝐑 + 𝜌𝐮 . Squaring terms to remove the radical, we have 
   

 𝑎MIN2 (1 − 𝑒MAX)2 ≤ 𝐑 ∙ 𝐑 + 2(𝐑 ∙ 𝐮)𝜌 + 𝜌2 ≤ 𝑎𝑀𝐴𝑋2 (1 + 𝑒MAX)2 (8) 
   

Consider the perigee and apogee cases separately. For the perigee case, we require the orbital radius to be no smaller 
than the smallest allowable perigee radius: 
   

 𝑎MIN2 (1 − 𝑒MAX)2 ≤ 𝐑 ∙ 𝐑 + 2(𝐑 ∙ 𝐮)𝜌 + 𝜌2 (9) 
 𝜌2 + 2(𝐑 ∙ 𝐮)𝜌 −  [𝑎MIN2 (1 − 𝑒MAX)2 − 𝐑 ∙ 𝐑]   ≥ 0 (10) 
   

The roots of this quadratic are: 
   

 
𝜌 = −(𝐑 ∙ 𝐮) ± �(𝐑 ∙ 𝐮)2 + [𝑎MIN2 (1 − 𝑒MAX)2 − 𝐑 ∙ 𝐑] (11) 

   

We will have real roots if and only if the argument of the square root is non-negative: 
   

 𝑎MIN2 (1 − 𝑒MAX)2 ≥ 𝐑 ∙ [𝐑 − (𝐑 ∙ 𝐮)𝐮] (12) 
   

If no real roots of the quadratic expression (10) exist, then we can immediately discard the current observation and 
form no hypotheses with it. The reason is that no value of the range will be found for this observation, which is 
consistent with the specified intervals of the orbital elements. 
 
Descartes’ rule of signs tells us the number of positive real roots. If the third coefficient in the quadratic form (10) is 
negative, that is, if  𝑎MIN2 (1 − 𝑒MAX)2 > 𝐑 ∙ 𝐑 , then, regardless of the sign of the second coefficient  2(𝐑 ∙ 𝐮), we 
will have one positive real root and necessarily also one negative root. Because the quadratic is concave-up, the 
inequality is satisfied to the left of the negative root and to the right of the positive root.  We can ignore the negative 
root and all values to the left of it, because we require a priori that range values to be non-negative. What remains is 
a positive lower limit on the possible values of range: 
   

 
𝜌 ≥ −(𝐑 ∙ 𝐮) + �(𝐑 ∙ 𝐮)2 + [𝑎MIN2 (1 − 𝑒MAX)2 − 𝐑 ∙ 𝐑] (13) 

   

It is worth noting that, for Earth-bound stations, the third coefficient of (10) will essentially always be negative 
because the inequality  𝑎MIN2 (1 − 𝑒MAX)2 > 𝐑 ∙ 𝐑  is approximately the condition that the minimum allowable 
perigee radius be larger than the Earth radius. Moreover, the second coefficient 2(𝐑 ∙ 𝐮) will essentially always be 
positive because observations have to be taken above the local horizontal plane at some positive local elevation 
angle. For space-based observing stations, it is possible that neither of these circumstances would be true: the 
station’s orbital position may be higher than the minimum specified perigee radius, or observations may be taken at 
negative local elevation angles, or both. 
 
If the third coefficient in (10) is positive, that is, if  𝑎MIN2 (1 − 𝑒MAX)2 < 𝐑 ∙ 𝐑 , then the quadratic will have either no 
positive real roots or two positive real roots, depending on the sign of the second coefficient. This is the possibility 
just mentioned for space-based stations, although we do not expect this possibility for Earth-bound stations unless 



we are interested in orbits with perigee radii less than the Earth radius. If, furthermore, the second coefficient in (10) 
is positive, that is, if  (𝐑 ∙ 𝐮) > 0 , then we have no positive real roots, but only a pair of negative roots. Because the 
quadratic is concave-up, the inequality (10) is satisfied to the left of the more negative root and to the right of the 
less negative root. However, since we require a priori that range values be non-negative, we are left merely with the 
condition that  𝜌 ≥ 0 . If the second coefficient is negative, that is, (𝐑 ∙ 𝐮) < 0 , meaning that the observation is 
taken at negative local elevation angle, then the quadratic will have two positive real roots. Because the quadratic is 
concave-up, the inequality (10) will be satisfied to the left of the smaller root, that is, between 𝜌 = 0 and the smaller 
root, and also to the right of the larger root. In this case, we have two disjoint intervals of range, one finite and one 
semi-infinite, over which range hypotheses will satisfy the perigee constraint: 
   

 
0 ≤ 𝜌 ≤ −(𝐑 ∙ 𝐮) − �(𝐑 ∙ 𝐮)2 + [𝑎MIN2 (1 − 𝑒MAX)2 − 𝐑 ∙ 𝐑] (14) 

 
𝜌 ≥  −(𝐑 ∙ 𝐮) + �(𝐑 ∙ 𝐮)2 + [𝑎MIN2 (1 − 𝑒MAX)2 − 𝐑 ∙ 𝐑] (15) 

   

Now we consider the apogee case and seek to derive results that are analogous to those above. The apogee case will 
provide us with conditions on values of the range that are complementary to those of the perigee case. Since both 
sets of conditions must be satisfied simultaneously, we can take the most restrictive superposition of all conditions 
on range to define the set of values over which to form range hypotheses. 
 
For the apogee case, we have from the inequality (8) that the orbital radius must be no larger than the maximum 
allowable apogee radius: 
   

 𝐑 ∙ 𝐑 + 2(𝐑 ∙ 𝐮)𝜌 + 𝜌2 ≤ 𝑎𝑀𝐴𝑋2 (1 + 𝑒MAX)2 (16) 
 𝜌2 + 2(𝐑 ∙ 𝐮)𝜌 −  [𝑎MAX2 (1 + 𝑒MAX)2 − 𝐑 ∙ 𝐑]   ≤ 0 (17) 
   

The roots are: 
   

 
𝜌 = −(𝐑 ∙ 𝐮) ± �(𝐑 ∙ 𝐮)2 + [𝑎MAX2 (1 + 𝑒MAX)2 − 𝐑 ∙ 𝐑] (18) 

   

We will have real roots if and only if the argument of the square root is non-negative: 
   

 𝑎MAX2 (1 + 𝑒MAX)2 ≥ 𝐑 ∙ [𝐑 − (𝐑 ∙ 𝐮)𝐮] (19) 
   

If no real roots exist, then we can immediately discard the observation and form no hypotheses with it. The reason is 
that no value of the range will be found for this observation, which is also consistent with the specified intervals of 
the orbital elements. 
 
Assuming that we have real roots in equation (18), we use Descartes’ rule of signs to determine the number of 
positive real roots. If the third coefficient in the quadratic form (17) is negative, that is, if 𝑎MAX2 (1 + 𝑒MAX)2 > 𝐑 ∙ 𝐑, 
then, regardless of the sign of the second coefficient 2(𝐑 ∙ 𝐮) , we will have one positive real root and necessarily 
also one negative root. Because the quadratic is concave-up, the inequality (17) is satisfied between the roots. 
Moreover, we require a priori that range values be non-negative, so we can say without loss of generality that the 
inequality will be satisfied between 𝜌 = 0 and the positive real root. The result is that we have an upper bound on 
the possible values of range: 
   

 
0 ≤ 𝜌 ≤ −(𝐑 ∙ 𝐮) + �(𝐑 ∙ 𝐮)2 + [𝑎MAX2 (1 + 𝑒MAX)2 − 𝐑 ∙ 𝐑] (20) 

   

It is worth noting that, for Earth-bound stations, the third coefficient will essentially always be negative because the 
inequality  𝑎MAX2 (1 + 𝑒MAX)2 > 𝐑 ∙ 𝐑  is approximately the condition that the maximum allowable apogee radius be 
larger than the Earth radius. Moreover, the second coefficient 2(𝐑 ∙ 𝐮) will essentially always be positive because 
observations have to be taken above the local horizontal plane at some positive local elevation angle. For space-
based observing stations, it is possible that neither of these circumstances would be true: the station’s orbital 
position may be above the maximum specified apogee radius, or observations may be taken at negative local 
elevation angles, or both. 
 



If the third coefficient in (17) is positive, that is, if  𝑎MAX2 (1 + 𝑒MAX)2 < 𝐑 ∙ 𝐑 , then the quadratic will have either 
no positive real roots or two positive real roots, depending on the sign of the second coefficient. This is the 
possibility just mentioned for space-based stations, although we do not expect this case for Earth-bound stations. If, 
furthermore, the second coefficient in (17) is positive, that is, if  (𝐑 ∙ 𝐮) > 0 , then we have no positive real roots, 
but only a pair of negative roots. Because the quadratic is concave-up, the inequality (17) is satisfied between these 
roots. However, since we require a priori that range values be non-negative, we can discard this particular 
observation and form no range hypotheses for it. 
 
If the third coefficient in (17) is positive, but the second coefficient is negative, (𝐑 ∙ 𝐮) < 0 , meaning that the 
observation is taken at negative local elevation angle, then the quadratic will have two positive real roots. The 
quadratic is concave-up, so the inequality (17) will be satisfied between these two roots. In this case, we have a 
single finite interval of range over which range hypotheses will satisfy the apogee condition: 
   

 
𝜌 ≥ −(𝐑 ∙ 𝐮) − �(𝐑 ∙ 𝐮)2 + [𝑎MAX2 (1 + 𝑒MAX)2 − 𝐑 ∙ 𝐑] (21) 

 
𝜌 ≤ −(𝐑 ∙ 𝐮) + �(𝐑 ∙ 𝐮)2 + [𝑎MAX2 (1 + 𝑒MAX)2 − 𝐑 ∙ 𝐑] (22) 

   

The set of range values over which we may have to form hypotheses for the observation in question is given by the 
intersection of all of the above conditions, both for perigee and apogee cases. 
 

3. RESTRICTIONS IMPLIED BY THE SET OF ORBITAL PLANES 
 
The above conditions are bounds on the possible values of range, which can be computed for each single 
observation. The fact that only single observations are involved is what allows us to find explicit bounds for each of 
the ranges before we form any range hypotheses. However, additional restrictions on the allowable values of range 
can be deduced from relations that involve both of the ranges presented for a solution to Lambert’s problem. 
Although the nonlinearities in these relations prevent us from getting explicit inequalities, nevertheless we can 
formulate additional conditions that 𝜌1 and 𝜌2 must satisfy. Checking these extra conditions for each range pair may 
keep us from having to produce some unnecessary and expensive Lambert solutions. 
 
Using the vector triangle relation  𝐫 = 𝐑 + 𝜌u  for each of the two lines of sight, compute the unit vector 𝐧 normal 
to the candidate orbital plane: 
   

 𝐧 = 𝑠 (𝐫1 × 𝐫2) ‖𝐫1 × 𝐫2‖⁄  (23) 
   

Here the quantity 𝑠 is a signum function: 𝑠 =  +1 for “short-way” trajectories and 𝑠 =  −1 for “long-way” 
trajectories. In general, we do not know a priori the sign for s and both cases will need to be considered. With the 
sign chosen, the inclination is given unambiguously by 
   

 cos 𝐼 = 𝐧 ∙ 𝐤 (24) 
   

Hence we require that 
   

 cos 𝐼MAX  ≤  𝐧 ∙ 𝐤 ≤  cos 𝐼MIN (25) 
   

In the case of low-inclination intervals, it may be better to work in terms of sine inclination: 
   

 sin 𝐼MIN  ≤  �1 − (𝐧 ∙ 𝐤)2  ≤  sin 𝐼MAX (26) 
   

In a similar way, we use the unit nodal vector to obtain conditions that the range pair must satisfy if the candidate 
orbit is to lie within a specified interval of right ascension of the ascending node,  [ΩMIN ,ΩMAX] . In the Earth-
centered inertial frame, we have 
   

 (𝐤 × 𝐧) ‖𝐤 × 𝐧‖⁄ = (cosΩ , sinΩ , 0)T (27) 
   

so that, following standard logic for quadrant resolution, we require 
   

 ΩMIN ≤ tan−1(sinΩ cosΩ⁄ ) ≤ ΩMAX (28) 
   



Of course, for important special cases like near-GEO orbits, it may be preferable to define partitions in terms of 
nonsingular elements such as  𝑝 ≜ sin(𝐼 2⁄ ) cosΩ  and  𝑞 ≜ sin(𝐼 2⁄ ) sinΩ . No special difficulty attaches to 
working with these or any other elements related to the orbit plane. 
 

4. RESTRICTIONS IMPLIED BY LAMBERT’S THEOREM 
 
Next, we can use three special solutions of Lambert's problem to restrict the ranges. The eccentricity of the orbit of 
least possible eccentricity that goes through a given pair of position vectors can be computed solely in terms of those 
position vectors. Call it  𝑒0 . Likewise, the semimajor axis of the orbit of least possible semimajor axis that goes 
through the pair of positions can be computed solely in terms of the position vectors. Call it  𝑎0 . The formulas for 
𝑎0 and 𝑒0 are well known: 
   

 
4𝑎0 = ‖𝐫1‖ + ‖𝐫2‖ + ‖𝐫2 − 𝐫1‖      and       𝑒0 =

|(‖𝐫1‖ − ‖𝐫2‖)|
‖𝐫2 − 𝐫1‖

 (29) 
   

Hence, for each hypothesized range pair  (𝜌1 ,𝜌2) , we compute the corresponding position vectors and apply the 
following logic: 
 

If  𝑎0 > 𝑎MAX , then reject the hypothesis pair without solving Lambert's problem, because the geometry is 
guaranteed to produce a larger semimajor axis than specified. 
 
If  𝑒0 > 𝑒MAX , then reject the hypothesis pair without solving Lambert's problem, because the geometry is 
guaranteed to produce a larger eccentricity than specified. 

 
Of course, even for a (𝜌1 ,𝜌2) hypothesis that passes all of the above tests, the actual solution of Lambert's problem 
may still turn out to get rejected once we have computed the elements of the candidate orbit. The reason is that none 
of the conditions on range derived so far involves the minimum allowable eccentricity,  𝑒MIN . This fundamental 
feature of our problem raises the question of how well we can limit the generation of candidate orbits to lie within 
the given eccentricity interval. Let us assume that the hypothetical range pair is not rejected by the above criterion, 
so that  𝑒0 ≤ 𝑒MAX . Assume also that all of the range bounds and other conditions that depend on single 
observations have already been applied. Then we know that the Lambert solution for a pair of range hypotheses will 
not produce an orbit having eccentricity outside the interval [𝑒0 , 𝑒MAX] . If  𝑒MIN ≤ 𝑒0 , we have no difficulty: the 
candidate orbit will have an eccentricity within the given interval  [𝑒MIN , 𝑒MAX] . However, if  𝑒0 < 𝑒MIN , then the 
eccentricity of the candidate orbit may or may not lie within the specified interval. The Lambert solution has to be 
generated and then either kept if the eccentricity is at least as large as 𝑒MIN  or discarded if the candidate eccentricity 
turns out to be less than 𝑒MIN . As noted previously, this represents some inefficiency in the generation of candidate 
orbits, especially if nearly those same candidate orbits were to be generated in the processing for other element-
space partitions. The extent of the overall inefficiency depends on the dataset and the actual element-space partitions 
being used, so we cannot draw general conclusions. It would be helpful at this point to have reasonably sharp 
bounds on the actual eccentricity in the Lambert problem without having to solve the whole problem. However, 
lacking that, we have no better recourse than to generate the candidate orbit. Overall, we do expect to be able to 
reduce the number of Lambert solutions that have to be generated, compared to the number required without the 
above checks involving 𝑎0 and 𝑒0. 
 
Next, consider Euler’s Theorem, a special case of Lambert’s Theorem, which expresses the time of flight ∆𝑡P 
between given position vectors on a parabolic (zero-energy) orbit: 
   

 
∆𝑡P =

4
3
�𝑎03 𝜇⁄ (1 − 𝑠 𝜆3) (30) 

   

Again, the quantity 𝑠 is a signum function: 𝑠 =  +1 for “short-way” trajectories and 𝑠 =  −1 for “long-way” 
trajectories. The parameter 𝜆 is defined in terms of the position vectors: 
   

 
0 ≤ 𝜆2 =

‖𝐫1‖ + ‖𝐫2‖ − ‖𝐫2 − 𝐫1‖
‖𝐫1‖ + ‖𝐫2‖ + ‖𝐫2 − 𝐫1‖

≤ 1 (31) 
   



Because, for given position vectors, the time of flight in Lambert’s problem is a monotonic decreasing function of 
the orbital energy, elliptic (negative-energy) orbits will always have a time of flight longer than the parabolic time, 
and hyperbolic (positive-energy) orbits will always have a time of flight shorter than the parabolic time. In our case, 
we can require that our observation pairs and range hypotheses always produce elliptic orbits: 
   

 𝑡2 − 𝑡1 > ∆𝑡P (32) 
   

Combinations that do not satisfy this condition can be eliminated without generating a Lambert solution. 
 
Finally, the solution of Lambert’s problem for elliptic orbits requires us to specify the number of complete orbital 
revolutions,  𝑁REV , between the initial and final times. We cannot have an arbitrarily large number of revolutions in 
the given time of flight because the period of the orbit of minimum possible period 𝑇0  is fixed by the geometry of 
the problem: 
   

 
𝑇0 = 2𝜋�𝑎03 𝜇⁄  (33) 

   

Accounting for the fact that some fraction of a revolution must remain after 𝑁REV complete revolutions on the 
solution orbit, including possibly zero complete revolutions, the time of flight and number of revolutions must 
satisfy the inequality 
   

 𝑡2 − 𝑡1 ≥ 𝑁REV𝑇 (34) 
   

where 𝑇 is the actual period. Without solving Lambert’s problem, we do not know  𝑇 . However, it is always true 
that the period is at least equal to  𝑇0 . Hence the time of flight must also satisfy the inequality 
   

 
𝑡2 − 𝑡1 ≥ 𝑁REV𝑇0 = 2𝜋𝑁REV�𝑎03 𝜇⁄  (35) 

   

Because of the unknown difference between 𝑇 and  𝑇0 , it is possible that the number of complete revolutions 
allowed by inequality (35) is larger than the true maximum number of revolutions allowed in solutions of Lambert’s 
problem. 
 
Given an observation pair 𝐮1 and  𝐮2 , the previous formulas and the associated logic can be used to decide if a 
hypothetical pair of ranges should be used to generate a Lambert solution. Of course, whatever Lambert solutions 
are generated should be verified for compliance with the specified interval of eccentricity, because none of the 
conditions on range derived so far depends on the value of the minimum allowable eccentricity  𝑒MIN . 
 
5. BOUNDS ON RANGE AND RANGE RATE IMPLIED BY SIMULTANEOUS ANGLES AND ANGLE 

RATES 
 
In case the observations include, or allow us to derive, angle rates, we can deduce additional bounds on the possible 
values of range. Like the bounds derived above from perigee and apogee distances, these extra bounds will apply to 
single observations, where we now understand an observation to consist of the values �𝐑 , �̇� ,𝐮 , �̇�� at a known time. 
Differentiating the vector triangle relation  𝐫 = 𝐑 + 𝜌𝐮 , we get the orbital velocity: 
   

 �̇� = �̇� + �̇�𝐮 + 𝜌�̇� (36) 
   

With the observational data given, the speed of the object is a function of only two variables: 
   

 𝑓(𝜌, �̇�) ≜ (�̇� ∙ �̇�) = �̇� ∙ �̇� + 2�̇��̇� ∙ 𝐮 + 2𝜌�̇� ∙ �̇� + �̇�2 + 𝜌2 �̇� ∙ �̇� (37) 
   

which has no terms containing both range and range rate. It is worth noting that if we happen to have zero apparent 
angular rate at the moment of an observation, that is, if  �̇� = 𝟎 , then 𝑓(𝜌, �̇�) is independent of range at that moment. 
This situation means that apparent angular rate does not restrict the range at that moment, although some restriction 
on range rate must still exist. 
 
We require the velocity magnitude to lie between the minimum possible apogee speed and the maximum possible 
perigee speed: 
   



 𝜇
𝑎MAX

�
1 − 𝑒MAX
1 + 𝑒MAX

�  ≤  ‖�̇�‖2  ≤
𝜇

𝑎MIN
�

1 + 𝑒MAX
1 − 𝑒MAX

� (38) 
   

We are looking for the region in the (𝜌, �̇�) plane implied by these inequalities. We define this region by the set-
intersection of the intervals of range and range rate corresponding to each of the two inequalities. 
 
5.1 Perigee Speed Case 
 
Consider the perigee case first. 
   

 
𝑓(𝜌, �̇�) ≤  

𝜇
𝑎MIN

�
1 + 𝑒MAX
1 − 𝑒MAX

� (39) 

 
�̇� ∙ �̇� + 2�̇��̇� ∙ 𝐮 + 2𝜌�̇� ∙ �̇� + �̇�2 + 𝜌2 �̇� ∙ �̇� −

µ
aMIN

�
1 + eMAX
1 − eMAX

�  ≤ 0   (40) 
   

To define this region explicitly in terms of one of the variables, we can solve this inequality either for range rate in 
terms of range or range in terms of range rate. The two choices lead to exactly equivalent results because the level 
curves of the quadratic function (37) are ellipses. In this paper, we choose to solve for range rate in terms of range. 
   

 
�̇�2 + 2�̇��̇� ∙ 𝐮 + 𝜌2 �̇� ∙ �̇� + 2𝜌�̇� ∙ �̇� + �̇� ∙ �̇� −

µ
aMIN

�
1 + eMAX
1 − eMAX

�  ≤ 0   (41) 
   

The roots are 
   

 
�̇� = − �̇� ∙ 𝐮 ±  ���̇� ∙ 𝐮�2 −  �𝜌2 �̇� ∙ �̇� + 2𝜌�̇� ∙ �̇� + �̇� ∙ �̇� −

µ
aMIN

�
1 + eMAX
1 − eMAX

��   (42) 

   

Provided that we have real roots for  �̇� , the inequality (41) will be satisfied between the roots because the quadratic 
form in range rate is concave-up. Obviously, real roots for range rate exist if and only if the argument of the square 
root is non-negative, but now this condition depends on the range: 
   

 
 ��̇� ∙ 𝐮�2 −  �𝜌2 �̇� ∙ �̇� + 2𝜌�̇� ∙ �̇� + �̇� ∙ �̇� −

µ
aMIN

�
1 + eMAX
1 − eMAX

�� ≥ 0   (43) 

 
𝜌2 �̇� ∙ �̇� + 2𝜌�̇� ∙ �̇� + �𝑓∗ −

µ
aMIN

�
1 + eMAX
1 − eMAX

��  ≤ 0   (44) 
   

where the quantity  𝑓∗ is defined as 
   

 𝑓∗ = �̇� ∙ �̇� − ��̇� ∙ 𝐮�2 (45) 
   

If the equality in (44) has no real roots, then we can eliminate the observation and form no hypotheses with it. The 
reason is that no real value of the range can be found that will lead to real values for range rate. If the equality in 
(44) has real roots, then the inequality, being concave-up, is satisfied for all values of range between the roots, and 
these values of range lead to real values of range rate, according to (42) above. Of course, we also require that the 
range be non-negative, which further restricts the values of range rate allowed by (41). 
 
As an aside, we note that, if  ‖�̇�‖ = 0 , then, independently of the value of range, the inequality (44) reduces to 
   

 
  𝑓∗  ≤

µ
aMIN

�
1 + eMAX
1 − eMAX

� (46) 
   

Therefore, in the special case of zero total angular rate, we may eliminate the observation if (46) is not satisfied, 
because, in that case, no real values for range rate are possible. If the total angular rate is zero, but (46) is satisfied, 
then the inequality (41) reduces to an expression involving range rate but not range: 
   

 
�̇�2 + 2�̇��̇� ∙ 𝐮 + �̇� ∙ �̇� −

µ
aMIN

�
1 + eMAX
1 − eMAX

�  ≤ 0 (47) 
   

The roots in this case are real and reduce to 
   



 
�̇� = − �̇� ∙ 𝐮 ±  ���̇� ∙ 𝐮�2 −  ��̇� ∙ �̇� −

µ
aMIN

�
1 + eMAX
1 − eMAX

�� (48) 

 
�̇� = − �̇� ∙ 𝐮 ±  �

µ
aMIN

�
1 + eMAX
1 − eMAX

� −  𝑓∗ (49) 

   

Because the quadratic form in (47) is concave-up, the inequality is satisfied between these roots. Although we can 
make no angle-rate-dependent restriction on range in this special case, we can still restrict the possible values of 
range rate using (49). 
 
In the more general case, if  ‖�̇�‖ ≠ 0  then the roots of the equality (44) are 
   

 
𝜌 =   

1
(�̇� ∙ �̇�)�− ��̇� ∙ �̇�� ± ���̇� ∙ �̇��2 + (�̇� ∙ �̇�) �

µ
aMIN

�
1 + eMAX
1 − eMAX

� − 𝑓∗�� (50) 

   

Real roots for range exist here if and only if the argument of the square root is non-negative: 
   

 
��̇� ∙ �̇��2 + (�̇� ∙ �̇�) �

µ
aMIN

�
1 + eMAX
1 − eMAX

� − 𝑓∗�  ≥  0 (51) 

 ��̇� ∙ �̇��2

(�̇� ∙ �̇�) + �
µ

aMIN
�

1 + eMAX
1 − eMAX

� − 𝑓∗�  ≥  0 (52) 

 
𝑓∗∗ ≤  

µ
aMIN

�
1 + eMAX
1 − eMAX

� (53) 
   

where the quantity  𝑓∗ is defined as 
   

 
𝑓∗∗ = �̇� ∙ �̇� − ��̇� ∙ 𝐮�2 −

��̇� ∙ �̇��2

(�̇� ∙ �̇�) = 𝑓∗ −
��̇� ∙ �̇��2

(�̇� ∙ �̇�)  (54) 

   

If the appropriate condition (53) or (46) is not satisfied, then we can eliminate the observation from further 
consideration and form no hypotheses with it, because no real values for range, and hence for range rate, are 
possible. 
 
Because we also require that possible values of the range be non-negative, we now examine the conditions under 
which the real roots given by (50) are non-negative. To do this, we apply Descartes’ rule of signs to the equality in 
(44): 
  

If  �̇� ∙ �̇� > 0 and  𝑓∗  > µ
aMIN

�1+eMAX
1−eMAX

� , then we have no sign changes and hence no positive real roots. In 
that case, we can eliminate the observation from further consideration and form no hypotheses with it, 
because no non-negative values of range can be found that will lead to real values for range rate. 
 
If  �̇� ∙ �̇� > 0 and  𝑓∗ < µ

aMIN
�1+eMAX
1−eMAX

� , then we have one sign change and hence one positive real root, 
besides one negative real root. Values of range between 0 and the positive real root will lead to real values 
of range rate. 
 
If �̇� ∙ �̇� < 0 and  𝑓∗ < µ

aMIN
�1+eMAX
1−eMAX

� , then again we have one positive real root, besides one negative real 
root, so values of range between 0 and the positive root will lead to real values for range rate. 
 
If �̇� ∙ �̇� < 0 and  𝑓∗  > µ

aMIN
�1+eMAX
1−eMAX

� , then we have two sign changes and hence two positive real roots. 
Values of range between these two roots will lead to real values for range rate. 
 
In the special case  �̇� ∙ �̇� = 0 , the roots reduce to 
   



 
𝜌 =   ±�

1
(�̇� ∙ �̇�) �

µ
aMIN

�
1 + eMAX
1 − eMAX

� − 𝑓∗� (55) 

   

Hence, real roots are possible in this special case if and only if  𝑓∗ < µ
aMIN

�1+eMAX
1−eMAX

� , which produces one 
positive root, besides one negative root. Values of range between 0 and the positive root will lead to real 
values for range rate. 
 
In the special case  𝑓∗ = µ

aMIN
�1+eMAX
1−eMAX

� , equation (44) reduces to 
   

 𝜌�𝜌 �̇� ∙ �̇� + 2�̇� ∙ �̇��  ≤  0   (56) 
   

The roots reduce to 𝜌 = 0 and  𝜌 = − 2��̇� ∙ �̇�� (�̇� ∙ �̇�)⁄  , and the inequality is satisfied between these roots. 
The roots are non-negative only if  �̇� ∙ �̇� ≤ 0 . Values of range between 0 and the positive root will lead to 
real values for range rate. 

 
5.2 Apogee Speed Case 
 
Now we consider the apogee case. Using (37) and (38), we require that 
   

 𝜇
𝑎MAX

�
1 − 𝑒MAX
1 + 𝑒MAX

�  ≤  �̇� ∙ �̇� + 2�̇��̇� ∙ 𝐮 + 2𝜌�̇� ∙ �̇� + �̇�2 + 𝜌2 �̇� ∙ �̇�  (57) 
   

As in the perigee speed case, to define this region explicitly in terms of one of the variables, we can solve this 
inequality either for range rate in terms of range or range in terms of range rate, and the results are exactly 
equivalent, given either choice. Again we choose to solve for range rate in terms of range. 
   

 
  �̇�2 + 2�̇��̇� ∙ 𝐮 + 𝜌2 �̇� ∙ �̇� + 2𝜌�̇� ∙ �̇� + �̇� ∙ �̇� −

𝜇
𝑎MAX

�
1 − 𝑒MAX
1 + 𝑒MAX

�  ≥ 0 (58) 
   

The roots of the equality are 
   

 
�̇� = − �̇� ∙ 𝐮 ±  ���̇� ∙ 𝐮�2 −  �𝜌2 �̇� ∙ �̇� + 2𝜌�̇� ∙ �̇� + �̇� ∙ �̇� −

𝜇
𝑎MAX

�
1 − 𝑒MAX
1 + 𝑒MAX

��  (59) 

   

Provided that we have real roots for range rate, the inequality (58) is satisfied outside the interval between the roots, 
because the quadratic form is concave-up. However, notice now that if the real roots in (59) are close together, the 
inequality (58) provides less restriction on the choice of range rate. Here we have essentially the complement of the 
situation that we had in the perigee case. Let us examine this different situation in detail. 
 
Real roots for range rate as given by (59) exist if and only if the argument of the square root is non-negative: 
   

 
��̇� ∙ 𝐮�2 −  �𝜌2 �̇� ∙ �̇� + 2𝜌�̇� ∙ �̇� + �̇� ∙ �̇� −

𝜇
𝑎MAX

�
1 − 𝑒MAX
1 + 𝑒MAX

�� ≥ 0 (60) 
   

This expression is the same as inequality (43) above, with 𝜇
𝑎MAX

�1−𝑒MAX
1+𝑒MAX

� in place of  µ
aMIN

�1+eMAX
1−eMAX

�. Following the 
same steps as before, we can write (60) in the same form as (44): 
   

 
𝜌2 �̇� ∙ �̇� + 2𝜌�̇� ∙ �̇� + �𝑓∗ −

𝜇
𝑎MAX

�
1 − 𝑒MAX
1 + 𝑒MAX

��  ≤ 0 (61) 
   

If the equality in (61) has no real roots, then no real values of range can be found that will lead to real roots in (59) 
restricting the choice of range rate. In effect, all real values of range rate satisfy (58). If the equality in (61) has real 
roots, then the inequality, being concave-up, is satisfied for all values of range between the roots, and these values of 
range lead to real values of range rate given by (59) above. Consequently, real values for range rate between the 
roots (59) are excluded from consideration according to the inequality in (58). Of course, we also require that the 
range be non-negative, which further restricts the values of range rate allowed by (58). 



 
As an aside, we note that, if  ‖�̇�‖ = 0 , then, independently of the value of range, the inequality (61) reduces to 
   

 
𝑓∗  ≤

𝜇
𝑎MAX

�
1 − 𝑒MAX
1 + 𝑒MAX

� (62) 
   

Therefore, in the special case of zero total angular rate, all values of range rate are possible if (62) is not satisfied, 
because, in that case, no real values for range rate result from (59). If the total angular rate is zero, but (62) is 
satisfied, then the inequality (58) reduces to an expression involving range rate but not range: 
   

 
�̇�2 + 2�̇��̇� ∙ 𝐮 + �̇� ∙ �̇� −

𝜇
𝑎MAX

�
1 − 𝑒MAX
1 + 𝑒MAX

�  ≥ 0 (63) 
   

The roots in this case are real and reduce to 
   

 
�̇� = − �̇� ∙ 𝐮 ±  ���̇� ∙ 𝐮�2 −  ��̇� ∙ �̇� −

𝜇
𝑎MAX

�
1 − 𝑒MAX
1 + 𝑒MAX

�� (64) 

 
�̇� = − �̇� ∙ 𝐮 ±  �

𝜇
𝑎MAX

�
1 − 𝑒MAX
1 + 𝑒MAX

� −  𝑓∗ (65) 

   

Because the quadratic form in (63) is concave-up, the inequality is satisfied outside these roots. Although we can 
make no angle-rate-dependent restriction on range in this special case, we can still restrict the possible values of 
range rate using (65). 
 
In the more general case, if  ‖�̇�‖ ≠ 0  then the roots of the equality (61) are 
   

 
𝜌 =   

1
(�̇� ∙ �̇�)�− ��̇� ∙ �̇�� ± ���̇� ∙ �̇��2 + (�̇� ∙ �̇�) �

𝜇
𝑎MAX

�
1 − 𝑒MAX
1 + 𝑒MAX

� − 𝑓∗�� (66) 

   

Real roots for range exist here if and only if the argument of the square root is non-negative: 
   

 
��̇� ∙ �̇��2 + (�̇� ∙ �̇�) �

𝜇
𝑎MAX

�
1 − 𝑒MAX
1 + 𝑒MAX

� − 𝑓∗�  ≥  0 (67) 

 ��̇� ∙ �̇��2

(�̇� ∙ �̇�) + �
𝜇

𝑎MAX
�

1 − 𝑒MAX
1 + 𝑒MAX

� − 𝑓∗�  ≥  0 (68) 

 
𝑓∗∗ ≤  

𝜇
𝑎MAX

�
1 − 𝑒MAX
1 + 𝑒MAX

� (69) 
   

If the appropriate condition (69) or (62) is not satisfied, then all values of range and range rate are possible. 
 
Because we also require that possible values of the range be non-negative, we now examine the conditions under 
which the real roots of the equality in (61) are non-negative. To do this, we apply Descartes’ rule of signs to that 
equality: 
 

If  �̇� ∙ �̇� > 0 and  𝑓∗  > 𝜇
𝑎MAX

�1−𝑒MAX
1+𝑒MAX

� , then we have no sign changes and hence no positive real roots. In 
that case, all values of range rate are possible for positive values of range and the apogee speed condition 
provides no new information, because no non-negative values of range can be found that will lead to real 
values for range rate. 
 
If  �̇� ∙ �̇� > 0 and  𝑓∗ < 𝜇

𝑎MAX
�1−𝑒MAX
1+𝑒MAX

� , then we have one sign change and hence one positive real root, 
besides one negative real root. Values of range between 0 and the positive real root will lead to real values 
of range rate. All values of range rate are possible for values of range greater than the positive root in (66). 
 



If �̇� ∙ �̇� < 0 and  𝑓∗ < 𝜇
𝑎MAX

�1−𝑒MAX
1+𝑒MAX

� , then again we have one positive real root, besides one negative real 
root, so values of range between 0 and the positive root will lead to real values for range rate. All values of 
range rate are possible for values of range greater than the positive root in (66). 
 
If �̇� ∙ �̇� < 0 and  𝑓∗  > 𝜇

𝑎MAX
�1−𝑒MAX
1+𝑒MAX

� , then we have two sign changes and hence two positive real roots. 
Values of range between these two roots will lead to real values for range rate. All values of range rate are 
possible for values of range between 0 and the smaller positive root in (66) and greater than the larger 
positive root. 
 
In the special case  �̇� ∙ �̇� = 0 , the roots reduce to a form analogous to (55): 
   

 
𝜌 =   ±�

1
(�̇� ∙ �̇�) �

𝜇
𝑎MAX

�
1 − 𝑒MAX
1 + 𝑒MAX

� − 𝑓∗� (70) 

   

Hence, real roots are possible in this special case if and only if  𝑓∗ < 𝜇
𝑎MAX

�1−𝑒MAX
1+𝑒MAX

� , which produces one 
positive root, besides one negative root. Values of range between 0 and the positive root will lead to real 
values for range rate. All values of range rate are possible for values of range greater than the positive root. 
 
In the special case  𝑓∗ = 𝜇

𝑎MAX
�1−𝑒MAX
1+𝑒MAX

� , equation (61) reduces to the same form as (56): 
   

 𝜌�𝜌 �̇� ∙ �̇� + 2�̇� ∙ �̇��  ≥  0 (71) 
   

The roots reduce to 𝜌 = 0 and  𝜌 = − 2��̇� ∙ �̇�� (�̇� ∙ �̇�)⁄  , and the inequality is satisfied between these roots. 
The roots are non-negative only if  �̇� ∙ �̇� ≤ 0 , in which case values of range between 0 and the positive 
root will lead to real values for range rate. All values of range rate are possible for values of range greater 
than the positive root. If  �̇� ∙ �̇� > 0 , all values of range rate are possible for positive values of range and the 
apogee speed condition provides no new information. 

 
6. EFFECTS OF ANGLE RATE ERRORS 

 
The importance of using angle rate information, if it is available, was discussed in an earlier section. It remains to be 
seen, however, how accurate these angle rates need to be to produce reasonable data association hypotheses. 
Actually, there are two questions which need to be addressed: (i) How accurate do angle rates need to be to represent 
the orbital state directly? (ii) How accurate do angle rates need to be to reasonably refine our bounds on range for 
use in a Lambert-based approach? Note that, since our primary purpose is data association, question (i) is not as 
stressing as it may seem. The reason is that an accurate angles-only IOD can, at least in principle, be obtained once 
two or more observations has been associated, assuming that the angles themselves are accurate. 
 
Given a line-of-sight observation with right ascension 𝛼 and declination  𝛿 , the observed unit vector in the 
geocentric inertial frame is 
   

 
𝐮 = �

cos 𝛿 cos𝛼
cos𝛿 sin𝛼

sin 𝛿
� (72) 

   

Differentiating with respect to time, we get 
   

 
�̇� = �̇� �

− sin 𝛿 cos𝛼
− sin 𝛿 sin𝛼

cos 𝛿
� + �̇� �

− cos 𝛿 sin𝛼
cos 𝛿 cos𝛼

0
� (73) 

   

in which the angle rates �̇� and �̇� appear linearly. Recall from (36) that  �̇�  appears linearly in the expression for  �̇� . 
(Angle rate errors have no effect on  𝐫 .) Therefore, errors in the angle rates �̇� and �̇� are transformed linearly into 
orbit velocity errors. This means that, for example, if the angle rate errors are Gaussian, they will produce Gaussian 



errors in orbit velocity. To answer question (i), it is thus relatively straightforward to select maximum permissible 
angle rate errors for a given problem based on maximum permissible errors in orbit velocity. 
 
To investigate the effect of angle rate errors on the range, range rate bounds defined in the previous section, we first 
examine the roots of inequalities (41) and (58), given by equations (42) and (59), respectively, both of which have 
exactly the same form. Since  �̇�  appears only inside the radical in these equations, we can conclude that, for a given 
value of range, angle rate errors will either stretch or compress the interval of range rate values defined by the 
inequality but will not change the mean of this interval since it is symmetric about the unaffected value �− �̇� ∙ 𝐮� in 
both cases. Angle rate errors will also affect the intervals of range values, given by (44) and (61), yielding real range 
rate roots. The roots of these range inequalities are given by equations (50) and (66): this time  �̇�  affects both the 
center and width of these intervals. 
 
Thus, the effect of angle rate errors on our range, range rate bounds is to distort them by stretching or compressing 
about �− �̇� ∙ 𝐮� in the range rate direction and by stretching, compressing, and translating them in the range 
direction. For a given magnitude of expected angle rate errors, this distortion can be accounted for by padding the 
range, range rate bounds by an amount sufficient to guarantee that the resulting hypothesis region still contains the 
true admissible region. The amount of padding required depends on specific observation geometry and could be 
computed either on a case by case basis or conservatively in a worst case sense using an appropriate stressing 
geometry. It is worth noting that, since our method already produces conservative bounds, we are already somewhat 
protected from small angle rate errors. However, although none of our simulations so far have produced results in 
which the admissible region lies very close to the explicit bounds, we have no guarantee of this, so it will still be 
important to account for even small angle rate errors when using this method. 
 

7. NUMERICAL EXAMPLE 
 
The results of the previous sections are illustrated for a pair of simulated observations of a space object undergoing 
unperturbed Keplerian motion. This example treats the case of simultaneous observation of angles and angle rates 
since the use of both of these data types offers an opportunity for reduction in complexity of the problem compared 
to using angle data alone. The orbit plane bounds are not applied in this example. Table 1 lists the relevant position, 
velocity and orbit quantities of the system, and Table 2 lists the element partitions used.  
 

For perfect angles and angle rates, the range, range rate 
hypothesis region based on the maximum perigee and 
minimum apogee speed conditions is shown for each 
observation in Fig. 3 and 4, along with the angles-only 
range bounds, admissible region (determined by solving 
the orbit problem for each range, range rate hypothesis 
pair and checking the resulting 𝑎 and 𝑒 values), and 
actual values of  𝜌  and  �̇� . As discussed in the previous 
section, when angle rate errors are applied, the 
hypothesis region is distorted by some amount, but the 
angles-only range bounds are unaffected. In particular, if 
angle rate errors are expected to be large enough to make 
for a questionable orbit solution, they can still be used to 
refine the range, range hypothesis region for use in a 
Lambert-based method (in which case only the perigee 
speed condition needs to be evaluated, since the apogee 
speed condition is valid for at least some values of range 
rate for all possible values of range). This situation is 
shown in Fig. 5, with the range, range hypothesis region 
plotted alongside the angle-rate-implied range bounds 
(with and without errors), range, range admissible region 
(determined by solving the Lambert problem for each 
range hypothesis pair), and actual values of  𝜌1  and  𝜌2 . 
The thin red lines show the amount of padding required 

Table 2. Orbital and Observational Data 

Quantity Value 
𝐑1 [4092, 2690, 4076] km 
𝐑2 [3971, 2866, 4076] km 
�̇�1 [-0.196, 0.298, 0] km/sec 
�̇�2 [-0.209, 0.290, 0] km/sec 
𝐫1 [8102, 2576, 5271] km 
𝐫2 [5977, 5560, 6548] km 
�̇�1 [-2.683, 5.383, 2.786] km/sec 
�̇�2 [-4.282, 4.470, 1.452] km/sec 

(ρ1,𝜌2) (4185, 4170) km 
(ρ̇1, �̇�2) (-1.724, 1.600) km/sec 
𝑡2 − 𝑡1 600 sec 

a 11149 km 
e 0.145 

 

Table 1. Element Partition 

Element Partition (min, max) 
a (11049, 11249) km 
e (0.12, 0.1555) 

 



for the angle-rate-implied range bounds to account for expected ±1 or ±3 arcsecond/sec errors in both �̇� and �̇� . 
Padding the bounds by these amounts guarantees that the net hypothesis region will contain the admissible region, 
but the number of Lambert solutions required will still be greatly reduced.  
 
Once admissible candidate orbits have been generated, by evaluating range, range rate hypothesis pairs (or range 
hypothesis pairs, in the Lambert-based case), the next step is to address the data association problem. This is by no 
means a trivial matter, as it involves comparing two six-dimensional random vectors and evaluating some kind of 
“distance” metric between them. A detailed treatment of this subject is beyond the present work, but we will show 
ad hoc results to illustrate how an appropriate method could be effective. 
 
The classical orbital elements for each candidate orbit lying inside the range, range rate admissible regions for 
observations 1 and 2 are shown in Fig. 6–8. Examining the candidate 𝑎 and 𝑒 pairs first, in Fig. 6, note that the 
spacing of the values is not uniform. This is a consequence of our using a rectangular grid to sample the range, range 
rate space, which does not correspond to a rectangular grid in orbital element space. This may represent an 
inefficiency to the method which could be addressed by adopting an alternate sampling method, such as one of those 
suggested by Tommei et al. [13] or Siminski et al. [21,22]. Examining the remaining elements  𝑖 ,  Ω ,  𝜔 , and  𝑀0 , 
in Fig. 7 and 8, it is clear that the candidate orbital elements overlap in a unique region. The intersection is 
particularly clear for the elements  𝑖 and  Ω , in Fig. 7. The “association hypothesis region” is then defined by taking 
a small region around the intersection of the two six-dimensional admissible candidate orbit regions. In this 
example, the region is found by comparing the candidate orbits pairwise and retaining those whose six orbital 
elements all lie within some small tolerance of one another. If no association hypotheses result from this comparison 
then the two observations are not associated with the same space object. 
 

 
Fig. 5. Observation 1 with perfect data. 

 

 
Fig. 4. Observation 2 with perfect data. 

 

 
Fig. 3. Range, range hypothesis region with angle rate errors. 

 



As mentioned in the previous section, even if angle rate errors are large enough that they cannot be relied upon to 
produce an accurate IOD, they may still be useful for solving the data association problem. For example, angle rates 
could be used to generate admissible candidate orbits, as just described, which could then be compared for a pair of 
observations. If the six-dimensional admissible candidate orbit regions intersect, or, more generally, if they lie 
sufficiently “close” to one another (a concept which is left deliberately vague in the present paper), then the 
observations are possibly associated and a set of accurate candidate IODs can be obtained using a Lambert-based 
approach. A very efficient catalog-building algorithm could be designed in such a way, employing increasingly 
complex orbit determination methods as the number of hypotheses are reduced by filter steps along the way.  
 

8. SUMMARY AND CONCLUSION 
 
Our results show that the possible values of range and range rate can be limited a priori for each line-of-sight 
observation to finite intervals corresponding to a specified partition of the element space. The endpoints of the 
intervals are given explicitly in terms of the angle-based observations, station position and station velocity, and can 
be computed independently for each observation. In the angles-only case, additional conditions based on special 
solutions of Lambert’s problem, which must be satisfied by range values for pairs of observations, can be used to 
further reduce the number of Lambert solutions needed for the initial orbit determinations (IODs). We also 
investigate the problem of angle rate errors and their effect on both the IOD and the range, range rate bounds, and 
we provide methods for dealing with this issue in both of these cases. All of the formulas derived here apply 
uniformly to Earth-bound and space-based observing stations. We also describe explicit conditions identifying when 
a given observation does not correspond to any possible orbit within the specified element-space partition. Such 
observations can be discarded before any data association hypotheses or orbit solutions are produced. 
 

 
Fig. 8. Candidate 𝒂 and 𝒆 pairs for each observation. 

 

 
Fig. 7. Candidate 𝒊 and 𝛀 pairs. 

 

 
Fig. 6. Candidate 𝝎 and 𝑴𝟎 pairs. 

 



Using this approach, the computational complexity of the track initiation job for 𝑁 line-of-sight observations 
decreases from 𝑁3 (or more) for traditional range-solution methods to  𝑁2𝑀2 , where 𝑀 is the number of range 
hypotheses assigned to each observation. If accurate angle rates are available, the computational further decreases to  
𝑁𝑀𝐿 , where 𝐿 is the number of range rate hypotheses assigned to each observation. Introducing element partitions 
also makes the problem embarrassingly parallelizable, so that we can keep the number of range and range rate 
hypotheses for each partition manageable in principle simply by making the partitions smaller and using more 
processors. 
 
The range and range rate bounds described in this paper allow a convenient parallelization of the task of computing 
initial orbits in large space surveillance tracking scenarios, which is the phase of the tracking job that involves most 
of the computational complexity. Because the bounds are conservative to some extent and not exact, some values of 
range and range rate that lie within the bounds given here will lead to candidate orbits that lie outside the specified 
partition of the element space. This fact leads to some inefficiency in the parallelization of the initial orbit 
hypotheses over the whole element space. Essentially, nearly duplicated candidate orbits may be generated near the 
boundaries of the specified partitions and would therefore have to be identified and merged later in the tracking 
process. Although the detection and merging of duplicate tracks must always be done in any multiple-hypothesis 
tracking implementation, the inefficiency of our range and range rate bounds necessarily increases the size of that 
task. The actual cost of this inefficiency in particular problems will depend on the observation sets, the element 
partitions of interest and the range, range rate sampling strategy, and may need to be studied if the scenario is 
computationally stressing. On the other hand, all the orbits within an element-space partition correspond to values of 
range and range rate that do lie within the bounds given here, so that no candidate orbits will be missed merely 
through this choice of bounds. 
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