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ABSTRACT 

 

To reduce the influence of atmospheric turbulence on images of space-based objects we are developing a maximum 

a posteriori deconvolution approach. In contrast to techniques found in the literature, we are focusing on the 

statistics of the point-spread function (PSF) instead of the object. We incorporated statistical information about the 

PSF into multi-frame blind deconvolution. Theoretical constraints on the average PSF shape come from the work of 

D. L. Fried while for the univariate speckle statistics we rely on the gamma distribution adopted from radar/laser 

speckle studies of J. W. Goodman. Our aim is to develop deconvolution strategy which is reference-less, i.e., no 

calibration PSF is required, extendable to longer exposures, and applicable to imaging with adaptive optics. The 

theory and resulting deconvolution framework were validated using simulations and real data from the 3.5m 

telescope at the Starfire Optical Range (SOR) in New Mexico. 

 

1. INTRODUCTION 

 

Solutions to recovery of high-resolution images when observing through atmospheric turbulence usually fall into the 

software (“post-processing”) or the hardware (adaptive optics, interferometry) category or the combination of both. 

Even with very expensive adaptive optics (AO) systems it is necessary to use deconvolution (image reconstruction) 

to remove image blurring completely [1,2]. 

Successful restoration of images degraded by atmospheric turbulence was first achieved using the so-called speckle 

imaging techniques [3]. Speckle imaging works because average short-exposure power spectrum has non-negligible 

spectral content up to the telescope’s diffraction limit D/λ [4]. On the other hand, for long exposures average optical 

transfer function (OTF) quickly drops to values below the noise limit above the cut-off r0/λ. No information can be 

recovered from the part of the spectrum where signal-to-noise ratio (SNR) falls below unity. It is this SNR cutoff 

that actually determines available resolution, with or without deconvolution, and the SNR cutoff is nearly always 

short of the diffraction cutoff [5]. Therefore, deconvolution of long-exposure images taken without AO cannot result 

in reliable amplification of the high-frequency content. 

Multi-frame blind deconvolution (MFBD) [6-8] is an image reconstruction method relying on the availability of 

several images of an object. In addition, many of the MFBD algorithms rely on short exposures for the reason stated 

above. The multiplicity of image frames acts as an implied constraint because the object is common to every image, 



while noise and turbulence fluctuations vary randomly between frames [5]. Even with this advantage, MFBD can 

get easily trapped in local minima [9].  

Regularization is the most popular approach to balancing resolution enhancement and amplification of noise. Early 

termination of the iterative process or an additional spectral filter can be thought of as simple regularization methods 

[5]. In our work we rely on the Bayesian formulation of the problem of finding a true object o and a (stochastic) PSF 

h which together with noise generated the recorded data i: 
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The theorem states that the conditional probability of the object being equal to o and the PSF being equal to h given 

that we recorded data i is equal to the product of: conditional probability of the data taking on the value(s) i given o 

and h, probability of the object being equal to o, and the probability of the PSF being equal to h, divided by the 

probability of obtaining the data i which is always taken to be unity. In the maximum a posteriori (MAP) framework 

one finds estimates for the object, ô , and the PSF(s), ĥ , which jointly maximize  iho,p : 
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It is often useful to rewrite the above equation in terms of the negative log-likelihoods. Then, ô  can be defined as 

the object that minimizes a compound criterion Jo,h(i): 
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where the negative log-likelihoods are defined according to the rule    zyxz ,ln
,

pJ
yx

 . Since a probability 

density function p(o) for the object is in general not known, solutions in the form of functions with desirable 

mathematical properties (e.g. noise suppression, edge enhancement) are often used. As these ad hoc formulas are not 

real probability density functions (PDFs), regularization parameters must be used to balance their influence on the 

cost function in Equation (2). Often these parameters have to be chosen manually [1,8]. Apart from the problem of 

choosing the right value for them, the mere form of the prior (e.g. an object’s power spectral density) could be 

applicable only to a limited class of real objects, although the object’s power spectral density could be estimated 

from the images themselves [10]. 

For these reasons we focus on PSF statistics p(h). This part of Equation (2) was almost always removed from the 

MAP approach [7,10]. Formulas for wavefront statistics and, by extension, for short-exposure PSF statistics have 

been used in the field of wavefront reconstruction and deconvolution from wavefront sensing [11] but not in the 

field of image restoration. The few papers which deal with the PSF prior do so for the case of very long exposures 

[1,12]. Here we present ideas on how to incorporate the body of knowledge about turbulence-induced statistics of 

intensity into the MAP framework. 

 

2. CONSTRAINTS ON THE TURBULENT PSF 

 

There exists a great deal of theoretical information about the turbulent PSF that has not yet been used in multi-frame 

blind deconvolution. For example, average ensemble PSF is completely specified by known optical parameters, such 

as observing wavelength and the aperture of the sensor, and one unknown parameter describing the integrated effect 

of the atmospheric turbulence between the source and the observer. The often-used parameterization of this 

integrated effect is through the Fried’s coherence length r0 [13]. If r0 at the time of the observations could be 

measured then it could be used to generate an average PSF for subsequent deconvolution. As mentioned in the 

introduction, deconvolution of the average long-exposure image, even with the perfectly known PSF, cannot result 



in a diffraction-limited image when SNR is below unity for high spatial frequencies. Unfortunately, this is very often 

the case for faint space objects. 

On the other hand, short exposures allow the recovery of the diffraction-limited image. Additionally, a sequence of 

short exposures of an arbitrary object can be processed to yield r0. In order to remove the object being viewed from 

the image formation equation an object-cancelling transformation is used [14]. Recently, we proposed an original 

transformation, which we call “Fourier contrast” method [15]. Here we give a brief description how it works. 

Image formation equation, expressed in the Fourier domain, is: 
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where u


 is a spatial frequency vector in the Fourier plane and )(u


I , )(u


O  and )(u


H  stand for Fourier transforms 

of the (instantaneous) image, object, and speckle PSF, respectively. For each frequency we calculate the mean 

values and standard deviations of the power spectra: 
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where .  denotes average and var (.) denotes variance. We use the term “contrast”, and denote it with letter C as is 

customary in research pertaining to speckle [4]. As can be appreciated from Equation (5) in the absence of noise the 

object disappears in )(uI


C . With noise present in the data the object does not cancel out after the transformation 

but its influence is very small on the low-frequency part of )(uI


C  which is the part where r0 estimation must be 

performed. Models for 
2

)(u


H and )( 2
)(var u


H have been developed using the theory of partially-developed 

speckle [15]. Since the models depend only on D, λ and r0 it is possible to estimate Fried’s parameter by fitting 

theoretical templates to measured )(uI


C . 

Once r0 is given the long-, and short-exposure (tip-tilt corrected) PSFs can be generated using the theory of Fried 

[13]. In this theory, the optical transfer function OTF, i.e., the Fourier transform of the PSF, for the two cases of 

long exposures and registered short exposures is given by: 
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where  uLE


H  represents the average long-exposure OTF of the atmosphere,  uSE


H  is the average short-exposure 

OTF of the atmosphere,  uL


H  and  uS


H  are the overall long- and short-exposure average OTFs (including the 

effect of the telescope diffraction). For a diffraction-limited circular aperture of diameter D we have: 
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where uu


 ,  is the average wavelength, and z is the distance from the exit pupil to the image plane. 



Fried developed expressions for  uLE


H  and  uSE


H : 
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where α is a parameter that varies between 1/2 when there are both  intensity and phase variations across the 

collecting aperture and 1 when only phase distortions are present. By Fourier-transforming Equations (6) or (7) one 

obtains the average PSF  yx,h . 

To solve Equation (2) we need to know the probability density function of turbulent PSF p(h). In this paper we 

present the equations for the statistics of intensity, what we call the “focal-plane” constraint, but we will also 

mention at this stage that it is possible to constrain the statistics of the PSF in pupil plane and in the Fourier plane 

[16]. 

With infinitesimally small detectors (pixels), exposure times and filter bandwidths one can model p(h) as the 

exponential distribution [4]: 
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where K is the number of speckle frames and X and Y are the numbers of pixels in x and y directions. Speckle 

patterns in general will be integrated: spatially, temporally, and spectrally. To model these effects, use is made of the 

gamma PDF [4]: 
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where M is the general integration parameter, a product of the spatial, spectral and temporal integration parameters 

[17]. 

In closing this section we also give an equation for the data-fidelity term in Equation (2). Under the assumption of 

spatially-stationary Gaussian noise with standard deviation  we have: 
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We assume  op is a uniform distribution and solve the MAP problem using Equations (12) and (13). 

 

 

 



3. DISTRIBUTION TESTING 

 

Because real data contains both Poisson and readout components on top of speckle variability, the assumption of the 

gamma model for the integrated speckle was tested against a noise-free simulation. The simulation employs only 

one phase screen and assumes isoplanatic conditions (only global image motion). Scintillation effects are ignored. 

Independent phase screens are generated using the classic FFT-based method [18], whereby an array of random 

numbers is filtered according to the von-Karman spectrum and then inverse Fourier-transformed. The outer scale 

was set to 25 m. We deliberately did not use subharmonics correction and we removed global tip/tilts from the 

wavefronts in order to have the same – in the statistical sense – speckles falling on a given pixel. Size of the 

telescope aperture was set to 50 cm and 256×256 pixel arrays were used for phase screens giving pupil sampling of 

2 mm per pixel. Fried’s parameter was set to 2 cm at 500 nm which is also the reference wavelength of the 

simulations. The phase screens were converted to phasors, multiplied by a circular aperture and embedded in an 

array of zeros of size 512×512 pixels. The field was then Fourier-transformed. Square of the modulus of the result 

gives the PSF. Pixel scale of the images is 49 rad (Nyquist sampling at the shortest wavelength). The simulation is 

polychromatic: images corresponding to ten wavelengths between 500 and 700 nm are generated assuming linear 

wavefront scaling. The resulting ten PSFs are co-added and the result constitutes one polychromatic noise-free PSF. 

Additionally, five such PSFs were added to simulate temporal averaging. This binning size was chosen by trial-and-

error with the goal to obtain similar values of integration parameter M across the field-of-view as in the SOR data. In 

the end, a sequence of 200 integrated images was generated out of 1000 instantaneous polychromatic frames.  

The Kolmogorov-Smirnov [19,20] and Anderson-Darling [21] statistical tests were used to obtain quantitative 

confidence levels for the null hypothesis that a speckle sample from a given pixel comes from the gamma 

distribution. In both tests the test statistic D is a measure of distance between the empirical distribution function 

(EDF) - which is the proportion of the observed values that are less than or equal to a particular value - and the 

hypothesized cumulative density function (CDF). In the Kolmogorov-Smirnov test D is the maximum of the 

absolute difference between EDF and CDF, while in the Anderson-Darling test D corresponds to the weighted 

squared difference between EDF and CDF. If the null hypothesis - that CDF is the underlying distribution - is 

correct, EDF should be close to CDF and D should be close to zero. The result of the test, the p-value, gives the 

probability that a value of D at least as large as the one observed would have occurred if the null hypothesis were 

true. The greater the p-value the more confidence one can have in the null hypothesis. Usually, values higher than 

0.05 are taken as strong evidence that a sample came from the hypothesized distribution (p-value is bounded 

between 0 and 1). 

When all the parameters of a hypothesized CDF are specified a priori, there exist approximate formulas for the 

computation of the p-value. Unfortunately this was not the case here: both  yx,h  and M in Equation (12) have to 

be estimated from the sample. Because of that the bootstrap simulation had to be used in order to obtain the p-values 

[22]. The parameters of the gamma distribution were estimated using the method of moments. In this approach, 

sample moments are equated to the unobservable population moments. Then the equations relating the distribution 

parameters to the population moments are solved. Specifically, computation of M follows as: 
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Computation of  yx,h  is trivial. With both these parameters gamma CDF can be computed and the 

Kolmogorov-Smirnov and Anderson-Darling tests can be applied to the sample. 

The bootstrap simulation is a Monte-Carlo approach to estimating the confidence intervals for the null hypothesis. 

The random variables with the hypothesized distribution are generated, and the parameters of the distribution are 

estimated from the simulated samples using the same method as for the observed sample. Again, the test statistic D 

is calculated. The result of the bootstrap method is the number of times the test statistic D calculated from the 

generated sample is greater than or equal to D calculated from the observed sample. This number divided by the 

total number of simulations gives the p-value. Gamma-distributed random variables were generated using the 

method of Marsaglia and Tsang [23]. Ten thousand samples of the same size as a given data set were generated. The 



p-values were averaged for all pixels having the same distance from the center of the PSF. This is because the 

spectral component of parameter M increases with distance from the center (the spatial and temporal components are 

constant). One can explain it in the following way: M can be thought of as a number of speckles contributing to one 

pixel. Imagining a discrete set of increasing wavelengths, producing radially expanding PSFs, we see that stepping 

over wavelengths results in new speckles traversing a pixel under observation if it is away from the PSF center. The 

further a pixel is from the center the more speckles will traverse it (compare the sharp speckles close in to the 

smooth streaks further out from the center in the left panel of Figure 2). 

The results of statistical testing are shown in Figure 1 for the distances of 0-30 pixels from the center. In almost all 

cases we obtained values higher than 0.3. This indicates that the gamma PDF provides a good model for the 

integrated speckle (spatially, temporally and spectrally). 

 

 
 

Fig. 1. Confidence levels, quantified by the K-S or A-D p-value, that the integrated speckle intensity is governed by the gamma PDF. 

 

 

4. RESULTS 

 

The model PDFs from Equations (12) and (13) were converted to negative log-likelihoods and, together with 

analytic gradients, inserted into a Variable Metric with Limited Memory (VMLM) optimizer [24]. I-band (800-900 

nm) observations of the bright single star HR2219 (Figure 2, top left panel) have been obtained with the 3.5 m 

telescope at the Starfire Optical Range with adaptive optics switched off (but with the tip/tilt system switched on). 

Thousand frames were recorded, with exposure time set to 10 ms. We obtained D/r0 = 34 from the Fourier contrast 

method. 

To execute our MFBD on real data we needed to know the integration parameter M to be plugged into Equation 

(12). The estimation of M for spatial-only integration is straightforward when one knows the auto-correlation 

function of speckle and pixel shape [4,17]. Also, we conjecture that estimation of spectral M could be done easily 

under the assumption of rectangular filter and the similarity of spatial and spectral auto-correlation functions (the 

latter will be the scaled version of the former with the scaling parameter depending on the distance from the image 

center; see the text preceding Figure 1). Both these components of the total M would have to be computed only once 

for a given telescope-camera-filter combination. The problematic part is the estimation of temporal M. Use will have 

to be made of the analytical temporal auto-correlation function which has a dependency on the vertical profile of 

wind velocity [25]. 

Before we attempt a fully reference-less, analytical computation of spatial-spectral-temporal M, we estimate it from 

the combination of real data statistics and corresponding noise-less simulation. Figure 2 shows M (in the right 

panels) of either real speckle images (top left panel) or the simulated ones (bottom left panel). Simulated data 



corresponding to SOR parameters (wavelength, filter bandwidth, pixel size, telescope diameter, etc.) was generated 

using the approach described in Section 3, but with subharmonics correction of the phase-screens. Computation of 

M at each location in the PSF was done by the means of Equation (14). Note how the M image for real speckles is 

only valid where the SNR is high, i.e., where the speckle fluctuations are higher than noise. We used the M image of 

simulated speckles to scale M of SOR data by a constant value to correct for the difference in the integration time 

between the simulated (instantaneous exposure) and the real (10 ms) images. In such way we have been able to use 

the gamma prior for the whole field-of-view which was not possible in the case of the real M image only (Figure 2, 

top right panel) because of noise. 

 

 
 

Fig 2. Top left: a real speckle image taking with the 3.5 m SOR telescope, exposure time equal 10 ms, spectral bandwidth from 800 to 900 nm, 
pixel size 80.5 nrad. Top right: the associated M image. Bottom left: a simulated speckle image for the same telescope, instantaneous exposure 

time, bandwidth from 800 to 900 nm, pixel size equal 80.5 nrad. Bottom right: the corresponding M image.  

 

Speckle images from the single star HR2219 were used as PSFs. They were convolved with a schematic 

representation of the Hubble Space Telescope (HST, Figure 3) which acted as the true object. The resulting images 

were corrupted with Gaussian noise of standard deviations equal to 1 or 5 counts.  
 

 
 

Fig 3. True object used for the simulations. 

 

Multi frame blind deconvolution with gamma PSF prior was used to deconvolve the simulated data. Results are 

shown in Figure 4. Reconstructions show significantly enhanced contrast with respect to either a single frame or to 

the shift-and-add image. Figure 5 shows evolution with the number of iterations of the peak signal-to-noise ratio 

(PSNR) defined as: 
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where L is the dynamic range of the image. PSNR is calculated using the mean squared error (MSE) which 

compares a particular reconstruction A with the reference true image B: 
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From Figure 5 it is clear that use of the gamma distribution prior on the PSF prevents noise amplification in the 

reconstruction. 

Finally, in Figure 6 we compare the estimated PSFs with the real ones used for the simulations. Our estimates follow 

the general morphology and shape of the real PSFs in terms of size, elongation and maximum-peak positions but 

lack the same high-frequency content. 

 

 
 

Fig 4. Top row: case of readout noise with σ = 1. Bottom row: case of readout noise with σ = 5. Left column: single frames. Middle column: 

shift-and-add images. Right column: final reconstructions. Linear scale from 0 to 250 is the same in all panels. 

 

 

 
 

Fig 5. PSNR values vs. number of iterations for two noise levels. 



 
 

 
 

Fig 6. Top row: real speckle images used as PSFs. Bottom row: Estimated PSFs from MFBD. 

 
 

5. OUTLOOK 

 

Currently, we are estimating the integration parameter M using the PSFs and simulations. To satisfy the “no 

reference” goal of the project we will have to estimate M analytically with the assumed spatial, spectral and 

temporal auto-correlations. The validity of these assumptions will have to be tested against real data. Temporal and 

spectral integration effects are particularly interesting. Modeling of them has been attempted in the context of 

speckle interferometry but the resulting formulas are rather complex and have dependencies on several parameters 

which cannot be easily obtained from the data, like phase variance [26]. We hope to provide an alternative, simple 

description of the effect of integration on various speckle statistics. Subsequently, we will test PSF priors expressed 

in the pupil plane and in the Fourier plane [16]. 
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