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ABSTRACT

Traditional blind deconvolution techniques rely on a statistical model that relates the measured data to the pristine scene
whose reconstruction is sought. If the data is not consistent with this forward model, then the reconstruction is badly
degraded. We develop a way of making blind deconvolution robust to modeling errors by assigning a weight to each
pixel of measured data and iteratively updating the weights. We show that this approach is effective in several realistic
model-mismatch scenarios.

Keywords: B lind deconvolution, image reconstruction, robust estimation

1. INTRODUCTION

Astronomical imaging with large telescopes is difficult because atmospheric turbulence introduces a strong, rapidly-
changing blur. This can be addressed in hardware (via adaptive optics, which tends to be complex and expensive) or in
image processing software. In this paper, we focus on image processing techniques for mitigating atmospheric turbulence,
in particular multiframe blind deconvolution (MFBD) [1,2]. MFBD algorithms are generally formulated by regarding im-
age reconstruction as a parameter estimation problem, where the parameters to be estimated are the pixels of the restored
image. Additional “nuisance” parameters are needed to represent the state of the atmosphere at the time that each frame
was measured. A maximum likelihood estimator is then constructed relating the image and time-sequence of atmospheric
states to the measured data. The estimate (i.e., the reconstructed image) is computed using general-purpose numerical
optimization techniques.

MFBD algorithms of this type can perform well provided that the estimator’s model of the relationship between pa-
rameters and data is accurate. If the forward model is not consistent with the collected data, then the resulting image will
be corrupted by artifacts and may be unrecognizable.

Before reviewing instances of this, let us establish notation and formulate a simple MFBD estimator. Leto be the
two-dimensional image to be recovered. Assume that over a short time interval, the sceneo remains constant while the
atmospheric blur changes. Letdi , i = 1, . . . , N be N camera frames collected during this interval. Then the relationship
betweeno anddi is

di = o ∗ hi + ni , (1)

wherehi is the atmospheric point-spread function corresponding toeach camera frame, ‘∗’ represents convolution, andni

captures all noise sources associated with the image measurement process. We will assume thatni is a normally-distributed
random variable with mean 0 and varianceo∗hi +σ 2. This is intended to approximate a combination of shot noise(having
varianceo ∗ hi ) and read noise (with varianceσ 2).

Given the forward model in Eq. 1, we may formulate a maximum likelihood estimator

{ô, ĥi } = arg max
o,hi

∑

i, j

(o ∗ hi − di )
2
j

(o ∗ hi ) j + σ 2
, (2)

wherei indexes measured image frames andj indexes pixels. For the examples shown in this paper, the optimization is
performed using a L-BFGS-B [3], a quasi-Newton algorithm suitable for large-scale problems.



2. MODEL MISMATCH

This will fall apart if the data is in some way inconsistent with the model in Eqn. 1. Inspired by the iterated least-squares
technique for robust linear regression [4], we now describea simple robust MFBD. Define a weightwi j on every pixel of
every measured data frame. Initially, all the weights will be 1. Here is the procedure.

1. Evaluate a weighted ML estimate

{ô, ĥi } = arg max
o,hi

∑

i, j

wi j
(o ∗ hi − d)2

j

(o ∗ hi ) j + σ 2
. (3)

2. Calculate a vector of normalized residuals

ri j =
(ô ∗ ĥi − di ) j

√

(ô ∗ ĥi ) j + σ 2
. (4)

3. Calculate the median-absolute-deviation estimate of standard deviation:

σMAD = 1.48 median(|ri j − median(ri j )|). (5)

4. Update the weights:

wi j =











(

1 −
(

ri j
5σMAD

)2
)2

if |ri j | < 5σMAD

0 else.
(6)

5. Return to step 1 and repeat with the updated weights.

One could devise a termination condition based on the difference of the weights from one iteration to the next, but in
practice, this procedure is usually observed to converge after three or four iterations.

Let us now apply this to several species of modeling error.

2.1 A changing scene

A basic assumption in the formulation of MFBD is that the scene o is the same for all data framesdi . This is violated
if, for example, an object in the scene briefly glints. This isa common circumstance when observing solar-illuminated
man-made objects. Fig. 1(a) shows a CAD model of a satellite.In Fig. 1(b), the satellite image has been convolved with
a simulated atmospheric PSF. In Figs. 1(c)–(d), random glints were simulated in the data by adding delta functions to the
satellite model at random locations.

Reconstructingo with “regular MFBD” (i.e. Eqn. 2) yields Fig. 2(a), in which artifacts are clearly visible. Applying
iteratively reweighted MFBD yields Fig. 2(b), which is clearly superior. By the end of the third iteration, those portions of
the image frames contaminated by glints have been assigned zero weight. The reconstruction therefore does not show any
glints.

2.2 Mismodeled noise

Iteratively reweighted MFBD is also applicable to mismodeled noise. To demonstrate this, simulated data is generated
using the same scene and PSFs as before, but salt-and-peppernoise is added to 10% of the pixels selected at random. The
regular MFBD and iteratively reweighted MFBD reconstructions are shown in Fig. 3. Since the salt-and-pepper noise does
not conform to the model (i.e. normally distributed with zero mean and varianceo ∗ hi + σ 2), regular MFBD is unable
to produce a high-quality reconstruction. The iterativelyreweighted MFBD weights the noise-corrupted pixels to zeroand
successfully recovers the scene.



(a) Pristine image (b) Blurred image

(c) Blurred glinting image (d) Blurred glinting image

Figure 1. Pristine image and blurred (and glinting) measurements.

(a) Regular MFBD (b) Iterated MFBD

Figure 2. Reconstruction of glinting data illustrated in Fig. 1.

2.3 Edge artifacts

The convolution in Eqn. 1 is implemented by multiplying FFTsof the image and PSF arrays and then calculating the
inverse FFT. This means that the contribution from a pixel near one edge can wrap around to the other side of the predicted
image if the PSF is too big. Wrap-around can be avoided by zero-padding both grids prior to convolution. If padding is not
performed, then the forward model is not consistent with thedata, and artifacts will occur in a naı̈ve reconstruction.

This is illustrated in Fig. 4. In the simulated dataset, the object drifts partially out of the field of view. In the standard
maximum likelihood reconstruction with no array padding inthe convolutions, the predicted image circularly wraps. This
makes it hard to match the abrupt edge in the observed data. The result, shown in Fig. 4(a) is a reconstruction with an
edge artifact. When the iteratively reweighted algorithm is applied, still with no array padding, a clean reconstruction is
obtained (Fig. 4(b)). The algorithm achieves this by deweighting the pixels near the edge in the image frames where the
object drifts out of the field of view.



(a) Regular MFBD (b) Iterated MFBD

Figure 3. Reconstructed data with mismodeled noise.

(a) Regular MFBD (b) Iterated MFBD

Figure 4. Reconstructed data with edge effects.

3. CONCLUSIONS

We have demonstrated that traditional MFBD algorithms based on maximum likelihood estimation are sensitive to the sort
of modeling errors that one frequently encounters in real-world applications. In robust estimation theory, this sensitivity
is quantified in terms of the asymptotic breakdown point, which is the fraction of the measurements that can be corrupted
without introducing an arbitrarily large change in the estimate. The breakdown point of traditional MFBD is zero: as one
measured pixel tends to infinity, the norm of the estimated image will tend to infinity as well.

The iteratively reweighted MFBD developed here has a breakdown point greater than zero, for if a single pixel is
corrupted, it will receive a weight of zero. We have presented several types of model mismatch for which traditional
MFBD fails and iteratively reweighted MFBD succeeds. The technique is simple and mostly external to the MFBD itself,
so it may be easily retrofitted onto existing MFBD implementations.
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