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ABSTRACT

Traditional blind deconvolution techniques rely on a statal model that relates the measured data to the pristiemes
whose reconstruction is sought. If the data is not condistéth this forward model, then the reconstruction is badly
degraded. We develop a way of making blind deconvolutiorusblto modeling errors by assigning a weight to each
pixel of measured data and iteratively updating the weighite show that this approach is effective in several realisti
model-mismatch scenarios.
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1. INTRODUCTION

Astronomical imaging with large telescopes is difficult @ese atmospheric turbulence introduces a strong, rapidly-
changing blur. This can be addressed in hardware (via agappitics, which tends to be complex and expensive) or in
image processing software. In this paper, we focus on imegeepsing techniques for mitigating atmospheric turbzeen

in particular multiframe blind deconvolution (MFBD) [1,.21FBD algorithms are generally formulated by regarding im-
age reconstruction as a parameter estimation problemgathemparameters to be estimated are the pixels of the rdstore
image. Additional “nuisance” parameters are needed teesgmt the state of the atmosphere at the time that each frame
was measured. A maximum likelihood estimator is then cogtd relating the image and time-sequence of atmospheric
states to the measured data. The estimate (i.e., the resctestimage) is computed using general-purpose numerical
optimization techniques.

MFBD algorithms of this type can perform well provided thia¢ testimator's model of the relationship between pa-
rameters and data is accurate. If the forward model is natistamt with the collected data, then the resulting imade wi
be corrupted by artifacts and may be unrecognizable.

Before reviewing instances of this, let us establish notatind formulate a simple MFBD estimator. Lebe the
two-dimensional image to be recovered. Assume that ovepd sime interval, the scene remains constant while the
atmospheric blur changes. Lati = 1,..., N be N camera frames collected during this interval. Then theticelahip
betweerp andd; is

di =oxhi +n;, (2)

whereh; is the atmospheric point-spread function correspondirggtdh camera frames " represents convolution, ang
captures all noise sources associated with the image nezasat process. We will assume thats a normally-distributed
random variable with mean 0 and variamseh; + ¢ 2. This is intended to approximate a combination of shot ngiaging
varianceo = h;) and read noise (with variane€).

Given the forward model in Eq. 1, we may formulate a maximalihood estimator
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wherei indexes measured image frames griddexes pixels. For the examples shown in this paper, thenggattion is
performed using a L-BFGS-B [3], a quasi-Newton algorithritadale for large-scale problems.



2. MODEL MISMATCH

This will fall apart if the data is in some way inconsistenttwihe model in Eqgn. 1. Inspired by the iterated least-square
technique for robust linear regression [4], we now desaaisemple robust MFBD. Define a weight; on every pixel of
every measured data frame. Initially, all the weights wéll Here is the procedure.

1. Evaluate a weighted ML estimate
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2. Calculate a vector of normalized residuals
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3. Calculate the median-absolute-deviation estimateamifstrd deviation:
omap = 1.48 mediaf|ri; — mediarfrij)]). (5)
4. Update the weights:
Iij 2 2 .
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0 else.

5. Return to step 1 and repeat with the updated weights.

One could devise a termination condition based on the diffeg of the weights from one iteration to the next, but in
practice, this procedure is usually observed to convertge tifree or four iterations.

Let us now apply this to several species of modeling error.

2.1 A changing scene

A basic assumption in the formulation of MFBD is that the szens the same for all data framels. This is violated

if, for example, an object in the scene briefly glints. Thimisommon circumstance when observing solar-illuminated
man-made objects. Fig. 1(a) shows a CAD model of a satelht&ig. 1(b), the satellite image has been convolved with
a simulated atmospheric PSF. In Figs. 1(c)—(d), randomgjlirere simulated in the data by adding delta functions to the
satellite model at random locations.

Reconstructing with “regular MFBD” (i.e. Eqn. 2) yields Fig. 2(a), in whichtiacts are clearly visible. Applying
iteratively reweighted MFBD yields Fig. 2(b), which is ciasuperior. By the end of the third iteration, those pari@f
the image frames contaminated by glints have been assigmedveight. The reconstruction therefore does not show any
glints.

2.2 Mismodeled noise

Iteratively reweighted MFBD is also applicable to mismadkhoise. To demonstrate this, simulated data is generated
using the same scene and PSFs as before, but salt-and-pepgzeis added to 10% of the pixels selected at random. The
regular MFBD and iteratively reweighted MFBD reconstrans are shown in Fig. 3. Since the salt-and-pepper noise does
not conform to the model (i.e. normally distributed with @enean and variance h; + ¢2), regular MFBD is unable

to produce a high-quality reconstruction. The iterativelyeighted MFBD weights the noise-corrupted pixels to zerd
successfully recovers the scene.



(a) Pristine image (b) Blurred image

(c) Blurred glinting image (d) Blurred glinting image

Figure 1. Pristine image and blurred (and glinting) measiergs.

(a) Regular MFBD (b) Iterated MFBD

Figure 2. Reconstruction of glinting data illustrated ig.FL.

2.3 Edgeartifacts

The convolution in Eqn. 1 is implemented by multiplying FFdfsthe image and PSF arrays and then calculating the
inverse FFT. This means that the contribution from a pixekmmae edge can wrap around to the other side of the predicted
image if the PSF is too big. Wrap-around can be avoided bypaduling both grids prior to convolution. If padding is not
performed, then the forward model is not consistent withd#ia, and artifacts will occur in a naive reconstruction.

This is illustrated in Fig. 4. In the simulated dataset, thg=ot drifts partially out of the field of view. In the standar
maximum likelihood reconstruction with no array paddinghie convolutions, the predicted image circularly wrapsisTh
makes it hard to match the abrupt edge in the observed da&reBult, shown in Fig. 4(a) is a reconstruction with an
edge artifact. When the iteratively reweighted algoritlsnapplied, still with no array padding, a clean reconstaicts
obtained (Fig. 4(b)). The algorithm achieves this by dewtig the pixels near the edge in the image frames where the
object drifts out of the field of view.



(a) Regular MFBD (b) lterated MFBD

Figure 3. Reconstructed data with mismodeled noise.

(a) Regular MFBD (b) lterated MFBD

Figure 4. Reconstructed data with edge effects.

3. CONCLUSIONS

We have demonstrated that traditional MFBD algorithms 8asemaximum likelihood estimation are sensitive to the sort
of modeling errors that one frequently encounters in realldvapplications. In robust estimation theory, this stvigy

is quantified in terms of the asymptotic breakdown point,clati the fraction of the measurements that can be corrupted
without introducing an arbitrarily large change in the mstie. The breakdown point of traditional MFBD is zero: as one
measured pixel tends to infinity, the norm of the estimateajewill tend to infinity as well.

The iteratively reweighted MFBD developed here has a breakdooint greater than zero, for if a single pixel is
corrupted, it will receive a weight of zero. We have presdrgeveral types of model mismatch for which traditional
MFBD fails and iteratively reweighted MFBD succeeds. Thehtgéque is simple and mostly external to the MFBD itself,
so it may be easily retrofitted onto existing MFBD implem¢iotas.
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