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ABSTRACT 
 

A forward model-based algorithm for reconstructing images from Fourier domain measurements is described.  The 
model accurately treats broadening of the Fourier domain sampling function resulting from finite aperture size and 
spectral bandwidth.  The forward modeling approach also allows weighting of measurements according to their 
individual signal-to-noise ratios (SNRs), and injection of a priori expectations about the object such as its support 
and power spectral density.  Image quality performance of a large telescope array is analyzed as a function of SNR 
and array scale.  The approach is designed to enable joint processing of mixtures of intensity and amplitude 
interferometric measurements and conventional incoherent images, but the focus of this paper is limited to intensity 
interferometry.  Basic structures of the object are seen to be recovered as SNR approaches 10 for unity coherence. 
 
 

1. INTRODUCTION 
 
Intensity interferometry was proposed in the mid-1950s by Hanbury Brown and Twiss in the mid 1950s [1-3].  Over 
the ensuing decades, the concept was developed into an instrument that successfully measured the widths of a 
number of stars, and has also been applied to other fields outside of astronomy [4-8].  Emphasis later shifted away 
from intensity interferometry as it became apparent that amplitude interferometry had better signal-to-noise ratio 
(SNR) and image formation capabilities, especially in view of improved optical technologies such as adaptive optics 
[9-11].  In addition to SNR, image formation has been a question for intensity interferometry.  Intrinsic ambiguities 
were present in reconstructions of amplitude-only data from conventional approaches such as phase retrieval [12-
13].  However, a number of techniques were developed to retrieve an image that worked under high-SNR conditions 
[14-19]. 
 
In order to address performance under low SNR conditions, new approaches have been developed including forward 
model-based techniques [20-22].  A forward model is a set of mathematical relations that relate the pristine object, 
sensor design, and environmental conditions to the measurements.  A forward model in image reconstruction 
involves estimating the object that when propagated through the forward model best fits the data in terms of some 
cost function, subject to various constraints and a priori expectations, for example non-negativity, support, entropy, 
total variation, image sharpness, and prior knowledge.  In the most rigorous case the quality of fit to the data is 
quantified by its likelihood according to a physics-based model of the measurement noise statistics characterized by 
a joint probability density function (PDF).  When this detailed knowledge is unavailable or impractical, a weighted 
least squares cost function is often used.  Typically the minima of the PDF cannot be solved for in closed form, and 
is therefore found by iterative search techniques. 
 
Forward models have significant benefits over other reconstruction techniques, including known optimality 
properties, ability to tolerate incomplete and noisy data, and computation of Cramér-Rao bounds.  They provide a 
straightforward approach to factor the complexities of real sensors and environments into the estimation process.  
The primary disadvantage of forward models is their computational complexity; however, modern computers and 
algorithms have largely mitigated this disadvantage.  Another challenge can be occurrence of multiple minima in the 
cost function which can make finding the global minima difficult or impractical, in turn resulting in sub-optimal 
solutions that can depend on the initial estimates of the free parameters.  Forward models naturally address several 
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challenges in intensity interferometry:  complex non-linear relation of measurements of the object’s squared Fourier 
magnitude to a spatial domain representation of the object, sparse and irregular spacing of the measurements in the 
Fourier plane, and low SNR.  Forward models also offer the potential for computation of Cramér-Rao bounds 
(CRBs) [23].  CRBs are of special interest for intensity interferometry and other forms of image formation because 
they indicate fundamental statistical limits to image reconstruction performance and can be adapted to include the 
effects of constraints and biases [23-32]. 
 
This paper develops a forward model approach for image reconstruction from interferometric data.  The resulting 
algorithm is referred to as FIIRE (Forward model Interferometry Image Reconstruction and Estimation).  Section 2 
describes the forward model which includes treatment of effects of finite aperture and spectral bandwidth (BW) on 
broadening the Fourier domain measurement response function beyond the idealized delta response.  Section 3 
describes the maximum a posteriori (MAP) cost function and the iterative search approach.  Section 4 describes a 
conceptual intensity interferometry imaging system that represents the extreme of current feasibility and Section 5 
characterizes the SNR it might achieve on a geosynchronous satellite.  Section 6 investigates image reconstruction 
quality as a function of measurement SNR.  Section 7 summarizes the conclusions. 
 

2. FORWARD MODEL 
 
Intensity interferometry operates by capturing light at two or more telescopes and combining the signals.  The vector 
separation between a pair of telescopes, projected into the plane orthogonal to a line between the array and the 
object, is termed the baseline.  Light collected at baseline vector 𝐵 and wavelength λ provides information about the 
Fourier transform at spatial frequency 𝑢 = 𝐵/𝜆.  For conciseness, in the remainder of this document the Fourier 
domain will be referred to as the UV plane, and a measurement of the value of the object’s Fourier transform will be 
referred to as a UV sample or visibility.  In amplitude interferometry the light from the telescopes is optically 
interfered allowing measurement of both the UV amplitude and phase, also referred to as the complex visibility [33].  
In phase closure techniques, appropriate products of complex UV samples from three or more baselines are formed 
which cancel out the effects of phase fluctuations from atmospheric turbulence and the collection system [34,35].  In 
intensity interferometry the fluctuations of the intensity of the light are measured at very high bandwidth.  The 
normalized correlation of the fluctuations of the signals from two telescopes provides a direct measurement of the 
magnitude squared of complex visibility, hereafter referred to as visibility-squared denoted |V|2 [2,33]: 
 
      |𝑉|! 𝑢 = !!,!!

!
= !!! !,!   !!!" !,!

!! !,!      !!" !,!
 (1) 

 
where t is time, λ is wavelength, telescope positions are indexed by k, I is intensity, Δ indicates fluctuations about 
the mean and 𝐵!,!! is the baseline formed by telescope positions k and k’. 
 
To make the forward model as general as possible the core code does not assume any particular geometry of the 
telescope array configuration.  Its inputs are a list of measurements, each specified by UV coordinate and noise 
standard deviation.  The FIIRE code can accept any mixture of complex visibility and |V|2 measurements, the set of 
UV coordinates for each need not match nor have any regular spacing, they are completely arbitrary for each sensing 
modality.  FIIRE has been designed with placeholders to expand its capability to utilize amplitude only and phase 
closure measurements.  However, the focus of this paper is limited to intensity interferometry. 
 
Under the conditions of negligible detector dark current, the measurement noise for a single intensity interferometry 
|V|2 measurement is [4], 
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where T is the collection time over which the signals are correlated, Δf is the detector BW, Tρ  and Bρ  are the 
signal levels of the light from the target and any background sources in photo-electrons per second per spectral 
bandwidth (Hz), and χ is the excess noise factor of the detector.  The photon rate spectral densities are proportional 
to target and background brightness, telescope aperture area, transmission of the optical system, and detector 
quantum efficiency.  This expression is accurate under conditions of low-degeneracy [33], which is satisfied by 
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direct or reflected thermal sources in the optical regime except at extraordinarily high temperatures, and detector 
response BW much smaller than spectral BW of the light.  Note that the noise is dependent on the spectral density of 
the light only, so once the spectral BW significantly exceeds Δf there is no gain in SNR by detecting a larger spectral 
BW.  If multiple measurements are collected such that their wavelengths and baselines map to UV coordinates with 
separations small compared to the correlation length of the complex spectrum, it simplifies things at no disadvantage 
to average them together to form a single input to image reconstruction processing.  The spectrum correlation length 
is given byΔucor ~ 1/WObj, where WObj characterizes the width of the object.  The highest reduction in noise is 
achieved by setting the weights equal to the reciprocal of the noise variances of the individual measurements, e.g. 
𝑤! = 1/  𝜎!! .  The effective noise standard deviation of the combined measurement is: 
 

      𝜎! =
!!!   !!!!

!!  !
=

  !/!!!!

!/!!!   !
= !

  !/!!!!

 (3) 

If the variances of all the measurements are similar this results in the standard 𝑁 type noise reduction. 
 
Now the object spatial intensity distribution needs to be related to the UV samples.  In the ideal case a |V|2 
measurement samples a discrete point of the magnitude squared of the object’s Fourier transform.  However, as 
illustrated in Fig. 1(a), two telescope apertures actually measure light over a continuum of baselines because of their 
finite size.  The measurement is an integral over the object’s |V|2 spectrum, with a weighting function equal to the 
autocorrelation of the aperture’s transmission function.  For a circular aperture of diameter D, the width of the UV 
footprint of the weighting function is 2D/λ.  The spectral BW of the signal causes a similar broadening, described 
by: 
 
       Δ𝑢 = !

!!"#
− !

!!"#
𝐵 = γ!"# − γ!"# 𝐵 = Δγ 𝐵  (4) 

where the weighting function is now a line segment of length Δ𝑢  extending in a radial orientation from the UV 
plane origin, and Δγ is the spectral BW in m-1.  For small spectral BWs and moderate apertures sizes the composite 
of the two effects is well approximated by their convolution.  The resulting UV domain measurement response 
function, hereafter referred to as the UVPSF, is illustrated in Fig. 1(b): 
 
    𝐷! = 𝑑𝑢   𝑂 𝑢

!
  𝑈𝑉𝑃𝑆𝐹! 𝑢  (5) 
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where j denotes a particular measurement, 𝐴 𝑥  is the transmission function of the telescope aperture, ⊗ denotes 
correlation, and  𝜆!,!"#/!"# are the spectral range of the measurement.  An object’s UV spectrum is correlated over 
distances of Δ𝑢 ~1/Ω where Ω is its angular subtense.  It is desirable for the UVPSF to be much smaller than this 
width. 
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Fig. 1.  (a) Illustration of UVPSF broadening due to finite aperture size of a telescope pair sensing light at a 
continuum of baselines.  (b) Illustration of an aperture and spectrally broadened UVPSF overlaid on a logarithmic 

scale display of an object’s UV spectrum. 
 
The FIIRE forward model approximates the integral in Eq. (5) as follows.  The object is represented as a grid of 
spatial domain values.  It is transformed into the UV domain by the discrete Fourier transform (DFT).  UV domain 
quantities are represented on the rectilinear grid of samples corresponding to object’s DFT which is hereafter 
referred to as the UV grid.  The values of the UV PSF for each measurement j are calculated on the UV grid using a 
discrete approximation to Eq. (6).  Each UV PSFj is lexicographically ordered into a row vector, and these are 
stacked into a single matrix, R.  The size of this matrix can be very large, however, typically only a tiny fraction of 
the elements of each row are non-zero.  Using sparse matrix representation techniques (a basic capability of 
MatLab) solves the data storage issue.  The forward model for the noiseless measurement is now simply expressed 
as 
 
      𝑔 = 𝑅  𝐹   𝑜 ! (7) 
 
where 𝑜 is a lexicographical ordering of the elements of the spatial domain representation of the object intensity 
distribution, F denotes the DFT operation, and   𝑔    is the vector of noiseless measurements.  In code it is more 
efficient to calculate 𝐹   𝑜 !  by a 2D FFT then re-order the result into a vector.  With R pre-calculated, the forward 
model operation is extremely efficient.  The forward model for amplitude interferometry is nearly identical but with 
𝑜 ! replaced by 𝑜 in Eqs. (5) and (7).  The case of UVPSFs that are smaller than UV grid spacing is currently 

treated by setting the values of R to be equivalent to bilinear interpolation.  The code contains a placeholder to 
switch to sinc interpolation, which by the Fourier sampling theory is rigorously consistent with the physics.  
Truncating the sinc function to moderate size remains accurate yet still allows R to be highly sparse. 
 

 
3.  COST FUNCTION AND SEARCH ALGORITHM 

 
The cost function is given in Eq. (8).  It consists of a data agreement metric, shown as the first term, followed by 
five regularizing terms. 
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In Eq. (8), 𝑜 𝑥  is the estimate of the object and 𝑂 𝑥  its DFT, 𝑀! denotes a noisy measured value and 𝑔! 𝑜 𝑥  its 
prediction based on the object estimate and forward model, derivatives of the object in the x and y directions are 
indicated by ∇! and ∇!.  The agreement metric compares the discrepancy between the measurements and their 
predicted values.  The discrepancy is quantified as an L-α norm, where α is between 1 and 2.  There is also a 
shaping exponent, β, which can increase sensitivity to small values of the measured data.  The measurement terms                                                                                                                                                                                                                                               
are individually weighted according to their respective variances 𝜎!!.  As described in more detail below, the 
constant D in the final two terms controls whether they act purely as smoothness constraints by penalizing non-zero 
Fourier values, or act to encourage reconstructions to be consistent with a priori expectations about the object’s 
power spectral density (PSD). 
 
The regularizing terms in Eq. (8) each serve different functions.  The entropy term, with leading factor KEnt, acts to 
smooth the object and encourage the energy of the object to be contained in a smaller number of pixels or 
equivalently discouraging small amounts of energy in many pixels.  The Tikhonov or image sharpness regularization 
term, with leading factor KTik, tends to concentrate energy in a limited number of pixels.  The next term in Eq. (8) is 
the total variation term, with leading factor KTV.  This well known regularizing approach serves to suppress noise 
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while preserving sharp edges.  There is not currently any provision for optimizing the relative weights of each term, 
this is left to the user.  The term with leading factor KPSD-1D, imposes prior information in terms of the expected PSD 
as a function of radial distance of a UV coordinate from the origin, e.g. 𝑢 .  This is accomplished by dividing the 
UV domain into a series of concentric annuli, with 𝑆! specifying the set of 𝑁! UV grid elements in annulus n, and 
𝑢 ! characterizing the annulus’ radius.  The average of the object estimate’s PSD values within an annulus is 

calculated and divided by the expected PSD.  When D takes the value 1, this term encourages the estimated object to 
be consistent with expectations about its power spectrum.  When D equals 0, this term encourages object 
smoothness by incurring a penalty for larger PSD values, with the penalty at a spatial frequency weighted by the 
inverse of the a priori PSD.  Since the PSD in the denominator is the average a priori PSD as function of 𝑢 ! it 
does not express any assumptions about the object’s rotational orientation. 
 
This cost function can be extended to incorporate data from other sensing modalities such as amplitude 
interferometry, phase closure, and conventional imaging by adding additional data agreement cost terms for each 
modality analogous to the 1st term in Eq. (8).  This enables joint processing of all data to find an object solution that 
is in balanced agreement with all data sources and the regularizing priors, while also subject to non-negative and an 
optional support constraint. 
 
A solution for the grid of object intensity values that minimizes the cost function is sought using the L-BFGS-B 
iterative limited memory quasi-Newton search algorithm [36].  As it searches through parameter space L-BFGS-B 
accelerates the search by developing an approximate model of the local 2nd order partial derivatives without 
requiring evaluation or storage of the full Hessian matrix.  It also has provisions for placing upper and lower bounds 
on each parameter providing a direct approach to enforcing the non-negative property of the object.  The FIIRE code 
allows this option or alternatively a re-parameterization of the object as the square of an underlying function which 
also has the effect of ensuring non-negativity.  Support constraints are easily employed by limiting the set of object 
grid elements which are optimized and leaving the rest at zero.  This approach requires calculations of the gradients 
of the cost function with respect to the object; closed form expressions for each term in Eq. (8) are easily calculated 
but not shown here.  Use of Eq. (7) allows the efficient simultaneous computation of all elements of the gradient of 
the 1st term of Eq. (8), the data agreement term, using FFTs and matrix multiplies.  One other regularization 
technique supported by FIIRE that should be mentioned is to re-parameterization the object as the convolution of a 
low-pass kernel with an underlying function.  This has been referred to as the method of sieves [38] and effectively 
places a support constraint on the object estimate’s UV spectrum preventing amplification of high-frequency noise.  
If the transfer function corresponding to the Fourier transform of the kernel decreases with increasing 𝑢  then it will 
act to attenuate the convergence of higher frequency components which can help to avoid local minima.  It should 
be noted that the algorithmic approach used by FIIRE is quite similar to that of MIRA [22, 34], another image 
reconstruction code widely recognized in the imaging interferometry community [38]. 
 
 

4. INTENSITY INTERFEROMETRY SYSTEM 
 
To demonstrate the FIIRE code and investigate influence of its various features on reconstructed image quality, an 
intensity interferometry collection system was defined based on the Cherenkov Telescope Array (CTA) which is 
comprised of 97 telescopes arranged on a 1 km wide square.  This system is described in detail in reference [39].  
Note the pattern of telescope positions is chosen to give a higher diversity of baselines than would a pattern with 
equal spacing.  Nevertheless, many of the telescope pairs have equivalent baselines resulting in considerable 
redundancy in the UV measurements especially at smaller separations.  Since an emphasis of this study was to 
investigate ground-based imaging of objects in geosynchronous Earth orbit (GEO), the square pattern of telescope 
positions was scaled down to 40 m across which is better matched to the angular subtense and desired angular 
resolution.  Fig. 2 shows the geometry of this array and the resulting baselines assuming a zenith line-of-sight.  
Color-coding indicates the level of redundancy at each baseline.  The main details of the system parameters are 
summarized in the following list: 

• 97 telescopes arranged within a 40×40 m square providing 653 unique baselines 
• 0.75 m diameter apertures with 0.375 m diameter central obscurations for .3313 m2 collection area 
• 0.196 net system transmission (atmosphere * optics * quantum efficiency) 
• Nyquist sampling for maximum horizontal baseline is 5 nrad (7.3E-4 arcsec), corresponding to 17.9 cm at 

GEO 
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• Light is detected in 84 spectral channels spanning 400-900 nm 
• The channels are evenly spaced in wavenumbers at 0.0167 µm-1 and each is 0.0083 µm-1 wide.  This 

comprises 50% utilization of the full 400-900 nm spectrum. 
• Each channel is divided into 25 contiguous sub-channels of 100 GHz width and spacing 
• Light in each sub-channel is measured with a 500 MHz BW detector and 1 GHz sample rate 

 
Figure 3 diagrams the division of the broad spectrum into channels and sub-channels.  Physical methods of 
achieving this were not a focus of this investigation, but a potential approach that could accurately separate the 
channels at the necessary spectral resolutions is use of Echelle cross-grating spectrometers combined with micro-
lens assemblies to collect and couple the light into optical fibers fed into high BW detectors.  The goal of dividing 
up the spectrum is to gain best advantage of the full visible band of light.  Consider a large satellite of 40 m 
maximum width at a range of 40,000 km. This corresponds to an angular subtense of 1 µrad.  Nyquist sampling of 
its UV spectrum is Δu = 1 µrad-1.  By Eq. (1), at the maximum baseline of 40 m, a spectral channel of 0.048 µm-1 
BW maps to a line-segment on the UV plane of length 0.27 µrad-1 thus is significantly smaller than the correlation 
length of the object’s UV spectrum and can be treated as nearly a point sample such that UVPSF effects are not a 
concern.  On the other hand, at 400 nm the 0.75 m aperture diameter results in a UV PSF width of 3.75 µrad-1 and 
could cause problematic blur of the UV measurements.  To get higher utility of the light within a channel it is 
divided into 25 contiguous sub-channels that are separately measured.  Each pair of matching sub-channels collected 
by a pair of telescopes is correlated, then each set of |V|2 measurements within a channel are averaged to boost the 
SNR by 25.  This partially compensates for the restriction that SNR is limited by the BW of the detector response 
not the BW of the detected light.  Fig. 4 shows the resulting set of UV sample locations of the described system 
color-coded by their wavenumber. 

 

 
Fig. 2.  Telescope array geometry and corresponding set of baselines for the analyzed intensity interferometer 

system. 
 

 
Fig. 3.  Division of broadband light into channels and sub-channels. 
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Fig. 4.  Set of UV samples collected by the described system color-coded by wavelength. 

 
It is worth some comments about the challenges for the discussed system.  By dividing the spectrum into 84 
channels, each comprised of 25 sub-channels, each of the 97 telescopes would require 2100 high BW detectors, thus 
203,700 for the full system.  To ensure the spectral BW of matching sub-channels from different telescopes overlap 
by at least 90% will require exquisite spectral accuracy of 10 GHz which corresponds to 5 picometers at the 400 nm 
end of the spectrum.  With 4656 telescope pairings, to avoid storing the 203E+3 giga-samples/sec of data that is 
generated will require approximately 10 million correlators.  This design was chosen to be representative of what at 
the time of this paper is an achievable, but large, complex, and costly system. 
 

5. Visibility SNR 
 
Photo-electron signal level is now considered.  The photon flux at the top of the atmosphere for a Mv 10 object is 
illustrated in the left-hand plot of Fig. 5 as a function of wavelength [40].  Assuming a clear-aperture area of 0.3313 
m2 and net transmission efficiency of 19.6% including atmosphere, optics, and quantum efficiency, results in a 
spectral density of about 7E-10 photo-electrons per second per Hz.  Photo-electron rate spectral density is plotted vs. 
wavelength in the right-hand plot of Fig. 5. 
 

 
 

Fig. 5.  Top-of-atmosphere photon flux from a Mv 10 object (left), and resulting photo-electron spectral density at 
the detector (right). 
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correlation length by averaging them weighted by the inverse of their variances. This was accomplished in this study 
by grouping individual UV measurements into sets such that all members in a set lied within 0.375 * Δucor of each 
other.  The SNR of each resulting composite UV sample j is defined 
 

    𝑆𝑁𝑅 ! !
! =

! !!
!

!!,!
 (9) 

 
where 𝜎!,! is defined by Eqs. (2-3). The average number of individual measurements per composite UV sample was 
~2000 resulting in an average value of 𝜎!  of 77 which is a factor of 20 improvement compared to the noise of the 
individual constituent samples.  The noise level 𝜎!,! and SNR will vary for different composite UV samples 𝑢! for a 
number of reasons, (a) variations in the level of redundant telescope pairings with same baseline, (b) variations in 
the number of baseline and wavelength combinations mapping to a particular 𝑢!, (c) variations of photon flux at 
different wavelengths,  (d) variations in the object’s UV spectrum 𝑂 𝑢

!
 which for most objects will tend to 

follow a power-law type decrease 𝑢 !!.  Panels (b-c) of Fig. 6 show a histogram of the values of 𝜎!,! and 
characterize the variations with 𝑢! .  By Eq. (2) noise standard deviation scales inversely to the square-root of the 
collection time. 
 
To further characterize SNR it is useful to consider a specific object.  The pristine intensity distribution shown in 
Fig. 7(a) was generated from a 3D model and is placed at a range of 35.8E+3 km.  This object will also be used for 
image reconstruction analysis in Section 7.  Fig. 7 also shows (b) the object’s PSD, (c) the set of UV sample 
locations measured by the system described in Section 2, and (c) the image collected by a conventional full-aperture 
telescope with diameter such that its modulation transfer function (MTF) cutoff matches the UV sample with the 
largest radius indicated by the red circle in (d).  Fig. 6 provides several plots characterizing the distributions of |V|2, 
noise, and SNR, and their trends with UV coordinate radius |u| for a 1-hour signal collection time.  Per Eq. (2) SNR 
will scale in proportion to the square-root of the collection time.  It is observed that noise level tends to be higher for 
larger |u| which results from the array geometry providing fewer redundant telescope pairs at longer baselines.  
Combined with a rapid decrease in |V|2 at higher spatial frequencies, SNR drops rapidly with increasing |u|.  Fig. 6(f) 
indicates that for a 1-hour collection time the bulk of the UV samples have SNRs between 10-6 to 10-4. 
 

 
Fig. 6.  Plots characterize |V|2 magnitudes, noise, and SNR levels and their trends vs. radial distance from UV origin 

based on a 1-hour signal collection time for the satellite object of Fig. 7 at Mv=10 brightness. 
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Fig. 7.  (a) Pristine object; (b) object’s PSD; (c) diffraction limited image from full aperture telescope with MTF 

cutoff matching highest UV sample; (d) UV sample positions. 
 

 
6. IMAGE RECONSTRUCTION ANALYSIS 

 
6.1  Image Quality vs. SNR 
 
This section examines reconstructed image quality dependence on SNR of the |V|2 measurements.  The test object 
and interferometry system are as described in Sections 4 and 5.  Reconstructions were performed using the FIIRE 
code.  The simulation parameters are summarized in the following list: 

• The object was estimated on a 256×256 grid corresponding to a 40×40 meter FOV, exactly matching the 
grid the original pristine object used to simulate the |V|2 measurements is represented on 

• Iterations were performed until convergence to numerical tolerance or a maximum 8,000 iterations 
• The UVPSD was set to a delta function, i.e., spectral and aperture induced broadening were not modeled 
• Initial estimate was a Gaussian spatial distribution multiplied by white noise 
• Object non-negativity was enforced but a support constraint was not used 

 
• Earth rotation was ignored, so the orientation of the telescope array relative to the object was treated as fixed 

over the observation time 
• Images were generated using each of the different regularization terms activated one at a time.  

Combinations were not explored.  For each term the regularization weight was scanned over a large range of 
values to determine an optimum strength.  The 1D PSD term with D=1 (i.e., discrepancy not penalty) was 
found to produce the best results (visually).  A weight of 1E-3 was found to be optimum for all cases except 
infinite SNR at which point a weight of 1E-5 was better. 
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Figure 8 shows the image reconstructions obtained for a range of measurement SNR levels.  Note that lack of phase 
information results in an ambiguity such that a solution and its 180° rotation are equivalent.  For purposes of display 
the reconstructions were rotated to match the pristine object as necessary.  Two SNR metrics are annotated on each 
image.  SNR|V|=1 is calculated from Eqs. (2-3) using the average of the 25 sub-channels provided by a single channel 
from a single telescope pair with |V|2=1, e.g. the object’s normalized PSD value at the origin of the UV plane, or 
equivalently unity coherence between the intensity fluctuations.  For a 1 hour integration time, SNR|V|=1=0.0033.  
The peak SNR for the UV samples is characterized by SNRDCP ≡ 88*SNR|V|=1 and corresponds to the SNR at |V|=1 
for the composite UV sample with lowest noise standard deviation.  It is observed that the basic dumbbell structure 
of the object starts to become discernible at SNRDCP = 1.6.  More detailed features start to appear as SNRDCP exceeds 
5.  Near diffraction-limited quality is achieved at SNRDCP = 29.  Figure 9 is similar to Fig. 8 but with the 
reconstructions performed without any regularization.  It is obvious that regularization is effective in suppressing 
meaningless high-frequency structure to produce an image with more pleasing appearance.  It is debatable whether 
they are better from the standpoint of the information visually conveyed, but the suppression of false high-frequency 
structure may likely benefit automated information extraction methods. 
 

 
Fig. 8.  Image reconstruction results for a range of SNR levels. 
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Fig. 9.  Same as Fig. 8 but without regularization. 

 
 6.2  Optimal Telescope Array Scaling 
 
Figure 10 compares reconstructions obtained with the telescope location pattern scaled to 1, ½, and ¼ that of Fig. 2.  
Telescope aperture area was held fixed.  The middle reconstruction corresponding to ½ scale appears the best.  The 
rightmost is clearly worse and though the left reconstruction contains finer structures, they do not correlate with 
fine-scale features in the pristine image and are just amplified noise.  This suggests there is benefit to optimizing the 
array pattern to match the characteristic width of the object, such that the density of samples and levels of SNR-
boosting redundancy are concentrated where they are most useful. 
 

 
Fig. 10.  Image reconstructions vs. different scaling of the telescope array pattern. 
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6.3  UV Sample Weighting 
 
Three choices for specifying the UV sample variances, 𝜎!!, used in the 1st term of the cost function expressed by Eq. 
(8) were explored.  The first was to use the true variances of the noise added in simulating the visibility 
measurement data defined by Eqs. (2-3), which matches the measurement physics and method of combining 
redundant samples given by Eq. (3).  The second method was to scale these by a multiplicative factor.  The third was 
to use an identical value for all UV samples.  The third method led to much worse performance than the other 
methods.  Variations in image reconstruction quality were imperceptible for scale factors between 0.001 – 1000 
beyond which quality began to degrade. 
 

7. SUMMARY 
 
A code was developed for reconstructing images from long-baseline interferometry data based on a forward model 
approach in which an object is estimated such that when propagated through a physics-based forward model of the 
sensing system maximizes the match to the set of measurements.  The code currently supports joint processing of 
complex amplitude and |V|2 type measurements.  Explorations of different regularization methods and measurement 
weighting schemes gave insights into the approaches that were reliably best.  It was observed that scaling the 
telescope array location pattern to match the resulting UV measurement location and SNR distribution to the PSD of 
the object was important to maximizing image quality.  The performance of a conceptual system representing the 
extreme of what might be achieved with current technology was considered.  The system consisted of an array of 97  
telescopes, each with a 0.75 m diameter aperture using 2100 narrowband spectral channels spread across 400-900 
nm to make highly efficient use of the photons within the visible band.  Signals from all 4656 pairings of telescopes 
were correlated to gain the full Fellgett’s advantage of the system.  The array pattern and wide spectral bandwidth 
resulted in many measurements of nearly identical UV locations, which were averaged using a scheme that resulted 
in a typical number of many hundred redundant measurements per UV locations.  Taking the SNR benefit from this 
redundancy into account, for a Mv 10 object and UV location with |V|2 ≈1, it was determined that an SNRDCP of 
approximately 2 was needed to recover the coarse structure of the object.  With the described system this would take 
at least 1000 hours of integration time.  Finer details of the object started to appear as SNRDCP exceeded 5, with 
image quality increasing steadily up to SNRDCR~30 at which point a near diffraction-limited quality image was 
obtained.  This study suggests that in principle intensity interferometry could produce images of GEO objects.  
However at typical GEO object brightness levels, major advances in measurement technology or algorithmic 
approaches will be needed to achieve images with reasonably small collection times. It will be interesting to see how 
this picture changes with use of other interferometric techniques such as amplitude interferometry. 
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