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ABSTRACT 

Myopic deconvolution from wave front sensing (MDWFS) is a powerful tool for high-resolution imaging. It is 
typically used with monochromatic, short exposure images with integration times less than the coherence time for 
the atmosphere, and Shack-Hartmann wave-front sensor data where the number of sub-apertures across the pupil is 
commensurate with the turbulence strength D/r0 where D is the diameter of the telescope and r0 is the spatial 
coherence length of the atmosphere. However, there are important imaging scenarios that do not fit this model. 
Imaging faint targets usually requires integration times greater than the atmospheric coherence time and large 
spectral bandwidths. Observing targets during poor seeing conditions results in D/r0 values that are significantly 
greater than the number of sub-apertures across the pupil. In these cases, we may expect that a high fidelity estimate 
of the object will require an algorithm that accurately models the physical effects of broad temporal and spectral 
bandwidth in the point-spread function. 

In this paper we demonstrate the performance of a new MDWFS algorithm, called DORA, designed to work with 
imagery obtained in strong turbulence conditions. This algorithm includes models of the temporal behavior of the 
atmosphere and finite spectral bandwidth. It includes several stages of processing, including DWFS and joint 
estimation via multi-frame blind deconvolution (MFBD). Results based on simulated data show that DORA will 
provide high-fidelity restorations for imagery acquired through strong turbulence conditions, D/r0>40. Real-world 
performance of the new code is established with results from data acquired with the AEOS 3.6 m telescope both 
with and without adaptive optics compensation. 

1 INTRODUCTION 

To obtain the full performance of an imaging system when viewing through the Earth’s atmosphere requires careful 
mitigation of the turbulence-induced aberration in the observed wave fronts. This is typically achieved through a 
combination of adaptive optics (AO) and post-detection numerical processing. In the numerical processing step, the 
quality of a restored image depends on the accuracy with which we know the point-spread function (PSF) for the 
observation. When little (or no) information is available on the PSF it becomes necessary to turn to non-linear, 
multi-frame blind deconvolution (MFBD) techniques to find estimates for both the blur-free object and the PSF [1].  

MFBD is ill-posed, because the underlying mathematical model is ill-conditioned, and so is susceptible to 
entrapment in local minima in the parameter hyperspace during the optimization process. When that happens, the 
result is a poor restoration. Unfortunately, the number of local minima increases rapidly with increasing atmospheric 
turbulence and entrapment becomes almost certain at turbulence strengths of D/r0>40 (here D is the diameter of the 
telescope aperture and r0 is the spatial coherence length of the atmosphere). This is a serious limitation as it severely 
restricts sky access for Space Situational Awareness. For example, at Mt Haleakala in Hawaii, the median nighttime 
seeing has r0~15 cm at zenith and even in I band where r0 is somewhat larger, MFBD is only effective for 
observations down to a zenith angle of ~60 degrees.  

For MFBD to be useful in stronger turbulence regimes it is important to reduce the number of local minima in the 
problem. An effective way to do so is to use high-cadence wave-front sensor (WFS) data, acquired simultaneously 
with the focal plane image, during the restoration process. The WFS data then provide a strong constraint on the 
wave front (and thus PSF) during the modeling. We note that joint modeling of the focal plane and WFS data is 
known as myopic deconvolution [2]. In this way, we are able to take advantage of existing hardware on telescopes 
such as AEOS that are equipped with an AO system. 

2 ALGORITHM BACKGROUND 

As we discuss in Jefferies et al. [3], high spatial frequency aberrations of the wave-front phase become increasingly 
damaging to image quality as the seeing worsens. These terms rapidly come to dominate the PSF, and so their 



accurate estimation becomes critical to successful image restoration. A loss of fidelity at high spatial frequencies in 
the wave front results in PSF models with a morphology that differs greatly from the true atmospheric PSFs.  

There are two important changes in the morphology of the PSFs. First, with the absence of high spatial frequencies 
in the wave front the faint speckles in the wings of the PSF all but vanish. If these speckles are not well modeled by 
the restoration code, restored target estimates will suffer from background fog that may mask nearby debris or 
microsatellites. In cases where the true background signal is high, the absence of these faint speckles will be less 
important, because they will be swamped by shot noise. However, changes in the morphology of the bright PSF 
speckles will prove disastrous for the restoration. The problem of missing high spatial frequencies is not usually of 
concern when restoring imagery from moderate turbulence, i.e. D/r0 < 20, which is typically the operating regime of 
current algorithms in the literature. However, as the turbulence strength increases the changes in the PSF 
morphology increase as shown Figure 1 where the root-mean-square error (RMSE) of an ensemble of PSFs before 
and after filtering out the high spatial frequencies of the wave-front is plotted vs. turbulence strength.  

	  
Figure 1. Plotted as a function of D/r0 is the RMS difference between instantaneous monochromatic PSFs 

computed from wave-front phases before and after filtering out the highest spatial frequencies. 

We have developed DORA, a new algorithm [4] that is designed to address regimes of poor seeing that go beyond 
the capabilities of existing MFBD algorithms. The algorithm does so by including WFS measurements as constraints 
on the wave-front phase estimates as well as short-exposure focal plane images. It also incorporates a complete 
Fourier optical model of the forward imaging problem to model the temporal and spectral integrations that occur in 
broad-band focal plane images.  

DORA estimates the critical high spatial frequencies of the wave front by taking into account the fact that the 
turbulence above most ground-based imaging systems can be characterized by well-separated layers of frozen 
turbulence with different velocity vectors (the frozen flow model, FFM) [5[. Studies of the atmosphere at Mt. 
Haleakala have suggested that there are typically 2-3 such layers [6].  

The FFM requires that we know the wind velocities of all significant layers of turbulence in the atmosphere. These 
are computed from an autocorrelation of the WFS measurements, which are captured at a cadence that substantially 
exceeds the Greenwood frequency and therefore capture the effects of frame-to-frame coherence in the wave front. 
The calculated wave-front slopes are stacked into a data cube as shown in Figure 2, and the 3D spatio-temporal 
autocorrelation of the cube is calculated. Consider the effect of a wave front characterized by a single frozen layer 
moving across the pupil. The strongest signal will occur at the center of the autocorrelation cube, at zero spatial and 
temporal lags. But as time progresses, and the wave front advances across the aperture, the strongest correlation 
signal will be seen at a spatial lag equal to the elapsed time multiplied by the wind vector. The signature of a frozen 
layer is thus a line of strong signal projecting from the origin of the autocorrelation cube whose direction 
corresponds to the direction and speed of the corresponding wind, illustrated in Figure 3. The strength of the 
correlation signal is directly related to the strength of turbulence in the layer, and the rate of decay with temporal lag 
indicates the degree to which the layer is not in fact well represented as a frozen flow. 



The pupil wave front is modeled as a sum of independent static turbulent layers: 

 

where  denotes the velocity of the ith layer. Using the FFM results in better sampling of the high-spatial 
frequencies of the wave front. This is illustratively shown in Figure 4 where in each successive time slot the wave 
front phase has moved some physical distance in the pupil. 

The measured WFS data, as illustrated in the top row of Figure 4, is related to the unknown, better-sampled 
composite grid, illustrated in the bottom panel of Figure 4,by a sequence of linear operations.  We first use the wind 
vectors to define operators that model the motion of each of the atmospheric layers. With the frozen flow 
assumption, one can consider the atmospheric layers to behave like rigid objects, and thus the motion can be 
accurately described, using the wind vectors, by linear affine transformations. The second and third linear operations 
involve, respectively, extracting pupil aperture regions from the fine, composite grid, and down sampling of each 
individual frame from the fine to the coarse grid. Putting these operations together, the FFM phase reconstruction 
problem requires solving a large-scale (regularized) linear least squares problem; details of the mathematical model 
are given in [7], and a parallel implementation is described in [8]. 

Note that the fine grid information obtained through the FFM phase reconstructor provides much better sampling of 
the wave front phases. This additional information is essential to pick up high frequency information that is not 
picked up by the individual frames of coarse grid WFS data. 

The use of WFS data in the restoration process dictates the use of the Fourier optics model for the atmospheric PSF. 
The instantaneous speckle PSF    h(x;λ,t)  is the inverse Fourier transform of the optical transfer function (OTF) 
which is the autoconvolution  

    Ĥ (u;λ,t) = Bw(u;λ)Φ̂k (u;λ,t) Bw(−u;λ)Φ̂k
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Figure 2. Measured WFS slope data from the AEOS telescope arranged in 
spatio-temporal sequence. 
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Figure 3. Consecutive time-lag slices from the 3D autocorrelation of the data in Figure 2. 
Two frozen layers, noted by the arrows in frame 4, are detected as spots of high signal 

projecting from the origin. 

Time lag 



where   B(u;λ)  is a binary pupil support mask at wavelength channel λ and    Φ(u;λ,t) is the optical path difference 
modeled by the FFM, scaled and resampled to the pupil size associated with the wavelength λ at time k,  denotes 
convolution and * denotes complex conjugation. This model ensures that    h(x;λ,t)  is a non-negative, band-limited 
function. Also, we have assumed that atmospheric scintillation is negligible. The spectrally and temporally 
integrated PSF is computed as  

 h(x) = h(x;λ,t)dλ dt∫∫   
The integrals over time and wavelength represent the spectral and temporal bandwidth associated with the 
observation. This description for the PSF is widely used for the restoration of images acquired through atmospheric 
turbulence. However, it is typically used with the assumption of negligible spectral and temporal bandwidth that is 
only applicable for monochromatic speckle images for which the integration time of the observation is comparable 
to the atmospheric coherence time. When the model is applied to scenarios where there is wavelength and/or 
temporal integration the model is only approximately valid. How good the approximation is depends on the 
turbulence strength. 

This is illustrated in Figure 5 which shows a conceptual 3D parameter space of spectral bandwidth, integration time, 
and turbulence strength. Within this space, simulated PSFs are shown for two turbulence regimes, low turbulence of 
D/r0=10 and strong turbulence of D/r0 = 40. Each has been computed also with two levels of spectral bandwidth 
(zero and 50%) and temporal integration (zero and 32 ms) for a total of 8 cases. Typically the space of MFBD 
problems that can be solved using a Fourier optics model falls below D/r0=10: in this regime, the quad panel in 
Figure 5 for the low turbulence case shows that finite spectral and temporal bandwidths have only modest effects on 
the PSF. By contrast, in the panel for the high turbulence case, both spectral and temporal integrations individually 
as well as both together show strong effects. Using the WFS measurements and the FFM for the wave front extends 
the space of accessible MFBD problems to D/r0 = 50 [5].  

3 ALGORITHM 

Our algorithm assumes that the field of view is small. In this case we can focus on isoplanatic, incoherent imagery 
and model the focal plane data, , as a convolution between the object intensity distribution , and an 
atmospheric point-spread function   that does not depend on the field position x. 

An important foundation of DORA is the correct physical modeling of constraints on the atmospheric PSF. The 
algorithm minimizes a metric that measures both the fit between the focal plane data and the data model (referred to 
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Figure 4. Estimates of the wave-front phase are built from consecutive snapshots (top row) on a composite 
grid that spans an elongated phase screen (bottom panel) sampled by the aperture as the frozen layer is 

advected over the pupil by the wind.  



as the convolution metric) and a fit between the measured and modeled wave-front gradients (WFS metric). The 

convolution metric is defined as  

where the subscript k denotes the timeslot and x denotes the pixel location in the focal plane. The WFS metric is 
defined as  

 

where the index j denotes the set of WFS time slots that correspond to data frame k. The data model is computed as 
the convolution of the PSF estimate for the k-th data frame and the object estimate, 

 

The PSF is computed directly from the estimated wave-front phases at each turbulent layer. At the central 
wavelength and for each time slot j the phases are punched out of the elongated phase screens estimated from the 
FFM and an instantaneous PSF is computed. Temporal integration is accomplished by adding the PSFs  
computed at each time index j. For each data frame k, the time index spans the number of WFS frames that fall 
within a single integration time of the imaging camera. To compute the spectral integration, the phases at the central 
wavelength are up-sampled to a pupil size determined by the ratio of wavelength w to the central wavelength. The 
phase values are also scaled by the same ratio. The spectrally and temporally integrated PSF  

ε = dk (x) gk (x)− ĝk (x)x∑k∑ 2
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x( )2 + ∇yΦ jk (x)− Sjk

y( )2⎡
⎣⎢

⎤
⎦⎥x∑j∑k∑
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Figure 5. Shown are temporally and spectrally integrated PSFs for two regimes of atmospheric turbulence.  
In the low turbulence regime at D/r0=10 a modest effect of temporal integration is evident by the change in 
the morphology of the speckles.  In the strong turbulence regime both temporal and spectral integrations 
dramatically change the morphology of the PSFs.  In each panel from lower left clockwise: instantaneous-
monochromatic; temporally integrated-monochromatic; temporal and polychromatic; and instantaneous 

polychromatic. The temporal integration time is 32 ms; the polychromatic bandwidth is 50%.  



 h(x) = h(x;λ,t)dλ dt∫∫   
is approximated by computing the instantaneous speckle PSF at a series of discrete wavelengths (color planes) and 
time slots.  These are then summed across all color planes and time slots,   

ĥk, j (x) = ĥk, jw (x)w∑ . 

DORA offers a choice of two methods for estimating the object. First, the object can be estimated using a Wiener 
filter (WF) parameterization of the object in terms of the wave-front phases, 

where  denotes the Fourier Transform (FT) of the PSF, i.e. the optical transfer function (OTF), and  
denotes the FT of the k-th image frame. The parameter  denotes a regularization parameter that can be adjusted to 
mitigate the effects of noise amplification. The WF estimate is useful when the image camera completely captures 
the whole image, i.e. there is no image truncation.  Its advantage is that it eliminates the need to explicitly estimate 
the object, thus reducing the number of variables to be estimated; however, it does not enforce any non-negativity 
constraint on the object. The alternate approach is to explicitly estimate the object while imposing a non-negativity 

constraint. This is accomplished by parameterizing as . 

4 RESULTS 

At this point we do not yet have telescope data on hand that approach seeing values as bad as D/r0=40 for which 
DORA was designed. We have therefore tested our algorithm’s performance in the strong turbulence regime with 
simulated observations of SEASAT under conditions of full daylight sky illumination, modeling a solar phase angle 
of 40°. Two cases were run, where we have assumed a challenging problem in which the satellite is changing pose 
rapidly, allowing just 8 frames of data to be restored before the object can no longer be considered constant. The 
satellite was taken to be faint, with photon noise equivalent to integrated magnitudes of 6 and 8. No detector read 
noise was included, but would in any case be well below the shot noise from the background. Results from the 
restorations are shown in Figure 6. In the case of the 6th magnitude object, the overall morphology of the satellite is 
well estimated, although fine details are lost to the noise. The fainter object is barely visible in a single frame of the 
raw data, and yet some evidence of the satellite’s structure is still discernible in the restoration. These results are 
very encouraging for imaging faint LEO objects during the day. 

Real-world performance of DORA has been addressed with data acquired with the AEOS 3.6 m telescope. Although 
the data presently available are limited to turbulence strengths no worse than D/r0~12, they do have broad spectral 
bandwidth of about 25% and integration times up to an order of magnitude and more longer than the atmospheric 
coherence time. In Figure 7, we show a result from data recorded with the telescope’s AO system running in closed 
loop. Even though the AO compensation is very good, with resolution approaching the diffraction limit, DORA is 
able to enhance the image quality further. This is because even with AO correction the WFS data still contain 
information on the residual wave-front errors that the AO system has not corrected; there is still strong frame-to-
frame correlation in the data that can be exploited. 

Figure 8 shows a different case in which the AO system was not running. This target is the Hubble Space Telescope 
and data were collected with integration time of 20 ms. In this example the constraints on the high spatial 
frequencies of the wave front and the proper modeling of the temporal integration of the PSF resulted in a 
restoration with sharpness comparable to the case when AO was in closed loop. The background is also cleaned up, 
improving the contrast in the neighborhood of the satellite. 
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Figure 6. Restorations of simulated observations of SEASAT in daytime. (Left column) Photon noise included 
to simulate a target of magnitude 6. (Right column) Target scaled to magnitude 8. (Top row) Simulated data. 

(Bottom row) Results of DORA restoration. 

 

 

	  
Figure 7. Ariane 5 rocket body. Left: Raw data frame with AO in closed loop (integration time of 2 ms, 

spectral bandwidth of 25% at 0.85 µm). Right: DORA restoration using 40 frames of AO data. Both images 
are shown on a square root scale. 

	  
	  



 

Figure 8. The Hubble Space Telescope. Left: Raw data frame with AO in open loop (integration time of 
20 ms, spectral bandwidth of 25% at 0.85 µm). Right: DORA restoration using 20 frames of data.  

5 CONCLUSIONS 

Image restoration in the turbulence regime D/r0>20 using existing MFBD algorithms is very challenging because of 
the virtual certainty of entrapment in local minima. DORA presents a new approach to MFBD in the strong 
turbulence regime by proper modeling of the high spatial frequencies in the wave front, enabled by constraints 
provided by the WFS and the use of a frozen flow model of the atmosphere. Accurate modeling of the high 
frequencies enables us in turn to make accurate physical models of both temporally and spectrally integrated PSFs, a 
capability that is important when restoring imagery obtained for large values of D/r0 where chromatic radial 
streaking of the PSF speckles is a large part of the PSF morphology. By including temporal and spectral modeling, 
MFBD restorations spanning a larger volume of the observing space can now be solved using the Fourier optics 
model. This is crucial to support operational scenarios that require data collection under non-ideal conditions of 
strong turbulence.  
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