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By exploiting the notion of orbital angular momentum of light beams, we have recently demonstrated a novel pupil-phase-
engineered point-spread function (PSF) design in which as a function of defocus the PSF merely rotates without changing its shape
materially over a considerable range of defocus values. Here we explore general properties of the rotating PSF design with respect
to 3D imaging, including trade-offs between transverse and longitudinal resolutions. We also present the results of simulation of
reconstruction of 3D scenes consisting of point sources from noisy image data based on this design.

1 Introduction

For a clear, well corrected imaging aperture in space, the point-spread function (PSF) in its Gaussian image plane
has the conventional, diffraction-limited, tightly focused Airy form. Away from that plane, the PSF broadens rapidly,
however, resulting in a loss of sensitivity and transverse resolution that makes such a traditional “best-optics” approach
untenable for rapid 3D image acquisition. One must scan in focus to maintain high sensitivity and resolution as one
acquires image data, slice by slice, from a 3D volume with reduced efficiency.

In this paper we describe a computational-imaging approach [1] to overcome this limitation. We propose the use
of pupil-phase engineering to fashion a PSF that, although not as tight as the Airy spot, maintains its shape and size
while rotating uniformly with changing defocus over many waves of defocus phase at the pupil edge. As one of us has
shown recently [2], dividing a circular pupil aperture into L Fresnel zones, with the /th zone having an outer radius
proportional to v/1, and impressing a spiral phase profile of form l¢ on the light wave, where ¢ is the azimuthal angle
coordinate measured from a fixed x axis (the ”dislocation” line) in the pupil plane, yields a PSF that rotates with
defocus while keeping its shape and size.

Our PSF rotation concept is quite different from that employed by Piestun and collaborators [3] in which combine
an appropriate selected subset of Gauss-Laguerre modes, followed by pupil-phase optimization, to create a double-
helix rotating PSF pattern with high power throughput. This work preceded work by a different group [4] of a very
similar flavor except that the double helix was dispensed with, by a different pupil-phase optimization strategy, in
favor of a single-helix, or corkscrew, PSF. Much like the work presented here, because of its single-lobe structure the
corkscrew PSF leads to less confusion in the image obtained for a relatively crowded field of point sources.

The present paper explores detailed properties of our rotating-PSF design, including a theoretical analysis of the
trade-offs between transverse and longitudinal resolutions, simulation of image data for 3D scenes based on such a
PSF and optimization based algorithms for their recovery, and more general design related issues. We shall derive
an underlying conservation law that both controls the transverse-longitudinal trade-off and might suggest still more
general design strategies with better rotational shape invariance.

2 Rotating PSF Design

Consider a circular pupil of radius R that has been segmented into L different contiguous annular Fresnel zones, with
the /th zone having an outer radius equal to R+/l/L. The ith zone is endowed with a spiral phase profile of form l¢
that completes [ complete phase cycles as the azimuthal angle ¢ completes a single rotation about the optical axis, as
shown in Figure 1. The phase dislocation lines for all the zones are taken to be a single fixed radial line, which we
may take to be along the x axis in the pupil plane.

For such a phase encoded pupil, as a function of image-plane radial distance and azimuthal angle coordinates, s
and ¢, the amplitude PSF K is given by the pupil integral
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where §'is the image-plane position vector 7 normalized by the in-focus diffraction spot-radius parameter at the imag-
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Figure 1: Schematic diagram of a specific Fresnel zone with its spiral phase retardation
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and 1 is the pupil-plane position vector pnormalized by the pupil radius, @ = §/ R. The defocus parameter ( is related

to the object-plane distance dz from the in-focus object plane as
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In this scaled form, it is precisely equal to the phase at the edge of the pupil that results from the actual spatial defocus.
The incoherent PSF, h(s, ¢;¢) = |K(s, ¢;()|?, is normalized to have area 1, corresponding to a clear aperture that
transmits all the light falling on it.

For the Fresnel-zone spiral phase function ¢ (u, ¢,,) discussed above, we may evaluate the integral (1) as
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in which integration is performed over a fundamental period of the azimuthal angle ¢,,. For sufficiently small s the
integration over v may be performed approximately by treating the Bessel function J; as a constant over the /th zone.
Such an evaluation reveals the approximate rotational character of the PSF with changing defocus,
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The prefactor in this expression also indicates that the PSF must break apart for values of |¢| outside the range
(—Lm, L) over which the PSF performs one complete rotation. These properties of the PSF are easily verified
by means of the numerically evaluated exact expression [2].



3 A Conservation Law

Allowing PSF to rotate with defocus stabilizes its shape, much as a spinning mechanical gyroscope resists changes of
its rotational state. While the mechanical analogy is suggestive, it must be substantiated by any equations governing
the PSF behavior in the face of a changing defocus. A particularly useful equation is that obeyed by the amplitude

PSF K,
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which is easily verified from the integral expression (1) for K. Here V denotes the two-dimensional gradient operator
in the image plane. Equation (7) is formally identical to the Schrédinger equation of motion for the wavefunction
of a free particle in quantum mechanics (QM). It therefore admits a simple conservation law for the intensity PSF,
h = | K|?, rather analogous to the probability flux conservation law in QM,
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which may be expressed more simply in terms of & and the phase of K, namely ¥ , by substituting K = v/h exp(i¥r),
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This last expression may be made more suggestive by transforming it, via the divergence theorem, into an integral
form over any domain D bounded by the closed curve C' in the image plane

d ) 1 W i

a __ - ¢ p%¥K 1

dc//hdr 5 Ch ol (10)
D

in which the vector field AV W x represents a kind of boundary probability-flux density per unit cross-length that
determines what fraction of the PSF is lost from D through C.

The conservation law (10) contains the essence of why adding rotation might stabilise the PSF against spreading.
For the PSF (6), the flux density vector hV U is dominated by its azimuthal component, proportional to OV i /99,
for which the PSF merely circulates without spreading as the defocus ( is varied. In fact, one might want to calculate
the fraction of the PSF area that is contained inside an azimuthally rotating domain with suitably chosen angular
velocity w rad/defocus by transforming to the rotating frame of the PSF. The evolution of the PSF area contained in
such a rotating domain is sensitive to only differential rotations between different parts of the PSF and to any residual,
diffusive radial spreading, as described by Eq. (9).

4 Numerical Results for PSF Rotation

Figure 2 shows the PSF rotation with defocus [2] for the case of 7 Fresnel zones, L = 7. The surface plot of | K |2,
with K given by expression (4), is made at a succession of increasing values of the defocus parameter (. While the
PSF remains nearly shape and size invariant as it rotates at the rate of 1/L radians per unit defocus phase completing
a full rotation for a defocus change of about 27 L radians, in consistency with the approximate result (6), there is clear
evidence of differential rotation and slow spreading. The secondary lobe of the PSF clearly lags the main lobe even as
the latter shears under such differential rotation. After a complete rotation the PSF begins to show rapid break-up and
spreading, presaged by the ( —dependent sine prefactor in the approximate expression (6). But over the same range
of defocus values from —24 rad to 24 rad, the ideal diffraction-limited (IDL) PSF exhibits no rotation but a rapid
spreading away from zero defocus, as is well known and shown in the bottom panel of plots.

We now give a physically appealing explanation of the origin of PSF rotation. A nonzero defocus of a point source
means a quadratic optical phase in the pupil that, because of the square-root dependence of the zone radius on the
zone number, increases on average by the same amount from one zone to the next. This uniformly incrementing
phase yields, in effect, a rotation of the phase dislocation line, and thus a rotated PSF. Since the zone-to-zone phase
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Figure 2: Surface plots of the incoherent rotating PSF, with L = 7 zones (top row) in the Fresnel-zone partitioning of
the pupil. The IDL-PSF is shown in the bottom row of plots. The plots from left to right are for increasing values of
defocus, namely -24, -16, -8, 0, 8, 16, and 24 radians at the pupil edge.

increment depends linearly on defocus to first order, the PSF rotates uniformly with changing defocus to that order.
The breakdown of this first-order approximation occurs slowly over a complete rotation of the PSF, corresponding to
a chaneg of about 27 L radians of defocus phase at the pupil edge.

5 Three-Dimensional Image Data and Parameter Recovery via Rotating
PSF

The shape and size invariance of the rotating PSF should allow rapid acquisition of a full three-dimensional (3D)
image scene with high sensitivity, at least within the large range of defocus values over which such invariance holds
approximately. In fact, for an image field consisting of point sources that are not too crowded, it should permit an
efficient recovery of their full three-dimensional coordinates. Our recent simulations of reconstructions from image
data for 3D image scenes comprised of point sources at different focal depths have shown remarkable robustness of
the rotating-PSF approach to achieve good transverse and longitudinal resolution even for moderate SNR.

5.1 Reconstruction of Point Sources

We ran a number of simulation-based tests for the extraction of source parameters from a 3D scene known to consist of
point sources alone. For this case, the simplest inverse problem one can set up to extract the number of point sources
and their spatial coordinates and flux is that of minimizing the following unregularized cost function:
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where G denotes the two-dimensional noisy image data matrix, H(r;; z;) the rotating PSF (blur) matrix for the ith
point source of flux Fj, transverse location r;, and depth z;. The number of sources, P, is not known a priori but
is to be estimated from the data themselves. The minimization of (11) is performed iteratively until agreement with
noise is attained, roughly when the average y2-value equal to the number of image-plane pixels is reached. Much as
in Ref. [5], the procedure is repeated for different values of P starting from 1 until the minimum value of the cost
function is consistent with the mean 2 value.

The starting guesses of the point-source locations, particularly in the transverse image plane, are dictated by the
spatial distribution of the image data. They must be chosen to allow for spatial overlap between the estimate computed
from the forward model based on these locations and the image data to induce the optimization algorithm to move the
estimate down the cost-function landscape in the space of the parameters being estimated. All the source fluxes were
started at zero value as were all the depth coordinates.
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Figure 3: (a) Image of the point-source pair for the two different source separations of 10 and 2 pixel units. The two
sources were taken to be in the same defocused depth plane, corresponding to a defocus phase at the pupil edge of
10 radians. (b) Minimum value of the cost function achieved by the algorithm vs. PSNR, for two different source
separations. The mean x? value of Ng /2 is shown by the dashed line.

We now present the results of our simulation of the problem of resolving two point sources that are either at the
same depth but differing transverse locations or at the same transverse location and different depths (i.e., along the “line
of sight”), for varying levels of detection noise, distributed normally in an (independent and identically distributed) I[ID
fashion across the image pixel array. The purpose of this exercise was to set practical sensitivity limits on transverse
and longitudinal resolutions for our computational 3D imager.

In Figure 3(b), we show as a function of the peak SNR (PSNR) the minimum value of the cost function (11) that
the optimizer, fininunc, was able to drive down toward the mean x2-value for “perfect” fit, which is NPQ/ 2 for an
N, x N, image. Since in the presence of noise the cost function can fluctuate around its mean value by amount of
order o, = N, / V/2, of order 90 for N, = 128 used in our simulations, we expect the agreement for a “perfect” fit
between the actual data and the forward-model-based data estimate to be within 1-2 times o.,. For two sources to be
considered “resolved,” we must be able to demonstrate that starting with either one or three-source guesses cannot
reduce the cost function down to Ng at these SNR values, regardless of how they are chosen initially. The first two
plotted curves represent the cases of two different values, namely 1 and 2, for the number of point sources. The two
point sources in the actual image were taken to be 10 pixel units apart but in the same depth plane corresponding
to 10 radians of defocus phase at the pupil edge. Since the main lobe of the PSF is about 10 pixel units across its
short axis along which the sources are separated, this scenario corresponds to minimally-resolved point sources. Not
surprisingly, the one-source assumption is completely untenable here, as seen in its high minimum value of the cost
function at all of these PSNR values. While not shown, the three-source assumption does seem to attain the y-squared
fit, but a careful examination of the recovered parameter values revealed that one of the three sources had vanishing
flux, consistent in effect with a two-source assumption after all.

When we bring the point sources closer, placing them only 2 units apart along the short dimension of the PSF, so
their noise-free images overlap considerably, as shown in Figure 3(a). These sources may be regarded as being barely,
if at all, resolvable. In this case both the one-source and two-source starting guesses seem to produce comparable
cost-function minima, as we see from the third and fourth plots in Figure 3(b), although the rise of the curve for the
one-source guess above the curve for the correct two-source guess with increasing PSNR indicates that the sources
can be resolved at sufficiently high values of the PSNR. The ability to achieve arbitrary amounts of spatial resolution
depends on the SNR, as is well known from a number of early works [6], a fact confirmed by the present paper as well.
The number of iterations to achieve the minimum value of the cost function in all cases turned out to be around 50.

Our conclusions are illustrated more directly by considering a scatter plot of the reconstructed positions of the
point sources. We plot in Figure 4 the z, y coordinates of the estimates for the same values of PSNR for the two cases
of resolvable and non-resolvable pairs of point sources considered in the previous figures. The reconstructed positions
of the two point sources are given an extension inversely proportional to the PSNR value of the reconstruction, so,
e.g., a tight spot represents a high-PSNR estimate. It is clear from this figure that in the former case, the two sources
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Figure 4: Estimated positions of the two point sources in the two cases of large and small transverse separations, with
round spots for the former case and square spots for the latter case. The scatter plot shows excellent position estimate
in the former case, but poorer agreement with the true positions in the latter case except at the highest few values of
the PSNR considered.
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Figure 5: Image of the point-source pair in the line of sight at the center of the field but at two different depths,
corresponding to (a) 0 and 6 radians and (b) 0 and 3 radians of defocus phase at the pupil edge.

are indeed well resolved tightly around their true positions even at the lowest PSNR of 10, while in the latter case,
the scatter of reconstructed position is dramatically larger than their true separation except for the highest few PSNR
values, signaling a barely resolved binary source.

We next explored the question of longitudinal, or depth (2), resolution for two point sources that are along the same
line of sight but at slightly different depths, as measured by the defocus phase at the pupil edge of value 6 radians and
3 radians, for the two images shown in Figure 5. The first case, as one may appreciate, corresponds to z-resolvable
sources, while in the latter case the sources seem visually irresolvable. Yet, our analysis of depth estimates shows
that in both cases the depth estimates are quite accurate. This is shown in Figure 6(a) where the estimates are shown
as a function of the PSNR. The true defocus phases of 0, 6, 0, and 3 radians are shown by the dashed lines on this
plot. This is supported by the observation that the minimum value of the cost function is well within 20 of the
mean y2value of Np2 /2 for both cases when the correct two-source assumption is made in the reconstruction. For the
incorrect one-source assumption, the minimum value of the cost function in both cases is well outside this range of
“fit” to data within the noise. Figure 6(b) shows the minimum cost function for the same ten PSNR values discussed
earlier for the correct two-source assumption and the incorrect one-source assumption in the two cases.

The problem of recovering the location and flux parameters of a 3D scene consisting of P point sources alone
requires optimization in a low-dimensional parametric space of dimensionality 4 P. This is a relatively simple problem
with high sparsity, a fact that is responsible for a highly robust reconstruction protocol that may even yield some
degree of superresolution, as we have seen above. The reconstruction is a lot more complicated and far less noise-
robust, however, when an extended 3D source of continuously varying depth profile across the field is imaged with a
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Figure 6: (a) Estimated defocus phases for the two point sources and (b) minimum value of the cost function achieved
by the algorithm vs. PSNR for the same two cases as in Fig. 6. In (a), the dashed lines are drawn at the correct defocus
phases.

rotating-PSF imager. It is to this problem that we briefly turn next and describe our preliminary results.

5.2 Extended 3D Sources and Two-Frame Reconstruction

Generalizing our 3D imaging and recovery of scenes consisting of point sources alone to extended sources is highly
nontrivial. That is because point sources can be represented exactly in terms of a small number of parameters, which
provides a very tight constraint on image-data inversion even in the presence of considerable amounts of noise. For
an extended 3D object, the full description, even for a single pose of the object, requires the specification of both the
brighness and depth, namely I;;, z;;, as a function of the pixel index 7j over an N, x N,, pixel array, for a total of 2 Nﬁ
unknown parameters. This is a highly under-determined problem with a single image data frame, and we must acquire
at least one additional, independent image data frame to render the inverse problem of 3D image reconstruction even
marginally solvable. But most images of practical interest are constrained in other ways, e.g., their spatial support
extends finitely and both their intensities and depths are smoothly varying from pixel to pixel in both these variables,
but still full 3D image construction of an extended object requires, in general, far more image data than needed for
point sources.

We have begun computer simulations of 3D scenes with a variety of spatial depth and intensity profiles with image
data acquired with the rotating-PSF at two different wavelengths. For the sake of simplicity and to develop a deeper
conceptual understanding of the highly complex problem of reconstruction of 3D images from 2D rotating-PSF image
data, we chose the two wavelengths A; and Ay to be such that the ratio (ny — 1)/A; : (n2 — 1)/Ag is 1:2, where n;
and no are the indices of refraction of the spiral glass structure at the two wavelengths. Under this assumption, the
ratio of the rates of PSF rotation at the two different As can be easily shown to be (ny — 1)/(n2 — 1). Also, even
if the PSF at \; is not invariant under coordinate inversion, as in Fig. 2, it will be invariant under such inversion at
A2 because the analog of the sum (4) representing the PSF at this wavelength has only even-/ terms. This property
is seen in the double-lobed structure of the PSF displayed in Fig. 7. While both PSFs rotate and keep their shape
invariant with changing defocus, their shapes are quite different, and they thus provide the needed PSF diversity for
the acquisition of two different image frames. We must assume that the object has the same intensity and depth pattern
at the two wavelengths, or at least a simple known correspondence between these patterns at the two wavelengths,
so the number of unknowns does not change between the two image frames. Alternatively and more practically, a
spatial-light modulator, such as a liquid-crystal array, located either in the aperture plane or a conjugate plane thereof,
can create, on demand by means of a voltage modulation, a spiral phase structure of the requisite winding number
from zone to zone. This would have the advantage of not relying on any extraneous assumptions that are normally not
justified.



Figure 7: The inversion-symmetric double-lobed structure of the PSF at wavelength Ao.

6 Application to Space Situational Awareness

The robustness of the recovery of the transverse and longitudinal location parameters of closely-spaced point sources
along with the increased depth of field afforded by the rotating-PSF imager can be exploited with much advantage
in the space-imaging scenario. Let us imagine such an imager situated on a valuable space asset which must, among
other tasks, monitor rapidly proliferating space debris of all different sizes and origins [7] for their field locations as
well as their ranges away from the asset to initiate any subsequent collision-avoidance maneuvers. The smaller the
debris the more numerous they are, with sizes of order 1mm or smaller being about 10* times more likely than those
of order 1c¢m or larger [8]. The rotating-PSF concept presents a technique for rapid snapshot imaging of a large 3D
field of debris and other unfriendly objects.

The maximum depth resolution at sufficiently high values of PSNR corresponds to about 1 radian of defocus phase
at the pupil edge, A = 1. In view of the definition (3) of (, this corresponds to a minimum resolavble depth 0z,

of order ,
pan
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as long as §2,,,;, << lp. We note that ¢z, scales quadratically with range [y, but as [y becomes so large that §z,,,;,
becomes comparable to or larger than [, then, as the definition (3) suggests, ¢ becomes independent of dz, and the
imager can no longer resolve such large depths. For a telescope diameter of 2R = 20 cms and illuminating wavelength
of A = 1um, the minimum resolvable depth at [; = 1 km is about 30m and at [j = 100 m about 30 cm, while the
operational depth ranges Az over which the imager produces robust images correspond to ¢ of order 27 L, or 30-50
(for L 5-8) times larger than dz,,;,. These are potentially useful numbers for meaningful space-to-space surveillance
applications.

7 Conclusions

The work described here presents a detailed theoretical analysis and simulation-based studies of a recently advanced
computational imager concept that exploits pupil-phase engineering as a way of encoding depth into PSF rotation. It
does so by combining a spiral phase structure with a Fresnel-zone partitioning of the pupil. The PSF generated by
such a phase plate merely rotates as a function of the focal depth of the point source.

We have shown that the rotating PSF is just 2-3 times more extended than the clear-aperture PSF, the Airy pat-
tern, while unlike the latter it is highly stable against rapid defocus-dependent spreading. This implies comparable
transverse resolution but greatly enhanced depth resolution from single-shot image data taken with the rotating-PSF
imager. This allows for a number of current and future SSA applications.
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