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Our interest here is spectral imaging for space object identification based upon imaging using simultaneous
measurements at different wavelengths. AMOS sensors can collect simultaneous images ranging from visible to
LWIR. Multiframe blind deconvolution (MFBD) has demonstrated success by acquiring near-simultaneous multiple
images for reconstructing space objects, and another success has been shown through adding phase diversity (PD)
by splitting the light beam in channels with different phase functions. So far, most MFBD and PD applications have
been focused on monochromatic images, with a few MFBD studies on multispectral images, also called the wavelength
diversity. In particular, B. Calef has shown that wavelength-diverse MFBD is a promising technique for combining
data from multiple sensors to yield a higher-quality reconstructed image. Here, we present optimization algorithms to
blindly deconvolve observed blurred and noisy hyperspectral images with phase diversity at each wavelength channel.
We use the facts that at longer wavelengths, turbulence effects on the phase are less severe, while diffraction effects at
shorter wavelengths are less severe. Moreover, because the blurring kernels of all wavelength channels essentially share
the same optimal path difference (OPD) function, we have greatly reduced the number of parameters in the blurring
kernel. We model the true hyperspectral object by a linear spectral unmixing model, which reduces the number of
pixels to be recovered. Because the number of known parameters is far greater than the number of unknowns, the
method enjoys an enhanced capability of successful reconstruction. We simultaneously reconstruct the true object,
estimate the blurring kernels, and separate the object into spectrally homogeneous segments, each characterized by
its support and spectral signature, an important step for analyzing the material compositions of space objects.

1 Introduction

The Space Situation Awareness (SSA) program functions largely in tracking, characterizing, and identifying space
objects. For these purposes, ground-based imaging technologies have become indispensable tools. For acquiring
useful images there has been extensive work on imaging through turbulence [1], adaptive optics (AO), e.g. [2], and
image restoration techniques, e.g. [3]. But even with AO corrections, the compensation is rarely complete and image
restoration techniques are often required for high resolution imagery. Among these techniques, blind deconvolution
methods are often applied to jointly estimate both an object and a blurring kernel. Given the random nature of
atmospheric turbulence we do not know exactly the blurring kernel to an observed image a priori, except some of the
statistics of the phase function, its covariance function [1, 3, 4]. Unless the true image and the blurring kernel are
parameterized with a relatively small number of parameters, the blind deconvolution problem is under-determined,
i.e. the number of knowns is less than the number of unknowns. To alleviate this situation by increasing the number
of observations, we can acquire multiple frames of the same object but each with a different blurring kernel before
applying a blind deconvolution algorithm. This is called multiframe blind deconvolution (MFBD) [3, 5, 6, 7]. To
simulatenously increase observations and reduce the number of unknowns, the phase diversity (PD) approach [8]
further blurs images by adding a known phase-diversity function, usually an out-of-focus blur, to a fixed phase
function, and hence multiple blurred images share not only the same object but also the same phase function. Using
these images, one can set up an optimization problem to recover both the object and the phase.

So far most of the images acquired by ground-based telescopes remain monochromatic, although there have been
a few studies on multispectral images, see, e.g. [9, 10, 11]. In another field of remote sensing, aerial imaging often
acquires hyperspectral images spanning hundreds of bands of wavelengths by imagers looking down, in contrast to
ground-based telescopes looking up. Hyperspectral images have been known to identify and unmix surface material
constituents [12], and hence these images can help us characterize space objects by separating each object into different
components each with a unique spectral signature, see e.g. [13].

Hyperspectral images acquired by ground-based telescopes require us estimate the PSF at each wavelength, or to
blindly deconvolve and restore the true image at each wavelength, which is not only largely underdetermined, but also
can be computationally prohibitive. However, as we will show in the following section, the blurring kernels across
all wavelengths can be parameterized in such a way that they all share the same optimal path difference (OPD)



function [10]. In addition, we also parameterize the true object in a segmented form in which images across all
wavelengths share the same support functions in the two spatial dimensions. These two parameterizations together
greatly reduce the number of unknowns in the reconstruction problem. We also combine the parameterizations with
the phase diversity approach by acquiring diversified images to enhance the capability of successful reconstruction,
because the success of blind deconvolution large relies on coupling more observations with fewer unknowns, along
with prior information.

In this paper, we discuss an optimization problem for blind deblurring hyperspectral images with only a relatively
small number of parameters to estimate. The paper is organized in the following way. In Sec. 2, we describe the
mathematical model of the problem and the estimation scheme, which will be followed, in Sec. 3, by image restoration
results using simulated binary star images, and we conclude with discussions in Sec. 4.

2 Joint Blind Deconvolution and Spectral Unmixing

The observed, kth phase-diversity image at wavelength λ is given by

gλ(x, y) = hλ,k ∗ fλ + ελ,k, (1)

where hλ is the kth phase-diversified spatially-invariant blurring kernel, or point-spread function (PSF), at wavelength
λ, fλ is the true image at wavelength λ, and ελ,k is the noise. Let K be the number of phase diversities. The blurring
kernel is related to the phase function, φλ, and the phase-diveristy function, θk, through the expression,

hλk =
∣∣∣F−1

(
pei(φλ+θk)

)∣∣∣2 , (2)

where p is the pupil function. If imaging a target simultaneously at multiple wavelengths, we can express the wavefront
phase φλ as

φλ =
2π

λ
W (x, y), (3)

where W (x, y) is the optical path difference (OPD) function. Zernike polynomials [10], or the more geometrically
adaptive basis such as the disk harmonic function [11], can be used as a basis to parameterize W (x, y). However, both
bases wouldmight require hundreds of components for a reasonable approximation of W , and a better choice of basis
would be the eigenfunctions of the covariance operator of W . If W is assumed to be sampled from a second-order
stationary random process with zero mean, it is charaterized by a covariance function,

C(x, y, u, v) = E {W (x, y)W (u, v)} , (4)

whose associated covariance operator is

CW (x, y) =

∫ ∫
C(x, y, u, v)W (u, v)dudv. (5)

Here C is compact and self-adjoint, and hence it has a sequence of eigenvalues σj and corresponding eigenfunctions,
ξj(x, y). We can then project W (x, y) onto the set of eigenfunction basis,

W (x, y) =

M∑
j=1

cjξj(x, y). (6)

Here ξj(x, y) is the jth eigenfunction of the auto-covariance operator of W , and cj = 〈W, ξj〉. 〈·, ·〉 denotes the inner
product of 2D random process. Since in this case the sequence of eigenvalues often rapidly decays to zero, we only
need a few eigenfunctions to form a good approximation to W .

With frames taken within the coherence time, we can have another dimension of diversity in time, where the
time-dependent blurring kernel is given by

hλkt =
∣∣∣F−1

(
pei(φλt+θk)

)∣∣∣2 , (7)

and the time-dependent phase function is

φλt =
2π

λ
W (x+ (t− 1)Vx, y + (t− 1)Vy), (8)

where Vx, Vy are the dominant wind velocities in x and y, respectively. By the shift property of Fourier transform,
we have

φλt =
2π

λ
F−1

{
ei2π(t−1)(Vxu+Vyv)F(W )

}
, (9)



When t = 1, the equation simplifies to (3). Now we have the blurring model including time, phase and wavelength
diversities:

gλkt = hλkt ∗ fλ + ελkt. (10)

In this paper, we would bypass the time diversity by setting t = 1, because adding more time frames would complicate
the covariance operator and we will leave it to the future research.

Next, we parameterize the hyperspectral image object by assuming the solution f is composed of a finite number of
segments or materials, each of which has a homogeneous value at each spectral channel. Thus, we seek a decomposed
solution which can be described in a continuous form as

f(x, y, λ) =

m∑
i=1

ui(x, y)si(λ), (11)

wherre ui(x, y) is the ith membership function, whose values can be either 0 or 1 for a hard segmentation or in
the interval [0, 1] for a fuzzy segmentation, and satises the sum-to-one constraint

∑m
i=1 ui(x, y) = 1. Here, si(λ)

represents the spectral signature of the ith segment or material. The support of ui lies only on the two spatial
dimensions represented by x and y, and is thus independent of the spectral dimension represented by λ, while on
the other hand, the spectral signatures, s = {si(λ)|i = 1, ...,m}, vary only along the spectral dimension. Hence,
the original three-dimenstional function, f(x, y, λ), is represented by a finite number of two-dimensional and one-
dimensional functions. The discrete version of f can be written as

f =

m∑
i=1

uTi si, (12)

where f ∈ Rn1n2×d is the folded hyperspectral cube, ui ∈ Rn1n2 is the vectorized membership function and si ∈ Rd.
Here d is the number of spectral channels, m is the number of segments or materials, and n1 and n2 are the numbers
of pixels in x and y respectively. For an example of such formulation, see the Hubble Space Satellite example in [13].

Eq. (11) can be called a linear spectral-unmixing model, if si(λ) is assumed to be the spectral signature of the ith

pure material, and ui(x, y) is the weight of the ith pure pixel’s contribution to the pixel at (x, y). This formulation
especially suits the hyperspectral imaging of space objects, because we often expect less blurring due to atmosphere
turbulence in longer wavelengths, where sharper images will provide us better estimation of wavelength-independent
membership functions, which can then be used to estimate spectral signatures at shorter wavelengths.

To summarize the model, we have blurred, noisy, and spectrally-mixed images, gλk, as our observations, from
which we reconstruct the true hyperspectral image object, parameterized by s and u, while simultaneously estimating
the blurring kernel parameterized by the OPD function, independent from wavelengths or phase diversities, and
which is further parameterized by the eigenfunctions of its covariance operator. The number of known observations,
dKn1n2, will be far greater than the number of unknowns, M+md+mn1n2, if dK � m, and hence we expect a high
probability of successful reconstruction. The model embeds a spectral-unmixing model within a blind-deconvolution
phase diversity model, and thus we call it a joint blind-deconvolution and spectral-unmixing model.

3 Numerical Optimization

The optimization scheme follows largely the one by Vogel, Chan and Plemmons [4], and hence we first introduce their
phase-diversity cost functional

J(f, φ) =
1

2

K∑
k=1

∫
R2

[hk(φ) ∗ f − gk]2 +
γ

2

∫
R2

f2 +
α

2

M∑
j=1

|cj |2

σj
. (13)

The first term on the right hand side (RHS) is the least squares term corresponding to the Gaussian noise assumption,
and the second term is the Tikhonov regularization of f , while the last term is the regularization of the phase function,
φ. Since we further parameterize f , our cost functional would be

J(W,u, s) =
1

2

d∑
λ=1

K∑
k=1

∫
R2

[hλk(W ) ∗
m∑
i=1

si(λ)ui − gλk]2 +
γ

2

m∑
i=1

∫
R2

u2
i +

α

2

M∑
j=1

|cj |2

σj
. (14)

Comparing (13) and (14), we can see that in (14), there is an extra wavelength diversity in the least squares term,
We take the alternating approach to estimate four sets of parameters, i.e., at the ith iteration,

1. given the current estimates, Ŵ (i−1), û(i−1), we solve for the spectral signatures, ŝ(i);

2. given the current estimates, Ŵ (i−1), ŝ(i), we solve for the membership functions, û(i);

3. given the current estimates, û(i), ŝ(i), we solve for Ŵ (i).

Next, we explain each step in detail.



3.1 Estimate spectral signatures

In the first step, if m = 1, meaning that there is only a single segment/material in the scene, we can solve for its
spectral response, s(λ), without the need of knowing the PSF, hλk. Choose one k in the set, {1, . . . ,K}, and let
Hλk = F(hλk). We know H̃λk(1, 1) = 1, since the integral of the PSF is always 1. With a known support function
u, we have

s(λ) =
Gλk(1, 1)

U(1, 1)
, (15)

where Gλk = F(gλk) and U = F(u). This approach is especially useful in imaging a single star and estimating its
spectral signatures without estimating the wavelength-dependent PSFs, see, e.g., the MUSE system in [14]. If m > 1,
meaning that there are more than one segment/material in the scene, we can also solve for their approximate spectral
response at other wavelengths, si(λ), through choosing a small neighborhood of H̃λk(1, 1) to set up a linear equation
set. For example if m = 4, we can construct a 4× 4 matrix A, the ith row of which is

Ai = [Hλ,k(1, 1)Ui(1, 1), Hλ,k(1, 2)Ui(1, 2), Hλ,k(2, 1)Ui(2, 1), Hλ,k(2, 2)Ui(2, 2)], (16)

and construct a column vector,

b = [Gλk(1, 1);Gλk(1, 2);Gλk(2, 1);Gλk(2, 2)], (17)

and the solution would be
sλ = A−1b. (18)

Because we only use the low-frequency parts of hλ,k, which are often better estimated than the high-frequency parts,
we would have a better estimate for sλ by removing the high-frequency parts in its estimation.

3.2 Estimate membership functions

With known phase functions and spectral signatures, the cost functional (14) simplifies to a least-squares inverse
problem. Here we stabilize the computations with Tikhonov regularization. We First take the Fourier transform of
the least square term and denote bλ,k(s, t) = Gλk(s, t)/Hλk(s, t). We group all bλ,k(s, t) into a single column vector,
bst ∈ RdK , and for each (s, t), group all {Ui(s, t) = |i = 1, . . . ,m} into a column vector, ũst ∈ Rm. After some
manipulations, we have the following simplified functional,

‖Aũst − bst‖22 +
γ

2
‖ũst‖2, (19)

where A = S ⊗ 1, S is a matrix whose ith column is si, and 1 ∈ RK is a constant vector of ones. We solve the
functional above for each (s, t), and group them back in Ui and hence ui = F−1(Ui).

3.3 Estimate phase functions

With known spectral signatures and membership functions, the cost functional reduces to (13), and like [4], we use
the Newton method to update W , i.e.,

W i+1 = W i −H[W i]g[W i], (20)

where H[W i] is the Hessian matrix of J(W i) at the ith iteration, and g[W i] is the gradient of J(W i). An explicit
form of the gradient of J(φ) is provided in [4], which only differs from J(W ) by a constant 2π/λ, and the computation
codes in MATLAB are provided by Bardsley [15].

The Hessian matrix is approximated by the limited-memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) method
[16]. The original BFGS method approximates the Hessian matrix using rank-one updates specified by gradient eval-
uation, and unlike the original BFGS method which stores a dense approximation, L-BFGS stores only a few vectors
that represent the approximation implicitly. Considering the Hessian matrix has size n1n2 × n1n2, we believe the
limited-memory approximation is appropriate.

4 Numerical Results

We simulate a set of observed hyperspectral images of a binary star, for which the true hyperspectral data is zero
everywhere except at two pixels, each of which has a different spectral signature taken from a NASA material library
sent to us by Kira Abercromby. We simulate a von Karman phase spectrum as

P (x, y) =
√
.023(D/r0)5/6(x2 + y2)−11/6, (21)



Phase Screen

20 40 60 80 100 120

20

40

60

80

100

120

Phase Diversity, θ
1

20 40 60 80 100 120

20

40

60

80

100

120

PSF of θ
0
 at λ=.4 µ m

20 40 60 80 100 120

20

40

60

80

100

120

PSF of θ
1
 at λ=.4 µ m

20 40 60 80 100 120

20

40

60

80

100

120

Figure 1: Phase, phase diversity and corresponding PSFs.

where D is the aperture diameter, and r0 is Fried parameter. Here, we fix D/r0 at 10. The phase screen or the OPD
function, is then generated by multiplying P (x, y) with standard noise as

W (x, y) = P (x, y)ξ(x, y), (22)

where ξ(x, y) is complex standard white noise. Hence, P (x, y) is the diagonal covariance function of W (x, y), meaing
that W (x1, y1) is independent from W (x2, y2) for ∀x1 6= x2 and ∀y1 6= y2. In the regularization term of the cost
functional, we use

√
P (x, y) as σj(x, y) in (14), which is equivalent to setting M as 1. Corresponding to a telescope

with a large circular primary mirror with a small secondary mirror at its center, the pupil function is taken to be the
indicator function of an annulus. For the phase diversity function, we set θ1(x, y) = cp(x2 +y2), where c is a constant
and p is the pupil function. The spatial domain is a 128× 128 pixel array. The simulated phase, phase diversity and
a couple PSFs are shown in Figure 1.

We then convolve the PSFs, hλk, with the hyperspectral image cube of a simulated binary star to simulate twenty
blurred images with added white noise, shown in Fig. 2. Clearly, images at lower wavelengths suffer more from
stronger blurring, while images at longer wavelengths are much more clear. This justifies our idea that the spectral-
independent membership functions, u, derived from longer wavelengths can used for spectral signature reconstruction
in the longer wavelengths. Note that we have not considered the diffraction effects here for longer wavelength, because
our longest wavelength is 2.4µm.

Figure 3 compares the estimated OPD function with the true one, and clearly the estimate is close to the true
OPD except in some high frequency parts. Figure 4(a) presents the estimated spectral signatures in blue compared
with the true ones in red, which are both quite similar in shape, though off by a certain scale. Note that usually it
is hard to estimate spectral responses at lower wavelengths without using the approach in (18), and for comparison,
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Figure 2: Simulated hyperspectral images with θ1 = c(x2 + y2).
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Figure 3: Comparison of the true OPD function with the estimated OPD function.

we also show the signatures extracted from an esimate of f without the segmented solution form in Fig. 4(b), and
clearly, we see the poorer estimates across all wavelengths.

Figure 5 shows the zoomed-in membership functions, where u1 is the membership function of the star on the top
left, and u2 is the membership function of the star on the bottom right. The sharp contrasts around the brightest
pixels in u1 and u2 demonstrate the good quality of estimates.

5 Conclusions

We have presented a joint model of blind-deconvolution and spectral-unmixing for reconstructing true image objects
and estimating blurring kernels from blurred and noisy hyperspectral images of space objects. An alternating op-
timization scheme is presented for jointly estimating spectral signatures and membership functions of space object
components, along with the blurring kernels parameterized by the optical path function. The model enjoys a much
smaller set of parameters when compared to the MFBD approach while wavelength diversity plus the phase diversity
increases the number of observed images of the same astronomical objects. We feel that more observations combined
with fewer parameters can enhance reconstruction success.
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