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1 Conference Paper

Accurate estimates for satellite drag coefficients are important in reducing the biases in densities derived from
satellite drag measurements as well as explicitly reducing the errors in orbit prediction. This work develops
an approach to estimate the drag coefficient for debris objects with known shape models. This paper focuses
on rocket bodies in particular. The attitude and angular velocities are determined and orientation estimates
are used to compute the drag coefficient using a flat plate model. A nonlinear least squares estimator is used
to estimate the attitude and angular velocity of the space object. The technique is validated using both
real data and simulated data scenarios. A number of representative rocket body models are used for the
simulated and real data examples. Good performance is shown for both simulated and real data cases.

2 Introduction

The SSN network has the unique challenge of tracking more than 18,000 space objects (SOs) and providing
critical collision avoidance warnings to military, NASA, and commercial systems. However, due to the large
number of SOs and the limited number of sensors available to track them, it is impossible to maintain per-
sistent surveillance. Observation gaps result in large propagation intervals between measurements and close
approaches. Coupled with nonlinear SO dynamics, this results in difficulty in modeling the probability dis-
tribution functions (pdfs) of the SO. In particular, low-Earth orbiting (LEO) satellites are heavily influenced
by atmospheric drag, which is very difficult to model accurately.

Los Alamos National Laboratory (LANL) has established a research effort, called IMPACT (Integrated
Modeling of Perturbations in Atmospheres for Conjunction Tracking), to improve conjunction assessment
via improved physics-based modeling. As part of this effort, calibration satellite observations are used to
dynamically calibrate the physics-based model and to improve its forecasting capability. The observations
are collected from a variety of sources, including LANL’s own Raven-class optical telescope. This system
collects both astrometric and photometric data on space objects. The photometric data will be used to
estimate the space objects’ attitude and shape.

A number of atmospheric models exist which can be classified as either empirical or physics-based models.
The current Air Force standard is the High Accuracy Satellite Drag Model (HASDM), which is an empirical
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model based on observation of calibration satellites. These satellite observations are used to determine
atmospheric model parameters based on their orbit determination solutions. Orbits passing within the
atmosphere are perturbed by a number of factors including: density, drag coefficient, attitude, and shape of
the space object. The satellites used for the HASDM model calibration process are chosen because of their
relatively simple shapes, to minimize errors introduced due to shape mis-modeling. Under this requirement
the number of calibration satellites that can be used for calibrating the atmospheric models is limited.

Simulations using computational methods, such as Direct Simulation Monte Carlo (DSMC), produce
accurate estimates for the drag coefficient, but are too slow for real-time applications of orbit prediction for
conjunction assessment. Therefore, modeling the drag coefficient is very important [1, 2]. In this work, we
present a technique for extracting the drag coefficient from light curve measurements

Non-resolved photometric data have been studied as a mechanism for space object characterization.
Photometry is the measurement of an object’s flux or apparent brightness measured over a wavelength
band. The temporal variation of photometric measurements is referred to as photometric signature. The
photometric optical signature of an object contains information about shape, attitude, size and material
composition [3–7]. This work focuses on the processing of the data collected with LANL’s telescope in
an effort to use photometric data to expand the number of space objects that can be used as calibration
satellites.

Light curves (the SO temporal brightness) have also been used to estimate the shape of an object.
Light curve techniques have been used to estimate the shape and state of asteroids [8, 9]. Reference [10]
uses light curves and thermal emissions to recover the three-dimensional shape of an object assuming its
orientation with respect to the observer is known. The benefits of using a light curve-based approach over
the aforementioned techniques is that it is not limited to large objects in lower orbits and it can be applied
to small and dim objects in higher orbits, such as geosynchronous. Here light curve data is considered for
shape estimation, which is useful because it provides a mechanism to estimate both position and attitude,
as well as their respective rates [3–7].

In the realm of spacecraft dynamics and orbit determination, the drag coefficient is defined in three
distinct ways: (i) a fixed drag coefficient, (ii) a fitted drag coefficient, and (iii) a physical drag coefficient.
Fitted drag coefficients are estimated as part of an orbit determination process and fixed drag coefficients
simply use a constant value for the drag coefficient. Errors from the use of fixed drag coefficients arise
because of the application of the value of 2.2 derived for compact satellites [11] to satellites with complex
geometries or geometries with high aspect ratios such as a rocket bodies. For high aspect ratio objects, there
can be a large amount of shear that drastically increases the drag coefficient. Meanwhile, multiple reflections
for complex geometries can also lead to divergence from the commonly used value of 2.2. The drag coefficient
also changes with altitude and solar conditions [12,13]. Fitted drag coefficients are specific to the atmospheric
model used in the orbit determination process and therefore carry along the limitations of the atmospheric
model and also frequently absorb other model errors. Physical drag coefficients are determined by the energy
and momentum exchange of freestream atmospheric particles with the spacecraft surface [14]. Throughout
this work, the term drag coefficients will refer to physical drag coefficients, unless stated otherwise.

The drag coefficient, characterized by the interaction between the atmosphere and the object, is an
independent source of error whereas the errors in atmospheric mass density often stem from the use of fixed
and/or fitted drag coefficients in its derivation from orbital drag measurements. Accurately deriving densities
from drag measurements requires, in addition to accurate and high temporal resolution data (as in the case
of an accelerometer), accurate modeling of the drag coefficient along the orbit. In addition, the use of fixed
and/or fitted drag coefficients can by itself induce large orbit prediction errors.

Closed-form solutions for the drag coefficients of satellites with simple convex geometries like a sphere,
cylinder, and cube in free molecular flow (FMF) were developed early in the Space Age [14, 15]; however,
most satellites have complex shapes with concave geometries and require numerical modeling of the drag
coefficient. The need for numerical modeling arises from multiple surface reflections and flow shadowing that
changes the incident velocity distribution which is assumed to be Maxwellian for the analytic solutions. The
drag coefficient in FMF is a function of the atmospheric translational temperature, T , surface temperature,
Tw, spacecraft relative velocity, vrel, chemical composition of the atmosphere, and gas-surface interaction
(GSI) model.

The organization of this paper is as follows. First, the methodology is briefly discussed and following this,
the shape models used in this work are discussed. Next, light curve and flux calculated models are shown.
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(a) Space Object Shape Model

 

B
uu  

B
vu  

B
nu  

obs
I
u  

sun
I
u  

I
hu  

(b) Reflection Geometry

Figure 1: Reflection Geometry and Space Object Shape Model

Then atmospheric drag model is shown and the analytical CD expression for a flat plate model is shown and
discussed. Following this, the nonlinear least squares approach used in this work is outlined. Finally, results
are shown for simulated and real data examples, discussions, and conclusions are provided.

3 Shape Model Definition

The shape model considered in this work consists of a finite number of flat facets, where each facet has a set
of basis vectors associated with it. These basis vectors are defined in Figure 1(b) and consist of three unit
vectors uB

n , u
B
u , and uB

v . The unit vector u
B
n points in the direction of the outward normal to the facet. For

convex surfaces, this model becomes more accurate as the number of facets is increased. The vectors uB
u

and uB
v are in the plane of the facet. The space objects (SOs) are assumed to be rigid bodies and therefore,

the unit vectors uB
n , u

B
u and uB

v do not change since they are expressed in the body frame.
The light curve and the solar radiation pressure (SRP) models discussed in the next sections require that

these vectors be expressed in inertial coordinates and since the SO body is rotating, these vectors will change
with respect to the inertial frame. The body vectors can be rotated to the inertial frame by the standard
attitude mapping given by:

uB
k = A(qB

I )u
I
k, k = u, v, n (1)

where A(qB
I ) is the attitude matrix mapping the inertial frame to the body frame using the quaternion

parameterization. Furthermore, the unit vector uI
sun points from the SO to the Sun direction and the unit

vector uI
obs points from the SO to the observer. The vector uI

h is the normalized half vector between uI
sun

and uI
obs. This vector is also known as the Sun-SO-Observer bisector. Each facet has an area A(i) associated

with it. Once the number of facets has been defined and their basis vectors are known, the areas A(i) define
the size and shape of the SO. To determine the SRP forces and light curve characteristics, the surface
properties must be defined for each facet.

The shape model used for this work use triangular facets defined by the location of their vertices bi.
Then the area of the ith triangular facet formed by the convex hull of the control points is given by, A(i) =
‖d(i) × l(i)‖, where d(i) and l(i) are the vectors defining two sides of the facets or d(i) = bi − bi−1,
l(i) = bi − bi+1. The unit normal vector is given by

un =
d(i)× l(i)

‖d(i)× l(i)‖ (2)

For this work it is assumed that each facet has the same material parameters (specular coefficients, diffuse
coefficients, and other reflection parameters discussed in the next section).

3



−4
−2

0
2

4 −4 −2 0 2 4

−4

−3

−2

−1

0

1

2

3

4

x (m) y (m)

z
(m

)

(a) Cylinder with Round Top

−5
0

5
−6 −4 −2 0 2 4 6

−6

−4

−2

0

2

4

6

x (m) y (m)

z
(m

)

(b) Atlas Upper Stage

−4
−2

0
2

4 −4 −2 0 2 4

−4

−3

−2

−1

0

1

2

3

4

x (m) y (m)

z
(m

)

(c) Cylinder

−5
0

5
−6 −4 −2 0 2 4 6

−6

−4

−2

0

2

4

6

x (m) y (m)

z
(m

)

(d) Falcon 9 Upper Stage

Figure 2: Representative Shape Models for Rocket Bodies

4 Ashikhmin-Shirley Model

In addition to the azimuth and elevation, the optical site also records the magnitude of the brightness of
the SOs. The brightness of an object in space can be modeled using an anisotropic Phong light diffusion
model or the Ashikhmin-Shirley model. [16] This model is based on the bidirectional reflectance distribution
function (BRDF) which models light distribution scattered from the surface due to the incident light. The
BRDF at any point on the surface is a function of two directions, the direction from which the light source
originates and the direction from which the scattered light leaves the observed surface. The model in Ref. 16
decomposes the BRDF into a specular component and a diffuse component. The two terms sum to give the
total BRDF:

ρtotal(i) = ρspec(i) + ρdiff(i) (3)

The diffuse component represents light that is scattered equally in all directions (Lambertian) and the
specular component represents light that is concentrated about some direction (mirror-like). Reference 16
develops a model for continuous arbitrary surfaces but simplifies for flat surfaces. This simplified model is
employed in this work as shape models are considered to consist of a finite number of flat facets. Therefore
the total observed brightness of an object becomes the sum of the contribution from each facet.

Under the flat facet assumption the specular term of the BRDF becomes [16]

ρspec(i) =

√

(nu(i) + 1) (nv(i) + 1)

8π

(

uI
n(i) · uI

h

)z

uI
n(i) · uI

sun + uI
n(i) · uI

obs − (uI
n(i) · uI

sun)(u
I
n(i) · uI

obs)
Freflect(i) (4)
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where the exponent z is given by

z =
nu(i)(u

I
h · uI

u(i))
2 + nv(i)(u

I
h · uI

v(i))
2

(1− (uI
h · uI

n(i))
2)

(5)

where the Fresnel reflectance is given by

Freflect(i) = Rspec(i) + (1− Rspec (i))
(

1− uI
sun · uI

h

)5
(6)

where Rspec is the specular reflectance coefficient. The parameters of the Phong model that dictate the
directional (locally horizontal or vertical) distribution of the specular terms are nu and nv. The terms in
Eq. (4) are functions of the reflection geometry which is described in Figure 1(b). The diffuse term of the
BRDF is

ρdiff(i) =

(

28Rdiff(i)

23π

)

(1−Rspec(i))

[

1−
(

1− uI
n(i) · uI

sun

2

)5
][

1−
(

1− uI
n(i) · uI

obs

2

)5
]

(7)

where Rdiff(i) is the diffuse coefficient for the ith side. The model discussed above assumes only single
scattering and no self shadowing.

4.1 Flux Calculation

The apparent magnitude of an SO is the result of sunlight reflecting off of its surfaces along the line-of-sight
to an observer. First, the fraction of visible sunlight that strikes an object (and is not absorbed) is computed
by

Fsun(i) = Csun,vis

(

uI
n(i) · uI

sun

)

(8)

where Csun,vis = 1062 W/m2 is the power per square meter impinging on a given object due to visible light
striking the surface. If either the angle between the surface normal and the observer’s direction or the angle
between the surface normal and Sun direction is greater than π/2 then there is no light reflected toward
the observer. If this is the case then the fraction of visible light is set to Fsun(i) = 0. Next, the fraction of
sunlight that strikes an object that is reflected must be computed:

Fobs(i) =
Fsun(i)ρtotal(i)A(i)

(

uI
n(i) · uI

obs

)

‖dI‖2 (9)

The reflected light of each facet is now used to compute the total photon flux, which is measured by an
observer:

F̃ =

[

N
∑

i=1

Fobs(i)

]

+ vCDD (10)

where vCDD is the measurement noise associated with flux measured by a Charge Coupled Device (CCD)
sensor. The total photon flux is then used to compute the apparent brightness magnitude

mapp = −26.7− 2.5log10

∣

∣

∣

∣

∣

F̃

Csun,vis

∣

∣

∣

∣

∣

(11)

where −26.7 is the apparent magnitude of the sun.

5 Atmospheric Drag

The drag acceleration on a satellite is defined by

aIDrag = −1

2

CDA
m

ρv2
rel

vrel

|vrel|
(12)

where aIDrag is the drag force on the satellite, ρ is the mass density of the local atmosphere, vrel is the
relative velocity between the satellite and the co-rotating atmosphere, CD is the satellite drag coefficient, A

5



is the projected area of the satellite normal to the velocity vector, and m is the satellite mass. In practice, A
and m are well-known for attitude-stabilized artificial satellites while vrel can be assumed to be accurately
known in the absence of atmospheric winds.

The remaining two unknowns are ρ and CD. For orbital propagation, ρ is generally taken from an empir-
ical atmospheric model such as NRLMSISE-00. This leaves CD as the only remaining unknown parameter.
Early in the space age, it was common practice to simplify orbital propagation by using CD ∼2.2; however,
theoretical work has shown that CD can have large variations away from the constant value of 2.2. CD is de-
pendent on the atmospheric translational temperature, the speed of the satellite relative to the atmosphere,
the satellite surface temperature, the atmospheric composition, the satellite surface composition, and the
momentum and energy accommodation coefficients of the satellite surface.

Nearly all low Earth orbit satellites orbit at altitudes above ∼200 km where the atmosphere is free
molecular. In free molecular flow, collisions between particles are so infrequent that they can be neglected.
Under such conditions, closed-form solutions can be found for simple convex satellite geometries such as a
sphere, flat plate, and cylinder. Closed-form solutions only exist for convex geometries because the concave
geometries allow multiple reflections from the satellite surface and break a fundamental assumption of the
solution that the incident velocity distribution function is Maxwellian.

The closed-form solution for the drag coefficient of a flat plate with a single side exposed to the flow is
especially useful because any arbitrary geometry (convex or concave) can be decomposed into small flat plate
elements. The total drag coefficient for an arbitrary geometry is then approximated as the sum of the drag
coefficients of each of the flat plate elements. For convex geometries, the approximation converges to the
true drag coefficient as the flat plate elements’ size goes to zero. For concave geometries, the approximation
does not account for multiple reflections from the satellite surface and is generally in error by a few percent.

Sentman [15] derived the closed-form solution for a flat plate with a single side exposed to the flow under
the assumption of diffuse reflection. This solution assumes only single scattering and no self shadowing. The
solution in terms of the angle of attack, θ, is given by

CD =cos(θ)

(

1 +
1

2s2

)

[1 + erf(s cos(θ))] +

(

1√
πs

)

exp
{

−(s2 cos2(θ))
}

+

√

T(k,r)

T∞

[√
π

2s
cos2(θ) (1 + erf(s cos(θ))) +

(

cos(θ)

2s2

)

exp
{

(−s2 cos2(θ))
}

]

(13)

The angle of attack is defined θ = arccos(vT
relun). Here s is the speed ratio defined by

s =
|vrel|
vmp

(14)

where vmp is the most probable speed of a Maxwellian velocity distribution at the local translational tem-
perature of the atmosphere, T∞, and is defined by

vmp =

√

2kBT∞

mp
(15)

Here kB is the Boltzmann constant and mp is the atmospheric particle mass. The error function, erf(x), is
defined as

erf(x) =
2√
π

x
∫

0

e−t2dt (16)

T(k,r) is the kinetic reflected temperature and is defined by

T(k,r) = T(k,i)(1 − α) + αTs (17)

where α is the energy accommodation coefficient and T(k,i) is the kinetic incident temperature defined by

T(k,i) =
mp|vrel|2

3kB
(18)
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When computing the drag coefficient for a mixture of gases, the total drag coefficient is the sum of the
individual species drag coefficients weighted by the species mole fraction and particle mass and normalized
by the average mass of the mixture, mavg:

C(D,T ) =
1

mavg

N
∑

j=i

χjmjCD,j (19)

NRLMSISE-00 is used to compute the mole fractions χj for each specie. Here N is the total number of
species and mavg is computed from

mavg =

N
∑

j=i

χjmj (20)

Finally, the CD for the faceted model is calculate by summing C(D,T )(i) for each facet, i = 1, . . . , N

C(D,T ) =
1

∑N
j=i A cos(θ)φ

N
∑

j=i

C(D,T )(i)A (21)

where φ = 1 for φ < 90 degs and φ = 0 otherwise.

6 Nonlinear Least Squares

The estimation approach chosen for this work is the Nonlinear Least Squares (NLSQ) method. This method
is a batch method and therefore it processes all the data at once. To apply the NLSQ method to attitude
and angular velocity determination, one must linearize both the measurement and dynamic model. Also
the attitude representation chosen for this work is the quaternion and therefore the attitude error must be
approximated by a small angle error to avoid the quaternion unit constraint. The goal is to estimate a state
xk for times tk from measurements zk for k = 1, . . . ,m. Consider the following dynamic and measurement
model, assuming m scalar measurements with uncorrelated measurement errors

xk+1 = fk(xk) (22a)

zk = gk(xk) + nk (22b)

where ni ∼ N (ni; 0,Σ
2
i ) and E {ninj} = δijΣ

2
i . Then Eq. (22a) and Eq. (22b) can be used to estimate the

initial condition of the system, x0, by writing the measurements as zk = gk(φk(x0)) + nk where φk(·) takes
initial conditions and maps them to time k. The measurements can be written in vector form as

y = h(x0) + v (23)

where y = [z1, . . . , zm], v ∼ N (v;0, R), R = diag
(

Σ2
1, . . . ,Σ

2
m

)

, and h(·) = gk(φk(·)). The system in Eq (22)
can be solved using nonlinear least square by linearizing the system about the current estimate. Using a
Taylor series expansion, the measurement function from Eq. (23) can be written as

h(xo) = h(x̂o) +H(x̂o)(x̂o − xo) +O(2) (24)

where H = ∂h(x̂o)
∂xo

∣

∣

∣

xo=x̂o

= ∂g(φk(x̂o))
∂φk

∂φk(x̂o)
∂xo

∣

∣

∣

xo=x̂o

. The derivatives of the measurement function g(·) and
the dynamic function φk(·) must be calculated. The derivatives of gk(·) can be derived from the equations
in section 4 and are shown in reference 17. The derivatives of φk(·) involve the linearization of attitude
kinematics and dynamic equations and these equations are shown later in the appendix. The NLSQ solution
can be found by minimizing the following cost function

J(xo) =
1

2
[z− h(xi)]

T
W [z− h(xi)] (25)

where the weighting matrix is selected to be the inverse measurement covariance W = R−1. The formal
NLSQ iterative solution can be written as

x̂i+1
o = x̂i

o +
[

HT
i WHi

]−1
HT

i W [z− h(xi)] (26)
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where Po = E{(x̂o − xo)(x̂o − xo)
T } and Po =

(

HT
i WHi

)

−1
The estimate of xo is obtained using Eq.(26)

iteratively until a termination condition is met. Two conditions are set in this work, max number of iterations,
imax, and relative tolerance

ǫ =
‖x̂i+1

o − x̂i
o‖

‖x̂i
o‖

(27)

For this work ǫ = 0.1 and imax = 200. This solution allows for a covariance to be computed for each time step
by using Po and the linearized dynamic equations. Then this covariance can be used to represent uncertainty
in CD that is computed from the orientation estimates.
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Figure 3: True Attitude and Angular Velocity Profile

7 SIMULATION RESULTS

This section discusses simulation results for the proposed method. Four examples are considered; each
example uses different shape model. The shape models used are shown in Figure 2. The shape models used
are; a cylinder with round top (Figure 2(a)), Atlas upper stage (Figure 2(b)), cylinder (Figure 2(c)), and a
Falcon 9 upper stage (Figure 2(d)) model. Each model uses the same initial attitude and positions states
and simulation conditions are given by

• Geographic position of the ground site is 0◦ North, 172◦ West with 0 km altitude

• The orbital elements are given by a = 25864.16932 km, e = 0.743, i = 30.0083 deg, ω = Ω = 0.0 deg
and M0 = 91.065 deg

• The initial time of the simulation is May 8, 2007 at 5:27.55 UTC

• Initial quaternion: qB
I = [1/

√
2 0 0 1/

√
2]T

• A constant rotation rate, defined as the body rate with respect to the inertial frame (represented in
body coordinates) is used given by ω

B
B/I = [0 0.00262 0]T rad/s

For all simulation scenarios, measurements of apparent magnitude are produced using zero-mean white-
noise error processes with a standard deviation of 0.05 for magnitude. The initial errors for the states are 50
deg for all three attitudes, 1, 000 deg/hr for the rotational rate. The time interval between the measurements
is set to 1 seconds and data are simulated for 1 hour. The simulation true quaternion and angular velocity
are shown in Figure 3 and all simulation case have the same true orientational trajectories.

Figure 4 shows the simulated magnitude measurements for the models considered for this workusing
Eq. (11). From this figure we can see that the simulate magnitude differ greatly for each rocket body model.
The estimates found by the NLSQ approach for each case are shown in Figures 5, 6, 8, and 7. The simple
cylinder model has the smallest variation since it has the smallest number of shape features and smoothest
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Figure 4: Apparent Magnitude for Different Rocket Body Models

shape. The Falcon 9 upper stage has the greatest variation since it has a very large nozzle which provides a
distinct feature in the light curve. The light curves of cylinder with round top model and atlas upper stage
of similar magnitudes but the atlas upper stage has additional variation due to the small nozzle in its shape
model. We can see from the simulation results that all the models shown good performance in terms of the
measurement residual and by how well the predicted observations match the actual observation. However,
since the light curves for the models are different they do not show the same observability in terms of the
attitude and angular velocity estimated. In all cases except the a cylinder with round top the NLSQ approach
converged to local solutions that do not make the true rotational states very well but fit the observations.
This is due to the fact that these shapes have symmetries and therefore have multiple solutions. These
ambiguities will be studied more in future work but the method can still predict the observations very well.
From Figure 8 we can see that Falcon 9 rocket body shows the best attitude error of about 0.2 Degs, 0.2
Degs, and 5 Degs, in roll, pitch, and yaw, respectively.

Finally, the estimates from the NLSQ approach are used to compute CD using the equations from section
5. These CDs are shown in Figure 10 for each rocket body model. From this figure, one can see that
variations due to both rotation of the rocket bodies and changes in vrel due to orbital motion. The CD

values can be used to compute a mean CD and a variance about that mean. This could be used to quantify
the uncertainty in CD if one assume a constant CD. To highlight these variations Figure 9(b) shows the
CD values for altitudes less than 1000km for all models considered. This figure highlights how the shape
geometry effects CD, since each model has the same rotational dynamics, the variations shown here are due
to geometry differences. Models that are similar like the Cylinder with Round Top and Cylinder have more
similar CD values, whereas the Falcon 9 Upper Stage has the largest difference from all other models. These
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values could be used for orbit propagation and orbit determination directly.
The NLSQ approach provides a covariance for the estimated attitude and this along with unscented

transformation discussed in Ref. 18 can be used to compute the variance in CD due to attitude uncertainty
considering the model in Eq. (13). The variance in CD due to attitude uncertainty is shown in Figure 9(a)
for the Round Top rocket body model along with the mean CD estimate. From this figure it can be seen
that the CD 3σ does change along the trajectory and has different sensitivity at different altitudes.
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Figure 5: NLSQ Results for Cylinder with Round Top Rocket Body Model
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Figure 6: NLSQ Results for Cylinder Rocket Body Model

8 Actual Data Scenario

In this section, actual data from Los Alamos’ satellite observation campaign was used. The data used in
this example was gathered September 19 2012 03:29:30 UT. The object that was observed was an ARIANE
3 Rocket body with SSN number 15562. The observations were made with a small Raven-class telescope,
located at LANL’s high-altitude, dark site at Fenton Hill, NM. The observations were sampled every second
for 5 mins. The simulation results for the real data example are shown in Figure 11. From Figure 11(c),
we can see that the predicted magnitude fits the observations well and captures the main period of the
light curve measurements. The estimated quaternion and angular velocity are shown in Figures 11(a) and
11(b). The orientation trajectory was recovered from actual data but more development is required until
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Figure 7: NLSQ Results for Altas Rocket Body Model
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Figure 8: NLSQ Results for Falcon 9 Rocket Body Model
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Figure 9: Comparison of CD for Different Models
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Figure 10: Drag Coefficient For Different Rocket Body Models

this can provide improvement for orbit propagation, determination, or atmospheric density recovery. The
measurement error must be understood better to allow for accurate uncertainty quantification.

9 Conclusions

In this paper, an Nonlinear Least Squares estimation scheme using light curve measurements was presented
and used to estimate attitude and angular velocity of a space object (SO) with an assumed shape. This work
focused on rocket bodies with perigee altitude lower than 300 km. The shape models consisted of triangular
facets to allow for the modeling of complex rocket body shapes. Four different rocket body models were used:
a simple cylinder, a simple cylinder with rounded top, a Falcon 9 upper stage, and an Atlas upper stage.
The light curve model used was based on the Ashikhmin-Shirley BRDF and showed good performance for
simulated and real data examples. The estimated orientation trajectories were used to estimate the drag
coefficient of the SO over an orbit. This drag coefficient can then be used in orbit determination, orbit
propagation, or to bound uncertainty of the drag coefficient over the orbit based on orientation variations.
Future work will study the use of this approach along with the Tomography [19] method to recover density.

10 Appendix

In terms of the quaternion, the attitude matrix is given by

A(q) = ΞT (q)Ψ(q) (28)
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Figure 11: Real Data Example

where

Ξ(q) ≡
[

q4I3×3 + [̺×]
−̺

T

]

(29a)

Ψ(q) ≡
[

q4I3×3 − [̺×]
−̺

T

]

(29b)

with

[a×] ≡





0 −a3 a2
a3 0 −a1
−a2 a1 0



 (30)

for any general 3 × 1 vector a defined such that [a×]b = a × b. This representation is constrained since
the quaternion is of unit length and therefore qTq = 1. The kinematics dynamics are given by a first-order
differential equation:

q̇ =
1

2
Ξ(q)ω (31a)

ω̇
B
B/I = J−1

SO

(

−
[

ω
B
B/I×

]

JSOω
B
B/I

)

(31b)
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[14] Schaaf, S. A. and Chambré, P. L., Flow of rarefied gases , Princeton University Press Princeton, 1961.

[15] Sentman, L., Missiles, L., and Company, S., Free Molecule Flow Theory and Its Application to the
Determination of Aerodynamic Forces , LMSC-448514, Lockheed Missiles & Space Company, a division
of Lockheed Aircraft Corporation, 1961.

[16] Ashikmin, M. and Shirley, P., “An Anisotropic Phong Light Reflection Model,” Tech. Rep. UUCS-00-
014, University of Utah, Salt Lake City, UT, 2000.

14



[17] Hinks, J. C., Linares, R., and Crassidis, J. L., “Attitude Observability from Light Curve Measurements,”
AIAA Guidance, Navigation, and Control (GNC) Conference, No. 10.2514/6.2013-5005, AIAA, Boston,
MA, 2013.

[18] Julier, S. J., Uhlmann, J. K., and Durrant-Whyte, H. F., “A New Method for the Nonlinear Transforma-
tion of Means and Covariances in Filters and Estimators,” IEEE Transactions on Automatic Control ,
Vol. AC-45, No. 3, March 2000, pp. 477–482.

[19] Shoemaker, M. A., Wohlberg, B., Linares, R., and Koller, J., “Application of Optical Tracking and
Orbit Estimation to Satellite Orbit Tomography,” AAS/AIAA Astrodynamics Specialist Conference,
2013.

15


