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ABSTRACT 

In this paper, we present a method to directly convert the photometric measurements to the projected albedo-Area 
product of a resident space object.  The derivation is based on Lambertian reflectance but is general in all other 
ways.  Its most powerful attribute is that it is independent of sensor, space object geometry and other characteristics, 
as well as photometric waveband.  The governing expression can be combined with specific geometries of different 
orbits and satellite attitude control methods to obtain a parent equation from which the component projected albedo-
Area products can be calculated. 
 
First we develop the governing expression from first principals and provide its physical and mathematical 
foundations.  Then we derive, for the specific case of a three-axis stabilized satellite with a nadir-pointing body and 
articulating solar panels, the parent equation for the unique geometries of this case.  Then we show how to 
decompose the aggregate albedo-Area product of the satellite into the respective albedo-Area products of the body 
and the solar panels. 
 
The governing albedo-Area expression provides a baseline that can be utilized for the characterization of a variety of 
space objects irrespective of their geometry and attitude. 

1.0 INTRODUCTION 

Objects in deep space, especially those in geosynchronous orbit, present challenges to electro-optical and radar 
technologies.  One of the biggest challenges is to characterize objects that are spatially non-resolvable by either 
technology.  There are a few features that are readily extracted from the reflected solar illumination off of the 
objects.  If the object is tumbling or spinning, variations in the brightness can be used to compute the spin period and 
spin axis [1].  If the object is three-axis stabilized, variations in the brightness can be used to classify the object by 
signature type [2].  The time-scales over which these variations occur are typically very different for these two 
cases.  Unstable or spin-stabilized objects vary on the timescales of minutes while three-axis stabilized objects vary 
on the timescales of hours.  However, in the latter case, there is much work ahead to understand the variations in 
brightness as they relate to the satellite body and solar panel physical attributes.  To this end, we work from first 
principals to derive equations for decomposing the aggregate reflectance of a three-axis stabilized object by 
considering the nadir pointing parts of the object as one facet (termed the “body”) and the solar tracking parts of the 
object as another facet (termed the solar panels).  This comprises the two-facet model [3]. 
 
Presently we are not merely content with using the brightness data per se as a characteristic feature, but wish to 
extract more information from the brightness data relevant to physical properties of the object itself.  The reflected 
brightness of an object is dependent on two intrinsic properties; the albedo of the surface materials and the projected 
area visible to the observer.  These traits are intertwined and cannot be separated without data complimentary to the 
brightness data.  However their product, albedo-Area, can be directly extracted from the brightness data. 
 
The main objective of this paper is to show the derivation of the calculations that decompose the total photometric 
signature into component panel and body albedo-Areas.  To that end, the construction of the two-facet model is 
explained, providing an overview of the geometry and the Bidirectional Reflectivity Distribution Function (BRDF) 
employed.  The derivation of the total albedo-Area from its photometric signature is provided, and, lastly, the total 
projected albedo-Area’s decomposition into the component panel and body albedo-Areas is explained.  A second 
objective of this paper is to provide an explanation of the physical and mathematical foundations of the work. Since 
the laws that govern reflectance photometry and radiometry which underlie this work are gathered from a variety of 
sources, it is often difficult (or at least time consuming) to find the relevant, disparate pieces of information.  
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Accordingly, this paper is meant to fill this gap by aggregating the concepts germane to the conversion of brightness 
data into albedo-Area. 
 
This paper is organized as follows.  First we start our discussion in Section 2.0 by reviewing the definitions of 
intensity and flux and the relationship between them.  Next, the fundamental concepts and assumptions used in the 
model are presented in Section 3.0.  In Section 4.0, we present the derivation of the projected albedo-Area equation.  
Then in Section 5.0, we examine the body component to set up how the aggregate albedo-Area is decomposed to 
solve for the body and panel albedo-Areas separately, which is discussed in Section 6.0.  Finally the conclusions are 
presented in Section 7.0. 

2.0 PRELIMINARY CONSIDERATIONS 

Before preceding further, the definitions of intensity and flux, as laid out in Henden’s and Kaitchuck’s Astronomical 
Photometry, are presented [4].  This is done to justify the relationship between intensity and flux used in the 
derivation.  Although these terms are based in emissive radiometry, they are the foundation for the reflectance 
equations when considering an unresolved point source.  Please note the scope of variables defined in this section 
does not extend to subsequent sections.  In other words, the definition of several symbols used here is limited to this 
section only. 

2.1 INTENSITY 

First, recall that a steradian is the central solid angle of a sphere of radius 𝑟 subtended by an area on the sphere 
equal to 𝑟! (note that the shape of the area is irrelevant, but often considered circular or rectilinear).  Since the 
surface area of a sphere is 4𝜋𝑟!, there are 4𝜋 steradians in a sphere.  This means that the volume of one steradian is 
!
!!

 of the total volume of the sphere that subtends it.  Furthermore, since one steradian is the ratio between an area 
and the square of the radius, both having dimension 𝑙𝑒𝑛𝑔𝑡ℎ!, the steradian is unitless.  The symbol 𝑠𝑟, however, is 
used to denote steradians for bookkeeping. 
 
Intensity, then, is the total energy in a certain waveband flowing through a solid angle subtended by an area on the 
source.  If a source is radiating evenly, for instance, one steradian central solid angle would contain !

!!
 of the total 

energy radiated.  Consider Fig. 2-1, adapted from the text [4]. 

 
Fig. 2-1. Intensity Observed from a Source 

𝛥𝐴 is an area on the surface of the source.  As 𝛥𝐴 → 0, it becomes a small area subtending the solid angle 𝛥𝜔 
infinitesimally close to the vertex, while 𝛥𝜔 may be offset from the surface normal by angle 𝜃 (depending on the 
orientation of the observer).  In the case that 𝜃 = 0, an observer peering down the axis of 𝛥𝜔 would observe the 
actual area 𝛥𝐴.  As 𝜃   → 90°, however, the apparent area (and therefore the observed intensity) approaches zero.  
One may visualize this concept by holding a flat object face-on and then slowly rotating it so that it is eventually 
edge-on.  It is the projected area, 𝛥𝐴 ∙ 𝑐𝑜𝑠(𝜃), that is of importance. 
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Intensity, in more detail, is the total energy 𝛥𝐸 in a certain waveband flowing from a source into a solid angle 𝛥𝜔 
from a projected area 𝛥𝐴 ∙ 𝑐𝑜𝑠(𝜃) over time 𝛥𝑡, where 𝛥𝐸 is proportional to 𝛥𝜔, 𝛥𝐴 ∙ 𝑐𝑜𝑠(𝜃), and 𝛥𝑡.  Intensity 𝐼 is 
then defined as the ratio of these quantities as they tend to zero, as shown next in (2-1). 

𝑰 =    𝐥𝐢𝐦
𝜟𝑬  →𝟎
𝜟𝝎→𝟎
𝜟𝑨→𝟎
𝜟𝒕→𝟎

𝜟𝑬
𝜟𝝎  𝜟𝑨 𝐜𝐨𝐬 𝜽 𝜟𝒕

⇓

𝑰 =   
𝒅𝑬

𝒅𝒕  𝒅𝝎  𝒅𝑨  𝒄𝒐𝒔 𝜽   

 (2-1) 

2.2 FLUX 

Flux, on the other hand, is the measure of the net energy transfer in a certain waveband across an area over time [4].  
As in Fig. 2-1, an area 𝛥𝐴 on the source is the threshold through which energy may enter or exit.  Flux, then, is the 
net sum of the energy 𝛥𝐸 flowing both inward and outward through 𝛥𝐴 over time 𝛥𝑡. Recall that 𝛥𝐸 is proportional 
to 𝛥𝐴 and 𝛥𝑡.  Flux 𝑓 is then defined to be the sum as the quantities tend to zero, shown in (2-2). 

𝒇 =    𝒍𝒊𝒎
𝜟𝑬  →𝟎
𝜟𝑨→𝟎
𝜟𝒕→𝟎

𝜟𝑬
𝜟𝑨 ∙ 𝜟𝒕

⇓

𝒇 =
∫ 𝒅𝑬
𝒅𝑨  𝒅𝒕

 (2-2) 

2.3 RELATIONSHIP BETWEEN INTENSITY AND FLUX 

Solving for 𝑑𝐸 from (2-1), equation (2-3) is obtained. 

𝒅𝑬 =   𝑰  𝒅𝒕  𝒅𝝎  𝒅𝑨  𝒄𝒐𝒔 𝜽  (2-3) 

Substituting (2-3) into (2-2) and integrating over all angles, the following expression for flux in terms of intensity is 
obtained, shown next in (2-4). 

𝒇 = 𝑰 𝐜𝐨𝐬 𝜽   𝒅𝝎
𝒂𝒍𝒍  𝒂𝒏𝒈𝒍𝒆𝒔

 (2-4) 

Up to this point, the geometry of the situation has been viewed from the perspective of the “solid angle” convention.  
Although this is helpful for visualization, it is more convenient to convert to spherical coordinates when doing the 
actual integration.  That conversion is now performed, followed by the computation of the flux-intensity integral. 
 
Consider a spherical coordinate system in lieu of the solid angle convention, with 𝑟   =   1.0, as shown in Fig. 2-2.  
Recall Fig. 2-1.  Let the normal be the 𝑧  𝑎𝑥𝑖𝑠, and let the 𝑥𝑦  𝑝𝑙𝑎𝑛𝑒 lie tangent to the area 𝛥𝐴.  Let 𝜔 be the solid 
angle swept out by the angle 𝜃 off the 𝑧  𝑎𝑥𝑖𝑠 ranging from 0 to 𝜋 and by the angle 𝜙 off the 𝑥  𝑎𝑥𝑖𝑠 in the 𝑥𝑦  𝑝𝑙𝑎𝑛𝑒 
ranging from 0 to 2𝜋. 
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Fig. 2-2. Solid Angle Conversion to Spherical Coordinates 

This solid angle 𝜔, subtended by the unit sphere and forming a rectilinear casque, can now be differentiated in terms 
of spherical coordinates, as shown in (2-5). 

𝒅𝜽 = 𝒅𝒗  and  𝒅𝝓 =
𝒅𝒉

𝐬𝐢𝐧 𝜽
⇓

𝒅𝒉 = 𝐬𝐢𝐧 𝜽 𝒅𝝓
⇓

𝒅𝝎 = 𝒅𝒗  𝒅𝒉 = 𝒔𝒊𝒏 𝜽 𝒅𝜽  𝒅𝝓

 (2-5) 

Substituting now for 𝑑𝜔 in (2-4) and integrating over 𝜃 and 𝜙, the following expression for flux, shown in (2-6), is 
obtained. 

𝒇 = 𝑰 𝐜𝐨𝐬 𝜽 𝐬𝐢𝐧 𝜽   𝒅𝜽𝒅𝝓
𝝅

𝟎

𝟐𝝅

𝟎
 (2-6) 

Equation (2-6) can now be broken up into the component energies moving inward and outward from the surface, as 
shown next in (2-7). 

𝒇 = 𝑰𝑶𝑼𝑻 𝐜𝐨𝐬 𝜽 𝐬𝐢𝐧 𝜽   𝒅𝜽  𝒅𝝓
𝝅
𝟐

𝟎

𝟐𝝅

𝟎
+ 𝑰𝑰𝑵 𝐜𝐨𝐬 𝜽 𝐬𝐢𝐧 𝜽   𝒅𝜽𝒅𝝓

𝝅

𝝅
𝟐

𝟐𝝅

𝟎
 (2-7) 

Since only the flux outward from the source is considered, the inward contribution is zeroed out, as shown in (2-8). 

𝒇 = 𝑰 𝐜𝐨𝐬 𝜽 𝐬𝐢𝐧 𝜽   𝒅𝜽  𝒅𝝓
𝝅
𝟐

𝟎

𝟐𝝅

𝟎
 (2-8) 

Furthermore, assuming 𝐼 does not depend on any angle (which is true only in the Lambertian reflectance case), it 
may be factored out.  The integral is now directly computed in (2-9). 

𝒇 =   𝝅𝑰
⇓

𝑰 =
𝟏
𝝅
𝒇

 (2-9) 

It has now been established that, in the Lambertian case and at the source before radiating outward, flux is 
proportional by a factor of 𝝅 to intensity [4].  Equation (2-9) will be invoked when the equation for the projected 
albedo-Area of the space object is derived. 



5 

3.0 FUNDAMENTALS 

In this section, the prerequisite theory and assumptions underlying the model are outlined, and the definitions of 
specific terms and angles are provided.  This section ends with the derivation of the total reflected intensity 
equation, which is the foundation for the total albedo-Area equation derived in Section 4.0. 

3.1 ASSUMPTIONS 

1. The space object has a three-axis stabilized, nadir-pointing body. 
2. The space object has sunward facing, articulating solar panels. 
3. The space object is represented by a two-facet model in which one facet represents the solar panels and the 

other represents the body. 
4. The panel facet is approximately planar and possesses both specular and Lambertian reflectance properties.  

Because it tends to zero away from the vector of specular reflection (glint), the specular component is only 
dominant within a glint region.  Otherwise, the panel reflectance is dominated by Lambertian reflectance. 

5. The body is a complex three-dimensional shape with approximately Lambertian aggregate reflectance.  Its 
albedo-Area is pose-dependent and is more accurately represented by a series of values rather than by a 
single value. 

3.2 “PROJECTED” VS. “INTRINSIC” ALBEDO-AREA 

The albedo-Area (𝑎𝐴) of an object is the product of its albedo, the ratio of the electro-magnetic radiation reflected 
by an object to the amount that is incident on it, with its area.  Since albedo is a ratio of quantities of equivalent 
dimension, it is unit-less.  The 𝑎𝐴 then, is reported in units of area, [𝑚!]. 
 
While 𝑎𝐴 is a property that is intrinsic to an object, the observed 𝑎𝐴 of an object at any given moment is a 
projection of its geometry of observation with respect to the source of illumination and the sensor.  “Projected” 𝑎𝐴 
of an object, then, refers to its observed value based on the current geometry of the observation.  “Intrinsic” 𝑎𝐴 of 
an object, on the other hand, refers to its value independently of the geometry of observation. 
 
For clarity, the symbol 𝒂𝑨𝒙 is used to represent an object 𝑥’s projected 𝑎𝐴, while the symbol 𝒂𝑨𝒙 is used to 
represent its intrinsic 𝑎𝐴. 

3.3 ANGLES OF POSE AND OBSERVATION 

The term angle of pose refers to any angle that describes the object’s position with respect to the earth and the sun.  
The angle of pose is defined independently of the observer position.  Examples of angles of pose include 
longitudinal and latitudinal phase angles and orbital angle, an angle analogous to longitudinal phase angle that is 
described in detail in this section. 
 
The term angle of observation refers to any angle that is defined in reference to the space object and its observer.  
Examples of this type of angle include the angle between the sun, space object (vertex), and observer or the angle 
between the space object – observer vector and the panel surface normal. 

3.3.1 Angles of Observation 

Consider Fig. 3-1, an illustration of a Resident Space Object (RSO) with a three-axis stabilized, nadir-pointing body 
component and an articulating, sunward facing solar panel component.  The sun is the orange sphere, the earth is the 
blue sphere, the observer is the small purple sphere, the solar panel is the green square, and the body is the blue 
cube.  The vector 𝑁 is normal to the orbital plane of the satellite.  In other words, it is orbital north.  The solar panel 
pivots about the orbital north vector to maintain a sunward-facing orientation. 
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Fig. 3-1. Space Object Angles of Observation (not to scale)1.  The blue cube represents the body and the green 

square represents the solar panel. 

The angles 𝜽 and 𝝎 are the main angles of observation for the solar panel.  Angle 𝜽 is the angle between the 
observer-RSO vector and the panel normal vector, and it determines the panel’s projected area from an observer’s 
point of view.  Angle 𝝎 is the angle between the RSO-sun vector and the panel normal vector, and it determines the 
panel’s projected brightness per unit area. 
 
The angles 𝝍 and 𝜼 are the main angles of observation for the body component.  Angle 𝝍 is the angle between the 
RSO-sun vector and the RSO-Earth vector, and it determines the projected brightness per unit area of the body’s 
nadir-pointing face.  Angle 𝜼 is the angle between the RSO-Earth vector and the observer-RSO vector, and it 
determines the projected area of the body’s nadir-pointing face from the observer’s point of view. 
 
Consider now Fig. 3-2, an illustration of the panel by itself.  This figure depicts the panel from its self-centered 
frame of reference. The sun is the orange sphere.  The panel is the green square.  The dashed green line is normal to 
the panel.  The purple line is the RSO-observer vector.  The 𝑁 vector (aligned with the orbital north) is shown as a 
dotted black line.  The 𝑁 vector and panel normal define the third axis of the orthogonal triad, which is also depicted 
as a dotted black line.  The angle between the RSO-sun vector (orange line) and the panel normal (dotted green line) 
is ω .  The specular reflection of the incident sunlight takes place along the pink vector, and the angle between it and 
the panel normal vector is congruent to 𝜔. 

 
Fig. 3-2. Solar Panel Centered Frame of Reference 

                                                             
1 Note that although the vectors between the sun and solar panel and the sun and body appear to be different (both in 
orange), they are essentially the same vector when considered at the true scale. 
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The angle 𝝓 is defined to be the angle between the observer-RSO vector (purple) and the specular reflection vector 
of the sun (pink).  This angle is important in determining when a panel enters the glint region in which the panel’s 
specular reflectance dominates its Lambertian reflectance.  When angle 𝜙 is equal to 0°, for instance, the observer’s 
line of sight is aligned with the solar specular reflection, and the observer will detect a glint of maximum brightness. 

3.3.2 Angles of Pose 

The angles of pose to consider are the space object’s longitudinal and latitudinal phase angles, along with its orbital 
angle.  While the two former angles are from an Earth-centered reference frame, the latter is defined from the 
perspective of the space object and is observer independent.  Since, in the space-based case, the observer is in 
motion relative to the space object, defining such an angle simplifies the geometry of the situation.  Consider the 
illustration of orbital angle in Fig. 3-3. 

 

Fig. 3-3. Definition of Orbital Angle (γ).  The orbital angle is the angle between the solid blue line (RSO-Earth 
vector) and the dashed orange line (projection of the RSO-sun vector onto the orbital plane of the space object). 

The orbital angle is defined as the signed angle between the RSO-Earth vector and the projection of the RSO-sun 
vector onto the orbital plane.  In Fig. 3-3, the RSO-Earth vector is shown as a solid blue line.  The orbital plane is 
the square with gray hatch marks.  The dashed orange line is the projection of the RSO-sun vector onto the orbital 
plane.  The orbital angle is the angle between the dashed orange line and the blue line, marked as a purple arc.  It 
ranges over the interval (− !

!
, !
!
) for visible objects and is denoted as γ when used in Section 5.3.  The orbital angle 

calculation is performed directly using the orthogonal reference frame centered at the RSO, in which the z-axis is 
orbital north (the vector perpendicular to the orbital plane). 
 
The orbital angle changes sign where the direction of the cross product between the RSO-sun vector projection onto 
the orbital plane and the RSO-Earth vector changes by the right-hand rule.  It is defined positive when the cross 
product aligns with orbital north and negative otherwise. 

3.4 REFLECTED INTENSITY OF THE RSO 

The reflected intensity of the object’s total reflection is the sum of the panel and body component reflected 
intensities, as written in (3-1). 

𝑰𝑹𝑺𝑶 = 𝑰𝑷 + 𝑰𝑩   𝑾/𝒔𝒓  (3-1) 
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Consider now the panel component separately.  The panel’s reflected intensity is the sum of both specular and 
Lambertian components, as written in (3-2). 

𝑰𝑷 = 𝑰𝑷𝑺 + 𝑰𝑷𝑳  [𝑾/𝒔𝒓] (3-2) 

Recall the previously defined angles and vectors, reprinted for convenience in Fig. 3-4. 

𝜼 is the angle between the RSO-Earth vector and the observer-RSO vector 

 
Fig. 3-4. Angles and Vectors Recap 

From the observer’s perspective, the specular component 𝐼!" of the panel is proportional to the Phong specular 
reflectance term of cos!(𝜙), where 𝜙 is the angle between the observer-RSO vector and the solar reflection vector 
(note that 𝑚 is the specularity exponent per the Phong model).  The specular component is also proportional to the 
projected area of the panel, contributing a factor of 𝑐𝑜𝑠(𝜃), where 𝜃 is the angle between the observer-RSO vector 
and the panel surface normal vector.  As angle 𝜙 becomes large, 𝑐𝑜𝑠!(𝜙) approaches 0 and the specular term can 
be ignored.  However, as angle 𝜙 approaches 0, 𝑐𝑜𝑠!(𝜙) becomes much more dominant, and a glint occurs.  At 
𝜙 = 0°, the observer is directly in line with the specular reflection of the panel, and a maximal glint is detected. 
 
The Lambertian component 𝐼!" of the panel is proportional to its projected brightness, contributing a factor of 
𝑐𝑜𝑠(𝜔), where 𝜔 is the angle between the RSO-sun vector and the panel surface normal vector.  It is also 
proportional to its projected area, contributing a factor of 𝑐𝑜𝑠(𝜃).  For large values of 𝜙, (𝑐𝑜𝑠!(𝜙) approaches 0), 
Equation (3-2) may be approximated as (3-3). 

𝑰𝑷 ≈ 𝑰𝑷𝑳  𝒄𝒐𝒔 𝝎 𝒄𝒐𝒔 𝜽   [𝑾/𝒔𝒓] (3-3) 

Now consider the body component separately.  The intensity of the body’s reflection is assumed to be approximately 
Lambertian, as the body is an aggregate of many small facets.  The body’s intensity is proportional to the projected 
brightness of the body, contributing a factor of 𝑐𝑜𝑠(𝜓), where 𝜓 is the angle between the RSO-sun vector and the 
RSO-Earth vector.  It is also proportional to the projected area of the body, contributing a factor of 𝑐𝑜𝑠(𝜂), where 𝜂 
is the angle between the observer-RSO vector and the RSO-Earth vector. 
 
Although the body is a complex three-dimensional shape and warrants a more detailed algebraic model to describe 
it, the following simplified expression for the body’s reflected intensity shown in (3-4) is sufficient for the time 
being. 

𝑰𝑩 = 𝑰𝑩𝑳𝒄𝒐𝒔 𝝍 𝒄𝒐𝒔 𝜼     [𝑾/𝒔𝒓] (3-4) 

Equation (3-1) is now re-written in terms of (3-2) and (3-3) for large values of 𝜙, where the panel’s specular 
component becomes insignificant.  The resulting Lambertian-only equation for the RSO’s total reflected intensity is 
shown now in (3-5). 

𝑰𝑹𝑺𝑶 = 𝑰𝑷𝑳 𝒄𝒐𝒔 𝝎 𝒄𝒐𝒔 𝜽 + 𝑰𝑩𝑳 𝒄𝒐𝒔 𝝍 𝒄𝒐 𝒔 𝜼   [𝑾/𝒔𝒓] (3-5) 

4.0 PROJECTED ALBEDO-AREA EQUATION DERIVATION 

The observation data sets include both photometric measurements of the space object, in terms of apparent 
magnitude, and astrometric measurements, in terms of Earth-Centered Inertial (ECI) coordinates for the space 
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object, sensor, and sun.  From these data sets, a measurement of the RSO’s albedo-Area as a projection of the 
observation geometry is calculated.  In this section, the projected albedo-Area equation that provides the value of 
this measurement is derived. 

4.1 MAGNITUDE, INTENSITY, AND FLUX 

While the sensor reports photometric data in terms of apparent magnitude, the RSO’s observed albedo-Area is a 
result of the reflected solar radiation in terms of incident solar flux.  Equations relating apparent magnitude, radiant 
intensity and radiant flux are therefore required for the transformation of apparent magnitude into albedo-Area. 

4.1.1 Intensity and Flux Relationship 

Consider a point source of reflected light.  At the point source, before the reflected electromagnetic energy 
propagates outward, (2-9) states that, in the Lambertian case, radiant intensity and radiant flux are directly 
proportional by a factor of 𝜋, reprinted here in (4-1). 

𝑰 =
𝟏
𝝅
𝒇

⇓
𝒇 = 𝝅𝑰

 (4-1) 

Consider viewing the same point source now over a distance.  The relationship between the radiant intensity and 
flux of that object, 𝐼 and 𝑓, follows from the inverse square law of light, described next.  As the reflected 
electromagnetic energy propagates outward from the point source in a solid angle over a distance 𝑅, its intensity 
decreases with the square of the distance traveled.  Taking this relationship into account, (4-2) is obtained [5]. 

𝒇
𝑾

𝒔𝒓  𝒎𝟐   =   
𝑰 𝑾
𝒔𝒓

𝑹𝟐 𝒎𝟐   

⇓

𝑰 ∙
𝑾
𝒔𝒓   = 𝒇

𝑾
𝒔𝒓  𝒎𝟐   𝒓

𝟐 𝒎𝟐

 (4-2) 

4.1.2 Flux and Apparent Magnitude Relationship 

Apparent magnitude is a unit-less measure of the brightness of a celestial object relative to that of another celestial 
object in a certain electromagnetic waveband.  Considering the apparent magnitude of an object 𝑥 relative to that of 
a reference object 𝑅𝐸𝐹 in a certain waveband, apparent magnitude and flux are related in the following way, as 
shown in (4-3) [4]. 

𝒎𝒙 −𝒎𝑹𝑬𝑭 =   −𝟐.𝟓 ∙ 𝒍𝒐𝒈𝟏𝟎
𝒇𝒙
𝒇𝑹𝑬𝑭

⇓
𝒇𝒙
𝒇𝑹𝑬𝑭

= 𝟏𝟎
𝒎𝑹𝑬𝑭!𝒎𝒙

𝟐.𝟓

 (4-3) 

4.2 FOUNDATION FOR THE PROJECTED ALBEDO-AREA EQUATION 

Recall (3-5), the reflected intensity equation, reprinted here for convenience in (4-4). 

𝑰𝑹𝑺𝑶 = 𝑰𝑷𝑳 𝒄𝒐𝒔 𝝎 𝒄𝒐𝒔 𝜽 + 𝑰𝑩𝑳 𝒄𝒐𝒔 𝝍 𝒄𝒐𝒔  (𝜼)[𝑾/𝒔𝒓] (4-4) 

Recall also that 𝐼!" and 𝐼!" are Lambertian-only components of the panel’s and body’s reflectance.  Next, the 
foundations of these components are described. 
 
First, each component intensity is the result of the incident reflected solar radiation, so each component must be 
proportional to the incoming solar flux, 𝑓!"#  [

!
!"
], also known as the solar constant.  Furthermore, since the 

component intensities are assumed Lambertian, the constant of proportionality is !
!
, by (4-1). 

 
Second, as this intensity is reflected off of a certain area, it is proportional to that area, 𝐴  [𝑚!]. 
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Third, the amount of solar radiation reflected from the component depends on the component’s albedo.  An object’s 
albedo is a quantity intrinsic to the external material or aggregate of materials, and is assumed to be constant in the 
near term2. 
 
Equation (4-4) is now re-written as (4-5), bearing these relationships in mind. 

𝑰𝑹𝑺𝑶
𝑾
𝒔𝒓

= 𝒂𝑨𝑷 𝒎𝟐 𝟏
𝝅
𝒇𝑺𝑼𝑵

𝑾
𝒔𝒓  𝒎𝟐 𝐜𝐨𝐬𝝎 𝐜𝐨𝐬𝜽 +   𝒂𝑨𝑩 𝒎𝟐 𝟏

𝝅
𝒇𝑺𝑼𝑵

𝑾
𝒔𝒓  𝒎𝟐 𝐜𝐨𝐬𝝍 𝐜𝐨𝐬𝜼 (4-5) 

4.3 DERIVATION OF THE PROJECTED ALBEDO-AREA EQUATION 

Multiplying (4-5) through by 𝜋, (4-6) is obtained. 

𝝅  𝑰𝑹𝑺𝑶
𝑾
𝒔𝒓

= 𝒂𝑨𝑷 𝒎𝟐   𝒇𝑺𝑼𝑵
𝑾

𝒔𝒓  𝒎𝟐 𝒄𝒐𝒔(𝝎)𝒄𝒐𝒔(𝜽) + 𝒂𝑨𝑩 𝒎𝟐   𝒇𝑺𝑼𝑵
𝑾

𝒔𝒓  𝒎𝟐 𝒄𝒐𝒔(𝝍)𝒄𝒐𝒔(𝜼) (4-6) 

Now, in (4-7), solar flux is transformed into intensity on the Right Hand Side (RHS) by (4-2), where 𝑅𝑆  is the 
length of the RSO-Sun vector in meters, as shown in Fig. 4-1. 

 
Fig. 4-1. OR and RS Vectors 

𝝅  𝑰𝑹𝑺𝑶
𝑾
𝒔𝒓

= 𝒂𝑨𝑷 𝒎𝟐   
𝑰𝑺𝑼𝑵

𝑾
𝒔𝒓

𝑹𝑺 𝟐 𝒎𝟐 𝒄𝒐𝒔(𝝎)𝒄𝒐𝒔(𝜽) + 𝒂𝑨𝑩 𝒎𝟐   
𝑰𝑺𝑼𝑵

𝑾
𝒔𝒓

𝑹𝑺 𝟐 𝒎𝟐   𝒄𝒐𝒔(𝝍)𝒄𝒐𝒔(𝜼)

⇓

𝝅  𝑰𝑹𝑺𝑶
𝑾
𝒔𝒓

=
𝑰𝑺𝑼𝑵

𝑾
𝒔𝒓

𝑹𝑺 𝟐 𝒎𝟐 𝒂𝑨𝑷𝒄𝒐𝒔(𝝎)𝒄𝒐𝒔(𝜽) + 𝒂𝑨𝑩  𝒄𝒐𝒔(𝝍)𝒄𝒐𝒔(𝜼)        𝒎𝟐

 (4-7) 

Multiplying through by the reciprocal, (4-8) is obtained. 

𝝅
𝑹𝑺 𝟐 𝒎𝟐

𝑰𝑺𝑼𝑵
𝑾
𝒔𝒓

  𝑰𝑹𝑺𝑶
𝑾
𝒔𝒓

= 𝒂𝑨𝑷𝒄𝒐𝒔 𝝎 𝒄𝒐𝒔 𝜽 + 𝒂𝑨𝑩  𝒄𝒐𝒔 𝝍 𝒄𝒐𝒔 𝜼        𝒎𝟐

⇓

𝝅
   𝑹𝑺 𝟐 𝒎𝟐   𝑰𝑹𝑺𝑶

𝑾
𝒔𝒓

𝑰𝑺𝑼𝑵
𝑾
𝒔𝒓

= 𝒂𝑨𝑷𝒄𝒐𝒔 𝝎 𝒄𝒐𝒔 𝜽 + 𝒂𝑨𝑩  𝒄𝒐𝒔 𝝍 𝒄𝒐𝒔 𝜼        𝒎𝟐

 (4-8) 

The intensities (and their respective units) are now transformed into flux on the Left Hand Side (LHS) of (4-8) by 
(4-2), where 𝑂𝑅  is the length of the Observer-RSO vector in meters, as shown in Fig. 4-1.  Cancelling units on the 
LHS, (4-9) is obtained. 

                                                             
2 We know that there are space aging effects that change the albedo over time. 
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𝝅
   𝑹𝑺 𝟐 𝒎𝟐   𝒇𝑹𝑺𝑶

𝑾
𝒔𝒓  𝒎𝟐    𝑶𝑹

𝟐[𝒎𝟐]

𝒇𝑺𝑼𝑵
𝑾

𝒔𝒓  𝒎𝟐    𝑹𝑺 𝟐[𝒎𝟐]
= 𝒂𝑨𝑷𝒄𝒐𝒔 𝝎 𝒄𝒐𝒔 𝜽 + 𝒂𝑨𝑩  𝒄𝒐𝒔 𝝍 𝒄𝒐𝒔 𝜼        𝒎𝟐

⇓

𝝅
   𝑹𝑺 𝟐   𝑶𝑹 𝟐

𝑹𝑺 𝟐   
𝒇𝑹𝑺𝑶
𝒇𝑺𝑼𝑵

𝒎𝟐 = 𝒂𝑨𝑷𝒄𝒐𝒔 𝝎 𝒄𝒐𝒔 𝜽 + 𝒂𝑨𝑩  𝒄𝒐𝒔 𝝍 𝒄𝒐𝒔 𝜼        𝒎𝟐

 (4-9) 

The ratio of fluxes on the LHS of (4-9) is transformed into an expression of apparent magnitudes by (4-3), and 
(4-10) is obtained. 

𝝅
   𝑹𝑺 𝟐   𝑶𝑹 𝟐

𝑹𝑺 𝟐   𝟏𝟎
𝒎𝑺𝑼𝑵!𝒎𝑹𝑺𝑶

𝟐.𝟓    𝒎𝟐 = 𝒂𝑨𝑷𝒄𝒐𝒔(𝝎)𝒄𝒐𝒔(𝜽) + 𝒂𝑨𝑩  𝒄𝒐𝒔(𝝍)𝒄𝒐𝒔(𝜼)       𝒎𝟐  (4-10) 

Note the presence of 𝑅𝑆 ! in both the numerator and the denominator of the LHS of (4-10).  Rather than canceling 
these terms, however, 𝑅𝑆  is fixed in the denominator to a constant value, the number of meters in an astronomical 
unit, denoted 𝐴𝑈 .  As 𝑅𝑆  and 𝐴𝑈  are approximately equal, the effect of doing this is small.  It serves the 
purpose, though, of taking into account the elliptical nature of the earth’s orbit around the sun, which causes the 
distance from the earth to the sun to vary by as much as 3% from perihelion to aphelion. 
 
The projected albedo-Area equation is now obtained in (4-11). 

𝝅
   𝑹𝑺 𝟐   𝑶𝑹 𝟐

𝑨𝑼 𝟐   𝟏𝟎
𝒎𝑺𝑼𝑵!𝒎𝑹𝑺𝑶

𝟐.𝟓    𝒎𝟐 = 𝒂𝑨𝑷𝒄𝒐𝒔(𝝎)𝒄𝒐𝒔(𝜽) + 𝒂𝑨𝑩  𝒄𝒐𝒔(𝝍)𝒄𝒐𝒔(𝜼)     𝒎𝟐  (4-11) 

4.4 PROJECTED ALBEDO-AREA EQUATION IS NEARLY INDEPENDENT OF MODEL 

Although a specific model was initially assumed on the RHS, namely the two-facet model described in Section 3.1, 
the result on the LHS of (4-11) would have been obtained regardless of the number of component terms in the model 
(i.e. the RHS).  As long as the model consists of a sum of component Lambertian reflectances from the same source 
(in this particular case, the sun), it does not matter how many components the model possesses.  Furthermore, 
although the trigonometric factors in this case are specific to the model, they are, for all intents and purposes, simply 
unit-less linear weights. 
 
Although this equation is technically valid for a Lambertian reflectance only, analysis of data sets containing 
observations that exhibit specular glints has shown that, as long as the specular components are generally not 
dominant, the equation still yields useful results.  For observations within an intense specular glint region, however, 
other considerations must be made and the underlying model adjusted.  This is currently an active subject of study. 

4.5 PROJECTED ALBEDO-AREA EQUATION, FINAL CONSIDERATIONS 

There are now two equivalent expressions for the projected albedo area of a space object, denoted 𝑎𝐴!"# in (4-12) 
and (4-13). 

𝒂𝑨𝑹𝑺𝑶 = 𝝅
   𝑹𝑺 𝟐   𝑶𝑹 𝟐

𝑨𝑼 𝟐   𝟏𝟎
𝒎𝑺𝑼𝑵!𝒎𝑹𝑺𝑶

𝟐.𝟓    𝒎𝟐  (4-12) 

𝒂𝑨𝑹𝑺𝑶 = 𝒂𝑨𝑷𝒄𝒐𝒔 𝜽 𝒄𝒐𝒔 𝝎 + 𝒂𝑨𝑩  𝒄𝒐𝒔 𝝍 𝒄𝒐𝒔 𝜼    𝒎𝟐  (4-13) 

The quantity 𝑎𝐴!"# changes with time, and it is a function of the geometry of the observation at any given time.  
The quantities 𝑎𝐴! and 𝑎𝐴!, on the other hand, are intrinsic to the specific space object and are not expected to 
change greatly over time.  (Note that 𝑎𝐴!, the body component, displays slightly different behavior as the body is 
capable of self-occlusion, but this is addressed in the next section). 
 
The value of 𝑎𝐴!"# at any given observation may be determined from (4-12).  Given enough of these observations, 
it is possible to construct a set of linear equations from (4-13), allowing a solution for the intrinsic panel and body 
albedo-Area components, 𝑎𝐴! and 𝑎𝐴!, to be determined.  This derivation is presented in Section 6.0. 
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5.0 CLOSER EXAMINATION OF THE BODY COMPONENT 

In Section 3.4, a model of the total reflected intensity was constructed, reprinted here in (5-1). 

𝑰𝑹𝑺𝑶 = 𝑰𝑷𝑳 𝒄𝒐𝒔 𝝎 𝒄𝒐𝒔 𝜽 + 𝑰𝑩𝑳 𝒄𝒐𝒔 𝝍 𝒄𝒐𝒔  (𝜼)[𝑾/𝒔𝒓] (5-1) 

From this expression for the total reflected intensity, an expression for the  total projected albedo-Area was derived 
in Section 4.0, reprinted here in (5-2). 

𝒂𝑨𝑹𝑺𝑶 = 𝝅
   𝑹𝑺 𝟐   𝑶𝑹 𝟐

𝑨𝑼 𝟐   𝟏𝟎
𝒎𝑺𝑼𝑵!𝒎𝑹𝑺𝑶

𝟐.𝟓    𝒎𝟐 = 𝒂𝑨𝑷𝒄𝒐𝒔 𝜽 𝒄𝒐𝒔 𝝎 + 𝒂𝑨𝑩  𝒄𝒐𝒔 𝝍 𝒄𝒐𝒔 𝜼    𝒎𝟐  (5-2) 

Isolating the body’s component, as expressed in the RHS of (5-2), the expression for the projected body albedo-Area 
is written in (5-3).  (Recall that the trigonometric factors are explained in detail in Section 3.3). 

𝒂𝑨𝑩 = 𝒂𝑨𝑩  𝒄𝒐𝒔 𝝍 𝒄𝒐𝒔 𝜼    𝒎𝟐  (5-3) 

The particulars of the body’s reflectance are now described. 

5.1 THE BODY AS A COMPLEX THREE DIMENSIONAL CONSTRUCT 

While a solar panel is assumed to be nearly planar and is currently modeled as a single flat facet, the same model 
cannot be assumed equally valid for the body.  The body, after all, is a complex, three dimensional construct, 
possessing multiple attachments for environmental sensing, data collection, transmission, etc.  Consider, for 
instance, the following rendering of Galaxy 14, a typical geosynchronous communications satellite, shown next in 
Fig. 5-1. 

 
Fig. 5-1. Galaxy 14 Model [6] 

 

5.2 THE BODY’S OBSERVABLE ALBEDO-AREA IS DEPENDENT ON POSE 

As can be seen in Fig. 5-1, while the Galaxy 14 bus is generally cubical, it possesses a large, parabolic 
communications dish and a cover of crinkled Mylar.  Now imagine observing Galaxy 14 in various poses relative to 
the sun and making photometric measurements of its solar reflectance.  In one pose, the satellite may be positioned 
such that both the dish and the main body section are facing the sun head on, causing both sections to make a 
maximal contribution to the total observed reflectance.  As the satellite orbits the earth, however, and its pose 
relative to the sun evolves, the satellite may be positioned such that the main body occludes the dish from the sun.  
In this instance, the dish would no longer be contributing to the body’s total albedo-Area. 
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Fig. 5-2. Simulated Galaxy 14 Images in Different Poses3 and Notional Relationship with Orbital Angle 

Consider Fig. 5-2, a notional rendering of two resolved thermal images of a Galaxy 14-like satellite in two different 
poses relative to the sun, measured in terms of the orbital angle 𝛾 (described in Section 3.3.2).  For values of 𝛾 near 
zero, the dish and most of the nadir pointing features of the body are illuminated.  As 𝛾 increases, however, a 
significant portion of the body falls into shadow, perhaps occluded from the sun by other features on the body, and 
the dish is completely in shadow.  Therefore, while the albedo of the materials of the body remains unchanged in the 
near term, the observable albedo-Area of the body is dependent on the solar illumination that reaches the body, 
which in turn depends on the satellite’s pose in relation to the sun, as measured by the orbital angle. 
 
It is important to note that the change in the body’s albedo-Area due to the pose is independent of the BRDF of the 
body’s materials, i.e. the ratio of outgoing to incoming solar radiation remains fixed for each part of the body.  This 
variation, rather, is due to the body’s self-occlusion at certain poses with respect to the sun.  Since such “dark” areas 
of the body can provide no information regarding its albedo and since self-occlusion depends on the changing pose, 
the body’s intrinsic albedo-Area, in contrast to that of the panel, depends on the orbital angle at which it is observed. 

5.3 EXPRESSING COMPONENT BODY ALBEDO-AREA AS A FUNCTION OF ORBITAL ANGLE 

Consider the expression for the body’s projected albedo-Area at a given observation from Equation (5-3).  Although 
that expression contains only a single intrinsic albedo-Area term for the body, the body possesses an observable 
intrinsic albedo-Area that is different for each possible pose relative to the sun, as measured by orbital angle.  A new 
expression for the body’s projected albedo-Area is now constructed bearing this in mind. 
 
First, the observable-intrinsic albedo-Area of the body at any given pose is expressed as a function of orbital angle 
𝛾.  As this function depends on orbital angle, its domain is the same as the orbital angle’s range: (− !

!
, !
!
).  As 

ancillary body features tend to dominate along the orbital angle fringes, the domain is further restricted to (− !!
!"
, !!
!"
). 

 
Next, the domain is discretized into 𝑛 = 10 equal sub-intervals of !

!"
 (or 15o) each.  Within each sub-interval, the 

body’s albedo-Area is linearly interpolated according to Lagrange interpolation functions labeled as 𝑤!.  This allows 
for a piecewise continuous representation of the body contribution over the entire range of the domain. 
 
Lastly, in addition to the 𝑛 = 10 linearly interpolated terms, a spherical term 𝐵!"! is introduced to the body’s model.  
This is the contribution that a Lambertian sphere of some given cross-sectional area would provide to the total 
observed albedo-Area of the body.  These 𝑛 + 1 = 11 terms (𝑛 = 10 linearly interpolated terms and 1 spherical 
term) now form the basis of the body’s model.  Equation (5-3) is now re-written as (5-4). 

                                                             

3 The two left panels in this figure contain images that were simulated by Kris Hamada (Pacific Defense Solutions) 
using the TASAT software at the request of the authors and courtesy of Paul Kervin (AFRL/RDSM).  TASAT is 
Time-domain Analysis Simulation for Advanced Tracking. 
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𝒂𝑨𝑩 = 𝒂𝑨𝑩  𝒄𝒐𝒔 𝝍 𝒄𝒐𝒔 𝜼    𝒎𝟐

⇓

𝒂𝑨𝑩 = 𝒄𝒐𝒔 𝝍 𝒄𝒐𝒔 𝜼 𝒂𝑨𝑩𝒋𝒘𝒋 𝜸𝒋

𝒏

𝟏

+ 𝒂𝑨𝑩𝒔𝒑𝒉𝑩𝒔𝒑𝒉 [𝒎𝟐]
 (5-4) 

 
The observable-intrinsic albedo-Area of the body, then, as a function of orbital angle, is given by the vector shown 
in (5-5). 

𝒂𝑨𝑩 =

𝒂𝑨𝑩𝟏
⋮

𝒂𝑨𝑩𝒏
𝒂𝑨𝑩𝒔𝒑𝒉

 (5-5) 

5.4 ADAPTING THE PROJECTED ALBEDO-AREA EQUATION TO THE BODY MODEL 

The model for the body’s projected albedo-Area shown in (5-4) is simply a sum of projected albedo-Areas, all of 
dimension length squared.  In Section 4.0, the total projected albedo-Area equation was derived and reprinted in this 
section as (5-2).  However, had the more complex expression of the body’s albedo-Area shown in (5-4) been used 
on the RHS of the derivation, the same resulting LHS would have been obtained.  The reason is each component 
albedo-Area of the body is assumed Lambertian (as in the derivation in Section 4.1) and is multiplied by same factor 
of 1/𝜋 (Section 2.3).  Furthermore, each component albedo-Area is the result of the same underlying incident solar 
flux, and is thus proportional to the same solar constant (Section 4.2). 
 
The total projected albedo-Area equation using the new model for the body is now written in (5-6). 
 

𝒂𝑨𝑹𝑺𝑶 =

𝑳𝑯𝑺   𝝅
   𝑹𝑺 𝟐   𝑶𝑹 𝟐

𝑨𝑼 𝟐   𝟏𝟎
𝒎𝑺𝑼𝑵!𝒎𝑹𝑺𝑶

𝟐.𝟓    𝒎𝟐 =

𝑹𝑯𝑺   𝒂𝑨𝑷𝒄𝒐𝒔 𝜽 𝒄𝒐𝒔 𝝎 + 𝒄𝒐𝒔 𝝍 𝒄𝒐𝒔 𝜼 𝒂𝑨𝑩𝒋𝒘𝒋 𝜸𝒋

𝒏

𝟏

+ 𝒂𝑨𝑩𝒔𝒑𝒉𝑩𝒔𝒑𝒉 [𝒎𝟐]

 (5-6) 

 
Now that the body’s contribution is characterized more fully with respect to its complex nature, it is possible to 
construct a set of linear equations that will facilitate the decomposition of the total projected albedo-Area into its 
panel and body components. 

6.0 DECOMPOSITION INTO PANEL AND BODY COMPONENT ALBEDO-AREAS 

Up to this point, only the total projected albedo-Area has been considered.  That is to say, only the LHS of (5-6) has 
been used.  The decomposition of the total albedo-Area into its components, as seen in the RHS of (5-6), however, is 
necessary in order to characterize the space object using invariant features rather than features that vary depending 
on the time of observation [7].  In this section, the methodology employed to obtain this decomposition is described. 

6.1 MOTIVATION FOR CURRENT DECOMPOSITION METHOD 

In previous work, a decomposition method called Point-Pairing was described [3].  This method exploits geometric 
characteristics of observing conditions that have been specifically tasked to the sensor to meet certain criteria which 
cause the panel’s contribution to the total projected albedo-Area to cancel.  In the event that such sensor tasking is 
available, this method provides a straightforward approach to the decomposition of the aggregate photometric 
signature into its panel and body components. 
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A means by which to leverage serendipitous photometric observations that have already been collected by the 
sensor during the routine metrics mission, however, is desired.  Exploiting observation data sets that might otherwise 
lie fallow, this method would provide great value by eliminating the need to task limited sensor resources.  
Furthermore, it would provide more timely results.  Using observation data sets that already exist, after all, removes 
the need to wait for sensor tasking to be completed. 
 
The method currently employed to decompose these serendipitous observation data sets into the panel and body 
components, called Zero-Tasking, is now described. 

6.2 OUTLINE OF THE DECOMPOSITION METHOD, “ZERO-TASKING” 

Consider a set observations obtained over a certain epoch of time. 
 
For each observation 𝑖, the total projected albedo-Area is obtained from the LHS of (5-6). Next, the panel and body 
basis values are calculated, as shown in Tab. 1, from the RHS of (5-6).  Note that 𝑗 is the index of each linearly 
interpolated term for each observation 𝑖. 

Tab. 1.  Parameters for Zero Tasking 

Total Projected aA Value, 
denoted 𝒂𝑨𝑹𝑺𝑶! 𝝅  𝟏𝟎

𝒎𝒔𝒖𝒏!𝒎𝑹𝑺𝑶𝒊
𝟐.𝟓

𝑶𝑹𝒊
𝟐
𝑹𝑺𝒊

𝟐

𝑨𝑼 𝟐  

Panel Basis Value, denoted 
𝒑𝒊 

𝒄𝒐𝒔 𝝎𝒊 𝒄𝒐𝒔 𝜽𝒊   

10 Body Basis Function 
Values, denoted 𝒃𝒊𝒋  

An 11th body term is the 
spherical component 𝐵!"! 

#𝟏 − #𝟏𝟎   𝒄𝒐𝒔 𝝍𝒊 𝒄𝒐𝒔 𝜼𝒊 [𝒘𝒋!𝟏 𝜸𝒊 ,𝒘𝒋!𝟐 𝜸𝒊 ,… ,𝒘𝒋!𝟏𝟎 𝜸𝒊 ]

#𝟏𝟏   𝑩𝒔𝒑𝒉
  

Solution vector of 
component panel and body 
albedo-Areas that is sought, 
denoted 𝒂𝑨𝒙 

𝒂𝑨𝑷

𝒂𝑨𝑩𝟏
⋮

𝒂𝑨𝑩𝒏

𝒂𝑨𝑩𝒔𝒑𝒉

 

 
Once these parameters are computed, a system of linear equations based on (5-6) is constructed for the set of 
observations in each epoch.  This linear system is then solved for the solution vector 𝑎𝐴! of component panel and 
body albedo-Areas. 
 
First, the matrix of coefficients from the second and third rows of Tab. 1 denoted 𝐴 in (6-1), is constructed.   

𝑨 =   
𝒑𝟏
⋮
𝒑𝒊

𝒃𝟏  𝟏 … 𝒃𝟏  𝒋
⋮ ⋱ ⋮
𝒃𝒊  𝟏 … 𝒃𝒊  𝒋

𝒃𝒔𝒑𝒉𝟏
⋮

𝒃𝒔𝒑𝒉𝒊
 (6-1) 

Next, the vector of constants from the expression in the first row of Tab. 1 is constructed from the LHS of (5-6), 
denoted as 𝑪 in (6-2). 

𝑪 =   
𝒂𝑨𝑹𝑺𝑶𝟏

⋮
𝒂𝑨𝑹𝑺𝑶!

 (6-2) 
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Next, in (6-3), a matrix equation is constructed from 𝐴 and 𝐶 to solve for the solution vector 𝑎𝐴! (shown in the last 
row of Tab. 1). 

𝑨  𝒂𝑨𝒙 = 𝑪 (6-3) 

Before attempting to solve this equation, however, it is noted that the linear system is over-determined.  That is to 
say that, since there are typically more observations made than variables to solve, there are more non-zero rows than 
non-zero columns in the matrix 𝐴.  A basis pursuit technique is therefore employed, constructing the pseudo-inverse 
of 𝐴, denoted as 𝑝𝑖𝑛𝑣(𝐴), to solve for the solution vector 𝑎𝐴!.  The final expression for the decomposition of the 
component panel and body albedo-Areas is shown in (6-4). 

𝒂𝑨𝒙 = 𝒑𝒊𝒏𝒗 𝑨   𝑪 (6-4) 

While the method of decomposition described in this section has yielded good results on both simulated and real 
data sets, it should be noted that this type of analysis (singular value decomposition) does not provide an exact 
solution to the over-defined system of equations in question.  Such a system of equations may not, after all, have an 
exact solution.  Instead, it provides an approximate solution vector with the smallest error possible.  The chief 
advantage of this method, however, is that it assumes no special conditions on the observations and requires no 
special tasking of the sensor—hence the name Zero-Tasking.  On the other hand, the decomposition could be 
combined with and enhanced by any other insight into the space object’s photometry that may be available, either 
serendipitously or specially tasked.  For instance, if there happens to be a pair of observations in the data set that 
meets the geometric compatibility requirements necessary for one component’s contribution to cancel [3], the 
decomposition may be further refined. 

7.0 CONCLUSIONS 

In this paper we have provided an explanation of the physical and mathematical foundations used in extracting the 
albedo-Area from photometric data.  We have shown the derivation of the calculations that decompose the total 
photometric signature into component panel and body albedo-Areas.  The construction of the two-facet model was 
explained and an overview given of the geometry and the BRDF employed.  The derivation of the total albedo-Area 
from its photometric signature was presented along with a method to decompose the total projected albedo-Area into 
the component panel and body albedo-Areas. 
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