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ABSTRACT

Obtaining high resolution images of space objects from ground based telescopes is challenging, often
requiring the use of a multi-frame blind deconvolution (MFBD) algorithm to remove blur caused by at-
mospheric turbulence. In order for an MFBD algorithm to be effective, it is necessary to obtain a good
initial estimate of the point spread function (PSF), or, equivalently, the wavefront phase that defines
the PSF. Although wavefront sensors work well in low turbulence situations, they are less effective in
high turbulence, such as when imaging in daylight, or when imaging objects that are close to the Earth’s
horizon. One promising approach, which has been shown to work very well in high turbulence settings,
uses a frozen flow assumption on the atmosphere to capture the inherent temporal correlations present in
consecutive frames of wavefront data. Exploiting these correlations can lead to more accurate estimation
of the wavefront phase, and the associated PSF, which leads to more effective MFBD algorithms. How-
ever, the computational problem requires solving very large scale least squares problems, which can be
prohibitively expensive in situations when it is necessary to use a large number of frames or when there
are a large number of turbulent layers in the atmosphere. In this paper we describe a parallel implemen-
tation that overcomes this constraint. The parallel implementation exploits sparse matrix computations,
and uses the Trilinos package developed at Sandia National Laboratories.

1. INTRODUCTION

Because atmospheric turbulence distorts light as it travels through the atmosphere, images of space
objects obtained using ground based telescopes are typically distorted by blurring. The amount of
blurring depends on the severity of turbulence. Mathematically, the observed image, g, is related to the
true object, f, through a convolution model
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where the point spread function (PSF), k, models the blurring operation, and e represents additional
(unknown) noise. Using a Fourier optics model for atmospheric turbulence [14], the PSF can be expressed
in terms of the wavefront phase error (deviation of the wavefront from planarity), ¢, of the light that
reaches the telescope mirror,
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where ¢ = \/—1, P is a characteristic function that models the shape of the telescope aperture (e.g., a
circle or annulus), and F~! is the 2-dimensional inverse Fourier transform. In perfect seeing conditions,
¢ =0, and in good seeing conditions (low turbulence), ¢ is a smooth function.

In low turbulence situations, a wavefront sensor (WFS) can accurately estimate the wavefront phase,
and either adaptive optics systems or computational post processing (deconvolution) can then be used to
obtain a good estimate of the object, f. Specifically, a WFS measures estimates of wavefront gradients,
% and %’ and ¢ is then obtained by solving a simple inverse problem [1, 2, 13]. However, the WFS can
only obtain measurements on a coarse grid, and this under sampling can result in very poor estimates
when ¢ is highly oscillatory (that is, in high turbulence situations) [4]. In this case, it may be possible to
use an initial estimate of the wavefront phase in a blind deconvolution algorithm to jointly estimate ¢ (and,
hence, the PSF) and the object f. Multiple observations can be used to make the highly underdetermined

blind deconvolution problem more tractable; that is, j = 1,2, ..., m frames of observations
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are obtained, and the aim is to compute approximations of ¢; and f. This problem is referred to as
multi-frame blind deconvolution (MFBD).

It is important to emphasize the challenges faced in high turbulence situations: Higher turbulence
requires better initial estimates of ¢; in MFBD algorithms. However, because it can only obtain data
on a coarse grid, getting good initial estimates from a WFS becomes more difficult as the turbulence
increases.

Jefferies and Hart [9] observed that if we can assume the atmosphere satisfies a frozen flow model
(FFM), then multiple overlapping frames of WFS data can be effectively interpolated to improve the
sampling resolution. It was shown in [4] that the FFM approach can be formulated as a large scale, sparse
linear least squares problem, similar to what arises in digital super-resolution applications [5]. Although
this previous work demonstrates that the FFM reconstruction algorithm can be solved efficiently in many
situations, the large scale nature of the problem puts limitations on the number of atmospheric layers and
the number of frames of data that can be incorporated into the model. In this paper, we describe a parallel
implementation of the FFM reconstruction algorithm that allows us to overcome these limitations. The
rest of this paper is organized as follows. In Section 2 we describe the FFM reconstruction algorithm, and
in Section 3 we describe the high performance computing tools and framework used in the project. In
Section 4 we provide some experiments on simulated data to illustrate the effectiveness of our approach.
Some concluding remarks are given in Section 5.

2. WFS PHASE RECONSTRUCTION AND THE FROZEN FLOW MODEL

As mentioned in the introduction, when attempting to use MFBD algorithms, it is very important to
obtain a good initial estimate of the wavefront phase. A WFS can be used to obtain estimates of g—ﬁ and
g—‘;’, from which the phase, ¢, can be reconstructed. However, because the WFS can only obtain estimates
on a coarse grid, interpolation is needed to fill in missing data; this is illustrated in Figure 1, where the
black dots (within the circular aperture) are computed by interpolating the WFS measurements (red
dots).

In low turbulence situations, ¢ is smooth, and so interpolation between the coarse WF'S measurements
can be expected to provide fairly accurate estimates of the missing data. However, these interpolated
values are likely to be poor estimates in high turbulence. The most reliable way to improve the wavefront
approximation is to obtain better sampling from the WFS. This can be done, as Jefferies and Hart [9]
observed, if multiple frames of WFS data can be collected quickly, and if the atmospheric turbulence
satisfies a frozen flow model (that is, the turbulence can be modeled by a series of independent static
layers, each moving across the telescope aperture with the prevailing wind at the altitude of the layer).
While the FFM may not hold over long time scales, a number of studies have shown that it is a reasonable
approximation for short periods [8, 12, 17]. Thus, by obtaining multiple frames of WFS data over a short



Figure 1: Simple cartoon illustration of a WFS. Here, the red dots denote points where actual estimates
might be obtained by a WFS, and the black dots (within the circular aperture) are estimated from the
red dots by interpolation.

time period, we can obtain overlapping samples of measured data, and thus improve the accuracy of
interpolation. This is illustrated in Figure 2 for a single atmospheric layer. Notice that the improved
sampling depends on the wind velocity and on how quickly the WFS data can be collected. The FFM
reconstruction problem, then, is to compute wavefront gradient estimates on a fine grid (e.g., represented
by black dots within the blue circular regions in Figure 2), given coarse grid measurements from the
WFS, as well as information (e.g., wind vectors) about dominant atmospheric layers.

Figure 2: Simple cartoon illustration of overlapping WFS data. The left cartoon shows two overlapping
frames, where the red and magenta dots denote data obtained by the WFS, and the black dots (within
the circular aperture regions) are points that need to be interpolated. The right cartoon illustrates six
overlapping frames of WFS data.

To describe the FFM reconstruction algorithm, first suppose that there is only one dominant layer of
atmospheric turbulence. Let ¢§§ ) and gb?(f ) be vectors that contain the WFS (low resolution) measured
phase gradients for frame j, j = 1,2,...,m, where m is the number of frames of data collected by the
WEFS. Our goal is to reconstruct high resolution gradients within the composite region covered by all of
the overlapping frames (that is, within the union of the blue circles in Figure 2); denote these composite
high resolution gradients by ¢, and ¢,. To relate the low resolution measured data ( ) and (b@(f )) to the
composite high resolution grid information we want to reconstruct (¢, and ¢,), we need the following
mathematical operations:



e Move the composite high resolution grid so that the information corresponding to frame j matches
with a windowed region corresponding to the pupil aperture. Because the FFM assumes that
changes in the gradients between frames are rigid movements, we can represent these by affine
transformations (the affine transformation used for each frame can be determined from the wind
velocity information). This affine transformation can be represented by a matrix operation, A¢) ¢,
and A(j)qby.

e Punch out the composite region corresponding to the pupil aperture window. This can also be
represented as a matrix operation, WA ¢, and WAU )gby.

e Finally, restrict (or down sample) the high resolution grid to the low resolution WFS measured
data: RWAW ¢, and RWAW ¢,

That is, for each frame of data, we have
Qggcj) =RWAW ¢, and (bZ(Jj) - RWA(j)qSy
If we have m total frames of data, then we can expand this to
¢ = (I® RW)A1¢, and  ¢{"™ = (I® RW)A14,

where [ is an m x m identity matrix, ® represents the Kronecker product and
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The subscript on A; is used to emphasize that, so far, the atmospheric model consists of a single layer of
turbulence.

A more realistic atmospheric model is to use a finite number of discrete layers, where each layer is
characterized by a turbulence strength that is approximately constant within the layer. The effect of light
propagation through the entire turbulence region, assuming the index of refractive fluctuations for each
layer are statistically independent, is the sum of the effects through each layer [14]. Using this multilayer
atmospheric model, the FFM reconstruction problem can be written as
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where ¢, ¢ and ¢, ¢ are the composite, high resolution gradients at layer ¢, and A, is motion matrix at
layer £ with £ =1,2,...,L. If wedefine R=TQR, W =I1W, A=[4; Ay --- Ay], and
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then we can write the multilayer, multiframe model much more compactly as
Pl = EWA%,(LL)
¢3(Jl:m) = ﬁW\A(yby,(l:L)

The FFM reconstruction, then, requires computing the high resolution composite gradients ¢, (1.1 and

by,(1:1), given the low resolution WFS gradients #8™ and qﬁy(f:m) and matrices R, W, and A. Because the
problem is underdetermined, we incorporate (as is done in similar digital resolution algorithms) Tikhonov
regularization, and solve the damped least squares problems
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A more detailed description of this least squares formulation of the FFM reconstruction problem can
be found in [4]. The matrices in the least squares problems (4) are very large, and, in general, they
do not have any obvious structure that can be exploited in the computations; for example, there is no
Toeplitz structure that can take advantage of fast Fourier transforms to improve computational efficiency.
However, the matrices are sparse, and this can be exploited in iterative algorithms, such as the conjugate
gradient method for least squares problems, LSQR [11, 15].

3. COMPUTATIONAL APPROACH

Implementation of the FFM reconstruction problem can be computationally very expensive, especially
for large numbers of data frames and atmospheric layers. Therefore, in this section, we describe a
parallel implementation. To maximize our effort to transition the methods to practical use, we are
interested in producing software that is easy to use, stable, well-documented, and actively supported.
In addition, the software must be portable to a variety of computer platforms and have acceptable
licensing agreements. To achieve these goals we are making use of the Trilinos project [7] developed
at Sandia National Laboratories. Trilinos provides a variety of core mathematical software (such as
BLAS and LAPACK) for parallel architectures that have been designed using high quality software
engineering practices. The term “Trilinos” can be roughly translated from Greek to mean “a string
of pearls”, referring to the fact that each individual package within Trilinos is a gem in its own right,
but when combined, they create a mathematical software library that is worth more than the sum of
its parts [10]. Trilinos is free software, which can be redistributed under the terms of the GNU Lesser
General Public License as published by the Free Software Foundation. In addition, Trilinos provides a
streamlined process and set of tools for development of new algorithmic implementations, and promotes
interoperability of independently developed software. Using Trilinos has facilitated implementation of
the algorithms developed in this work, for both large distributed memory parallel computers, as well
as for less expensive modern multi-core commodity machines. Although Trilinos contains packages that
can be used to solve very large scale linear and nonlinear problems, there is nothing currently available
specifically for imaging applications. However, it is an ideal environment for our purposes; building off
of the Trilinos native matrix and vector objects, as well as some of the core Trilinos packages, we have
been able to develop an efficient, parallel method for the FFM reconstruction.

The foundation for Trilinos is the Petra object model, which describes objects such as matrices and
vectors, and was designed with the ability to do parallel data redistribution efficiently and easily. Although
the Petra object model is abstract, there are concrete implementations, such as Epetra. One particu-
lar object model in Epetra that is very beneficial to our application is the Epetra CrsMatrix, which
constructs a sparse matrix in compressed row storage format [6]. In addition, the EpetraExt package
provides tools, such as sparse matrix-matrix multiplication, which are nontrivial to implement efficiently.
In our application, each of the matrices R, W and A can be constructed as an Epetra_CrsMatrix, and,



in addition, we can form the explicit product RWA. Note that in the FFM reconstruction, all we need is
the product R WA and this observation is important because the product is a much more sparse than A.
For example, on a test problem with 25 frames of data and 3 atmospheric layers, R has 409 ,600 nonzeros,
W has 301,450 nonzeros, and A has 17,249,503 nonzeros. However, R WA has only 1,412,598 nonzeros,
just over 8% of the nonzeros than are in A. Note that the most expensive computation at each LSQR
iteration, which we use to solve the least squares problems (4), is the computation of a matrix-vector and
a matrix transpose-vector product with RWA. Therefore, this reduction in storage can have a significant
impact on the overall speed of the FFM reconstruction. However, it should be noted that if our FFM
reconstruction is combined with a phase reconstructor and an MFBD algorithm, then it is necessary to
also work with the individual matrices R, W and A.

The next important Trilinos package we use is Teuchos, which is a “toolkit” that provides wrappers
to BLAS and LAPACK, smart pointers, parameter lists, XML parsers, etc. Of particular importance is
the Teuchos:RCP smart pointer, which combines the concepts of smart pointers and reference counting
to build a low-overhead but effective tool for simplifying dynamic memory management in C++ [3].

Finally, the Belos package in Trilinos provides a powerful framework for iterative linear solvers, such as
LSQR. Within Belos, it is possible to define a Belos: :LinearProblem object class, which is composed of
an Epetra_CrsMatrix defining RWA and an Epetra MultiVector representing qﬁ(zl:m) and ¢§D1"”). With
the linear problem defined, then a call is made to the LSQR solution manager, Belos: : LSQRSo1lMgr, which
takes as input the linear problem and any solver parameters, such as the residual stopping tolerance. We
remark that the LSQR solver provided in Belos has Tikhonov regularization built into the algorithm; we
simply need to specify the regularization parameter A in the solver parameter list that is passed to the
LSQR solution manager.

4. NUMERICAL EXPERIMENTS

Previous publications have shown that the FFM reconstructions can produce substantially better phase
reconstructions than current approaches; see, for example, [4, 9]. We do not repeat those results here.
Instead, we report on the performance of our parallel implementation on a variety of test problems.
Specifically, we used a realistic model of atmospheric turbulence, described in [16], to generate a global
wavefront phase, assuming that the diameter of the telescope is 3.7 m, the light wavelength is 0.744 x
10~%m, and with a propagation distance of 25 km. We varied the number of atmospheric layers and the
number of frames used in the FFM reconstruction. In each case, wind velocities were generated randomly.

The computations for the experiments reported in this section were performed on a shared memory
Linux machine with 8 Dual-Core AMD Opteron 8220 processors for a total of 16 processor cores and
64GB of RAM. Figure 3 shows the number of iterations of the LSQR algorithm required to reconstruct
the horizontal and vertical gradients in our test problems.

Figure 3: Iterations for Gradient Reconstruction

Number of Frames Number of Frames
10 25 50 75 10 25 50 75
1] 845 | 885 | 737 | 862 1| 858 | 884 | 740 | 852
Number of Layers | 2 | 563 | 803 | 730 | 760 Number of Layers | 2 | 624 | 806 | 730 | 756
31372 | 798 | 613 | 520 3| 375 | 803 | 618 | 522
(a) Number of iterations required for the horizontal (b) Number of iterations required for the vertical
gradient reconstruction in our test problems. gradient reconstruction in our test problems.

Figure 4 shows how our FFM reconstruction algorithm scales for a fixed number of processes with
increasing problem size. Figure 5 shows scaling results for a fixed problem size with increasing number
of processes. These results show the good performance of our parallel implementation, but we remark
that although these results are promising, it is necessary to do further testing on a variety of machines
and parallel architectures.
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Figure 4: This figure shows timings of the parallel FFM reconstruction algorithm as the number of frames
increases, using 8 MPI processes on a shared memory machine.
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Figure 5: This figure shows timings for the parallel FFM reconstruction algorithm using a fixed problem
size of 50 frames, but varying the number of processes for the computation.



5. CONCLUDING REMARKS

The frozen flow method allows for accurate estimate of the wavefront phase for use in multiframe blind
deconvolution. However, with large numbers of frames and atmospheric layers, the FFM reconstruction
algorithm can be very computationally expensive. In this paper, we have shown that by exploiting parallel
architectures and using parallel libraries like Trilinos we can greatly reduce the amount of time necessary

for

the reconstruction. In addition, the work described here can be incorporated into a larger MFBD

software package; this work is currently ongoing.
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