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ABSTRACT

Controlling satellite trajectories is an important problem. In [12], an approach to the pole placement for the synthesis of a
linear controller has been presented. It leads to solving five polynomial equations in nine unknown elements of the state
space matrices of a compensator. This is an underconstrained system and therefore four of the unknown elements need to be
considered as free parameters and set to some prior values to obtain a system of five equations in five unknowns. In [12], this
system was solved for one chosen set of free parameters by Dixon resultants. In this work, we study and present Grobner
basis solutions to this problem of computation of a dynamic compensator for the satellite for different combinations of free
input parameters. We show that the Grobner basis method for solving systems of polynomial equations leads to very simple
solutions for all combinations of free parameters. These solutions require to perform only the Gauss-Jordan elimination of
a small matrix and computation of roots of a single variable polynomial. The maximum degree of this polynomial is not
greater than six in general but for most combinations of the input free parameters its degree is even lower.

1. INTRODUCTION

Satellites play an important role, e.g., in telecommunication, navigation and weather monitoring. For the proper
operation of satellites, it is necessary to keep them on their orbit and pointed in the right direction. However, satellites
may change their orientation due to some outdoor disturbances such as aerodynamic drag, the gravitation acceleration
of the sun and moon, or due to internal disturbances such as movement of mechanical parts of satellites. Therefore,
controlling the trajectories of satellites is an important problem.

For this purpose the position and the motion of the satellite are controlled by a programmed control loop consisting
of sensors measuring the position and orientation of the satellite. Based on these measurements and according to the
control law of the controller commands which influence the satellite’s attitude are generated.

A relatively simple dynamic model of satellite motion is sufficient for control design [8, 9]. In this model, polar
coordinates are used for describing the satellite position on equatorial orbit and the satellite is controlled via tangential
thruster [7]. Such a model leads to a linear dynamic control system. There are many different control design techniques
for linear dynamic control systems. One simple technique is the pole placement technique [1, 3, 14] which results in an
underconstrained system of polynomial equations. There exist many numerical methods for solving the pole placement
problem, such as Ackermann’s formula or QR algorithm [6]. The numerical methods are implemented in control design
packages of Matlab or Mathematica. However, these numerical methods may suffer from numerical instability for ill-
conditioned systems or poles with multiplicity.

In [17], the pole placement problem was solved using the symbolic-numeric algorithm based on Pieri homotopies and
with the help of the polynomial homotopy continuation package PHCpack [15]. In [17, 16] the presented homotopy
method was also used to solve the satellite trajectory control problem for one concrete combination of parameters.

In [12, 13] the problem of controlling the satellite trajectory by pole placement was solved using a symbolic method
based on resultants. The pole placement technique leads for the satellite trajectory control problem to five polynomial
equations in nine unknowns. Therefore four unknowns have to be considered as free. In [12, 13] authors solve the
resulting system of polynomial equations with the help of Mathematica for one set of free input parameters. They also
derive a constraint on these four free parameters which can ensure only real solutions. For this purpose Dixon resultant
implemented in Mathematica is used.

In this work, we study and present Grobner basis solutions to the problem of computation of a dynamic compensator
for the satellite for different combinations of free input parameters. We show that the Grobner basis method for solving
systems of polynomial equations leads to simple solutions for all combinations of free parameters. To solve for a large
number of problems we use the automatic generator of efficient Grobner basis solvers presented in [10].

The presented Grobner basis solutions require to perform only the Gauss-Jordan elimination of a small matrix and
computation of roots of a single variable polynomial. The maximum degree of this polynomial is not greater than six in
general but for most combinations of the input free parameters its degree is even lower. For some combinations of free
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Fig. 1. System with dynamic output feedback

input parameters the resulting solver returns only one solution which ensures, for reasonable inputs, a real solution. All
created Grobner basis solvers are very fast and they return solutions to all variables in few tens of microseconds.

Our approach is particularly useful for testing different parameters of the compensator and for developing numerically
stable compensators, when, e.g., state space needs to be transformed to a different coordinate system.

2. PROBLEM FORMULATION

We follow the problem formulation from [12]. Consider a linear system with m inputs u € R™ and p outputs y € R?,
given by three matrices A € R"*"™ B € R™*™, and C € RP*", where n is the number of internal states stored by the
vector x € R™. This system is described by linear first order differential equations

X = Ax+Bu, (D
y = Cx. 2)
Assume that we want to control this system using the dynamic compensator that has q internal states z € R?. The

dynamic compensator, see Figure 1, which realizes a feedback law, can be described by the first order differential
equations

z = Fz+Gy, 3)
o = Hz+Ky, “4)
where F € R7%7,G € R?*P H € R™*9, and K € R™*P. Assuming w = 0, we get the close-loop system
X A —BKC —BH X
HE R ®
There are many different methods for solving the linear control problem. One of the simplest methods is the output
feedback pole placement technique. In this technique, given a list of eigenvalues A1, Aa, ..., Ay4q We are looking for

laws to feed the output back to the input so that the resulting closed-loop system (5) has the eigenvalues from this list.
The characteristic polynomial of the close-loop matrix from equation (5), i.e. the polynomial whose roots are precisely
the eigenvalues of this matrix, has the form

sI,, — A+ BKC BH ]0' ©)

¢(s) = det { —GC sI,—F

This means that in the pole placement technique, given system matrices A,B,C, the state space matrices F,G,H,K of
the compensator have to be determined such that the roots of the characteristic polynomial ¢ (s) (6) are equal to the
given values (poles) A1, Az, ..., Apiqg.

Therefore, the pole placement technique leads to a system of n+ ¢ polynomial equations in (m + ¢) (p + ¢) unknowns.

2..1 Dynamic compensator for a satellite

The satellite motion can be described by the dynamic model [8] in which polar coordinates are used for describing
satellite position in a circular, equatorial orbit. The goal of the feedback is to keep the satellite in this equatorial orbit
when disturbances appear.

In dynamic model of the satellite motion, the state vector is

LT
X = [ r r 6 0 ] , @)
where r and 6 are the deviations from the reference orbit and the reference attitude.
The input is
T
u=[u wu | , ®)



where u; and w, are radial and tangential thrusters.
The linear state-space system (1), (2) for the satellite can be then defined by the matrices

0 1 0 0
3wg 0 0 2wgorg
o o o0 1 | ®)
0 72%3 0 0

A=

0 0
1
= 0
B=| ¢ , (10)
0 1
vTo

where v is the mass of the satellite, r¢ the radius and wg the angular velocity.
In [7], it was shown that the satellite is completely controllable with the tangential thruster u; only. Therefore it is
possible to choose C from (2) as
C_{OOlO} an

0 0 0 1

In this case we have n = 4,m = 2 and p = 2. If we set ¢ = 1, then in the pole placement technique we have to assign
n+q=4+1=>5poles \i,...,\s.
After denoting the state matrices of the dynamic compensator (3), (4) for the satellite as

hi1 ki1 ki
F= , G= , H= , K= ) 12
[ fi1 ] [ 911 912 | [ By } [ kgr Ko (12)
the characteristic polynomial ¢ (s) (6) of the close-loop matrix has the form
s -1 0 0 0
—3wi s kq% —2rowg + kl% L
¢(s) = det | STa ~AHTBKC B } —det| 0 0 s 1 0 (13)
—GC SIl —F 0 9wo ka1 s+ koo hay
0 VT vro vTro
0 0 —gn —912 s—fn
After substituting five given eigenvalues (poles) Ai,..., s, to the characteristic polynomial (13), we obtain five
polynomial equations in nine variables f11, 911,912, h11, ho1, k11, k12, k21, koo of the form
q ()\L) = /\?1}7"0 + )\?UTOWS — /\?Urofll — /\?1)7"00)8]011 — 2)\,‘&)0}111911 — /\?hglgn — 3w§h21911 — (14)

2X2woh11g12 + +APha1g12 — 3Niwiha1gi2 — 2\ woki1 + 2Niwo fi1 ki — 2X;wokie +
+  2XNwo frikia + Akar — 3Niwdkar — A7 fiikar + 3w fiikar 4+ Afkao — 3A7wikos —
— A2 firkas + 3Niwd fr1kao.

This is an underconstrained system of polynomial equations. Therefore, to have finitely many solutions, four from the
nine variables have to be set to some values resulting in five equations in five unknowns of degree five. Next we show
how such systems of polynomial equations can be solved using the algebraic Grobner basis method.

3. GROBNER BASIS METHOD

The Grobner basis method for solving systems of polynomial equations has recently became popular in computer
vision and robotics and it has been used to create very fast, efficient and numerically stable solvers to many difficult
problems. The method is based on polynomial ideal theory and is concerned with special bases of these ideals called
Grobner bases [5]. Grobner bases have the same solutions as the initial system of polynomial equations defining the
ideal but are often easier to solve. Grobner bases are usually used to construct special multiplication matrices [5], which
can be viewed as a generalization of the companion matrix used in solving one polynomial equation in one unknown.
The solutions to the system of polynomial equations are then obtained from the eigenvalues and eigenvectors of such
multiplication matrices. See [5] for more on Grobner basis methods and [10, 11, 4, 2] for their applications. Since general
algorithms [5] for computing Grobner bases are not very efficient for solving problems which appear, for example, in
computer vision, an automatic generator of specific polynomial equations solvers based on the Grobner basis method has
been proposed in [10]. These specific solvers often provide very efficient solutions to a class of systems of polynomial
equations consisting of the same monomials and differing only in the coefficients. Many problems including the problem
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Fig. 2. Illustration of the basic steps of the automatic generator

presented in this paper share the convenient property that the monomials appearing in the set of polynomials resulting
from this problem, in this case system (14), are always the same irrespective of the concrete coefficients arising, usually,
from non-degenerate measurements. Therefore, it is possible to use efficient specific solvers instead of less efficient
general algorithms [5] for computing the Grobner bases.

4. AUTOMATIC GENERATOR

Since the Grobner basis method for solving systems of polynomial equations requires non-trivial knowledge of algebraic
geometry from its user, we have proposed an automatic generator of specific Grobner basis solvers [10] which could
be used even by non-experts to easily solve problems leading to systems of polynomial equations. The process of
creating these specific Grobner basis solvers consists of two phases. In the first “offline” phase, the so-called “elimination
templates” are found. These templates specify the elimination sequence in order to obtain all polynomials from the Grobner
basis or at least all polynomials necessary for the construction of a multiplication matrix. This phase is performed only
once for a given problem. In the second “online” phase, the elimination templates are used with coefficients arising from
specific measurements to construct the multiplication matrix. Then, eigenvalues and eigenvectors of the multiplication
matrix provide solutions to the original polynomial equations.

Our automatic generator presented in [10] performs the offline phase automatically and for an input system of
polynomial equations outputs an efficient online solver. The input into our automatic generator is the system of polynomial
equations which we want to solve with a particular choice of coefficients from Z,, that choose the particular elimination
template. For many problems, the interesting “regular” solutions can be obtained with almost any random choice of the
coefficients. Therefore, we use random coefficients from Z,,. The output from the generator is the Matlab or C code solver
that returns solutions to the input system of polynomial equations for arbitrary “non-degenerate” coefficients from Q. In
online computations, only this generated solver is called. The illustration of the basic steps of the automatic generator
are in Figure 2.

We have used the automatic generator to create fast and efficient solvers to the problem of computation of a dynamic
compensator for the satellite for different combinations of input free parameters.

5. GROBNER BASIS SOLUTIONS TO THE SATELLITE TRAJECTORY CONTROL

In section 2.1 we have shown that the problem of the computation of the dynamic compensator for the satellite using
the pole placement technique results in five polynomial equation in nine unknowns of the form (14). To obtain a finite
number of solutions to this system of five equations, four from the nine variables have to be considered as known and
set to some prior values.

In [12] the problem of computation of the dynamic compensator for the satellite was solved using Dixon resultants
for one combination of free parameters. In this case gis,ho1, k12 and ko1 were considered as free parameters and
fi1,911, h11, k11 and koo as unknowns.



In this section we will show that the automatic generator can be easily used to create fast end efficient Grobner basis
solvers to all combinations of free parameters in our problem. These solutions require to perform only the Gauss-Jordan
elimination of a small matrix and computation of roots of a single variable polynomial. The maximum degree of this
polynomial is not greater than six in general but for most combinations of the input free parameters its degree is even
lower.

If we fix f1; as an unknown, then there are 70 different combinations of free parameters and unknowns. Using the
automatic generator we have generated 68 different Grobner basis solvers for all these combinations of free parameters.
Two combinations of free parameters, i.e. k11, k12, ko1, koo and hii, hoy, k12, koo as free, resulted in overconstrained
systems of polynomial equations and therefore didn’t return results. All the remaining solvers return from 1 to 6 solutions
to the unknown parameters. The detailed analysis of all 68 solvers with the number of solutions and the size of the
resulting Gauss-Jordan elimination can be found in Table I.

The “size” of the solver (i.e. of the Gauss-Jordan elimination) depends on the monomial ordering used. In all our
solvers, we have used the graded reverse lexicographic ordering with the ordering of the unknowns as listed in Table I.

Thanks to the automatic generator, all 68 solvers from Table I can be easily generated in a few minutes. Once we have
generated necessary solvers using the automatic generator, we do not need to call it again and we can use the generated
fast efficient solvers for arbitrary values of free parameters to get solutions to all unknowns in a few microseconds. The
input to the automatic generator [10] can be found in Figure 3.

Note that for some solvers the result from the automatic generator [10] returns solutions only to some from the
unknown variables and the solutions to the remaining variables have to be computed using the obtained solutions.
Usually the solutions to the remaining variables can be easily extracted from the eliminated coefficient matrix (matrix
after Gauss-Jordan elimination) computed in the solver or by solving system of a small number of linear equations.

The solver 20 from Table I solves exactly the combination of free parameters presented in paper [12]. Our Grobner
basis solver to this combination of free parameters leads to one Gauss-Jordan elimination of a 5 X 7 matrix, computation
of roots of one quadratic equation and solving two linear equations in two unknowns.

6. RESULTS

To demonstrate the functionality of our Grobner basis solutions we have made several experiments. In the first
experiment we have tested the Grobner basis solver 20 from Table I on data from [17, 12, 13] and compared the
results of our Grobner basis solver with the results of the solution presented in [12] and implemented in Mathematica.
In this case the values of five poles \; in (14) were set to

=244 =23

AL = Ay =
1 572 5

and the parameters of the state-space model of the satellite in (9) and (10) to

s, A3 = =5, Ay = =7, s = -3, (15)

m = 0.74564, wo = 0.345354, ro = 1.2342. (16)

These values were chosen in [17] randomly and have no real interpretation. However these values were used also
in [12, 13] and therefore we chose them for our first experiment to demonstrate that our solver works correctly and
returns the same results as the solver from [12, 13].

In [12, 13] the four free parameters were set to

lig =1, ho1 =1, kia =1, kg1 = 26. 17)

Table II shows the results of the Dixon resultant solver presented in [12] and implemented in Mathematica and the
results of our Grobner basis solver generated using the automatic generator [10] and implemented in Matlab.

The results returned from both solvers are the same up to 11*" decimal place. Since both solvers are implemented in
different programing languages it is not completely fair to compare their running times, however, the running the new
Grobner basis solver is several hundreds times faster than the Dixon resultant solver [12] from Mathematica. Moreover,
the Grobner basis solver can be easily generated using the automatic generator [10] and since it consists only of the
Gauss-Jordan elimination of the initial polynomial equations and computation of the root of quadratic polynomial it can
be easily reimplemented in another programing language. On the other hand the Dixon resultant solver [12] uses internal
commands of Mathematica, such as DixonResultant and Nsolve and therefore can’t be easily reimplemented into
another programing language.

In the next experiment we demonstrate the functionality of our Grobner basis solution on real-like satellite parameters.
We need circular satellite trajectory for a simple example. We have selected International Space Station (ISS) which
has trajectory close to circular. For our example, we have specified the circular trajectory movement by mean radius



Unknowns

[

Free Parameters

[ #solutions | G-J elimination |

1 f11,911,912, h11, k11 | hoi, k1o, ka1, ka2 1 5x6
2 f11,911,912, h11, k12 | hoi, k11, k21, koo 2 10 x 12
3 f11,911,912, h11, k21 | ho1, k11, k12, ka2 1 5 X6
4 f11,911,912, h11, k22 | ha1, k11, k12, ka1 4 20 x 24
5 f11,911,912, ho1, k11 | hi1, k12, k21, koo 3 20 x 23
6 f11,911,912, h21, k12 | hi1, k11, ka1, koo 4 20 x 24
7 f11,911,912, h21, k21 | hi1, k11, k12, koo 1 5 x 6
8 || fi1,911,912, ho1, ka2 | hi1, k11, ke, koa 3 10 x 13
9 f11,911,912, k11, k12 | hi1, ho1, ka1, ka2 1 5 x 6
10 || fi1,911,912, k11, k22 | hi1,h21, k12, k21 3 5% 8
11| fi1,911,912,k12,k21 | hi1,h21, k11, ka2 3 5 X8
12 || fi1,911,912,k12,k22 | hi1,h21, k11, k21 3 5 x 8
13 || fi1,911,912,k21,k22 | hi1,h21, k11, k12 3 5 x 8
14 || fi1,911,h11,ho1, k11 | g12, k12, ko1, ka2 1 5 X 6
15 || fi1,911,h11,ho1,k12 | g12, k11, ko1, ko2 3 20 x 23
16 || fi1,911,h11,h21,k21 | g12, k11, k12, ka2 3 10 x 13
17 || fi1,911,h11,ho1, ko2 | g12,k11, k12, ko1 3 20 x 23
18 || fi1,011,h11, k11, k12 | g12,ho1, ko1, koo 1 5x6
19 fi1,911,h11, k11, k21 | 912, ho1, k12, ka2 1 5% 6
20 || fi1,911,h11, k11, ko2 | g12,ho1, k12, ko1 2 5x7
21 || fi1,911,h11, k12, k21 | 912, h21, k11, k22 2 10 x 12
22 || fi1,911,h11, k12, ko2 | g12,ho1, k11, ko1 4 15 x 19
23 || fi1,911,h11, k21, ko2 | g12,h21,k11, k12 4 15 x 19
24 1| fi1,911,h21, k11, k12 | g12,h11, ko1, ka2 4 15 x 19
25 || fi1,911,h21, k11, k21 | g12,h11, k12, ka2 3 15 x 18
26 || fi1,911,ho1,k11, ko2 | g12,h11, k12, ko1 5 20 x 25
27 || fi1,911,h21,k12,k21 | g12,h11, k11, k22 3 20 x 23
28 || fi1,911,ho1,k12, ko2 | g12,h11, k11, ko1 5 20 x 25
29 || fi1,911,h21,k21, k22 | g12,h11, k11, k12 3 15 x 18
30 || fi1,911, k11, k12, k21 | g12,h11, ho1, koo 3 15 x 18
31 f11,911, k11, k12, ko2 | g12,h11, h21, k21 4 5x9
32 || fir, 911, k11, ko1, k22 | g12,h11, ho1, k12 3 15 x 18
33 || fi1,911,k12, k21, ko2 | g12,h11,ho1, k11 4 5X9
34 || fi1,912,h11,ho1, k11 | g11,k12, ko1, ko2 1 5X6
35 || fi1,912,h11,ho1, k12 | g11,k11, ko1, ko2 3 10 x 13
36 || fi1,912,h11,ho1, k21 | g11, ka1, ko, koo 1 5 % 6
37 1| fi1,912,h11,ho1, ko2 | g11, k11, k12, k21 3 10 x 13
38 || fi1,912,h11, k11, k12 | g11,ho1, ka1, ka2 1 5x6
39 1| fi1,912, k11, k11, k21 | g11, ho1, K12, koo 1 5 x 6
40 || fi1,912,h11, k11, ko2 | 911, ho1, k12, ko1 2 5x7
41 || fi1,912,h11, k12, k21 | 911, ho1, k11, koo 4 20 x 24
42 || fi1,912,h11,k12, ka2 | g11, h21,k11, ko1 3 18 x 21
43 || fi1,912,h11, k21, ko2 | 911, ho1, k11, k12 6 15 x 21
44 || fi1,912,ho1, k11, k12 | 911, h11, k21, koo 4 14 x 18
45 || fi1,912,ho1,k11,k21 | 911,11, k12, koo 2 32 x 34
46 || fi1,912,ho1,k11,ke2 | 911, h11, k12, ko1 3 20 x 23
47 || fi1,912,ho1, k12, k21 | 911, h11, k11, koo 1 5 x 6
48 || fi1,912,ho1,k12, ko2 | g11,h11, k11, ko1 3 15 x 18
49 1| fi1,912,h21, k21, k22 | g11,h11, k11, k12 1 5x6
50 || fi1,912,k11,k12,k21 | g11,h11,hot, koo 4 5x9
SU [ fi1,912, k11, k12, k22 | g11,h11,ho1, ka1 1 5x6
52 || fi1,912,k11,k21,k22 | g11,h11, ko1, k12 3 15 x 18
53 || fi1,912, k12, ko1, k22 | g11,h11,h21, k11 4 5x9
54 || fi1,hi1,ho1, k11, k12 | g11, 912, ka1, koo 1 5 x 6
55 || fi1,hi1,hor, ki1, ka1 | g11, 912, k12, ka2 2 5x7
56 || fi1,hi1,ho1, k11, ka2 | g11,912, k12, ka1 2 5x7
57 || fi1,hi1,he1, k12, k21 | g11,912, k11, k22 2 15 x 17
58 || fi1,hi1,ho1, k12, ko2 | g11,912, k11, ka1 3 5 x 8
59 || fi1,hi1,ho1, ko1, k22 | g11,912, k11, k12 1 5 X 6
60 || fi1,h11,k11,k12,k21 | g11,912, ho1, ko2 2 5x7
61 || fi1,h11, k11, k12, k22 | g11,912, ho1, k21 2 5 X7
62 || fi1,h11,k11,k21,k22 | 911,912, ho1, k12 3 5 X8
63 || fi1,h11,k12,k21,k22 | 911,912, ho1, k11 4 5 x 9
64 || fi1,h21,k11,k12,k21 | 911,912, h11, ka2 4 5x9
65 || fi1,h21,ki1,k12,k22 | 911,912, h11, k21 4 5x9
66 || fi1,h21,k11,k21,k22 | 911,912, h11, k12 4 5x9
67 || fi1,h21,k12,k21,k22 | 911,912, h11, k11 2 10 x 12
68 || fi1,k11,k12,k21,k22 | g11,912,h11, P21 5 5 x 10

DETAILED DESCRIPTION OF DIFFERENT SOLVERS.

TABLE 1




o)

% Satellite trajectory control by pole placement
cfg = gbs_InitConfig();

% known wvariables
syms 11 12 13 14 15

syms v r0 o0

% control variables
syms f£11 gll gl2 hll h21 k11 k12 k21 k22

1 = [11 12 13 14 15]
% build equations
for i=1:5
eq(i) = 1(1i) "5%xvxr0 + 1(i) " 3*xv*r0%x0072 — 1 (i) "4»vxr0xfll -
1(1) "2xvxr0+00"2x£f11 - 2%1(i)*00+hllxgll + 1(i) "2+xh21xgll -
3x0072xh21xgll - 2x1(i) "2%00xhllxgl2 + 1(i) "3xh21lxgl2 -
31 (1) *x0072+h21xgl2 — 2%1(i) "2%00%xk1l1l + 2%1(i)»00xf1l1lxkll -
2+%1 (1) "3x00xk1l2 + 2x1 (1) "2+x00*«f11*kl12 + 1 (1) "3*xk21 -
3x1(1i)*0072%xk21 — 1 (i) "2xf11xk21 + 3%x00"2+xf1l1%k21 +
1(i) "4%k22 — 3x1(1i) "2%0072xk22 — 1(1) "3xf11xk22 + 3x1(i)*00"2+x£f11xk22;

end

groups = [];

n_sols = [];
must_unknown = {’f11’};

known = {’11" 712’ 13’ 714" 715" ’'v' 'r0’ "00’'};
allUnknown = {’gll’ ’gl2’ 'hll’ ’"h21’ ’'k11’ ’k12’ ’'k21" "k22'};
unkChoices = nchoosek (l:length(allUnknown), 4)’;

solldx = 1;
for unk = unkChoices

current_unknown = [must_unknown allUnknown (unk)];
current_unknown

unk_complement = setdiff (allUnknown, current_unknown);
current_known = [known unk_complement];
[res export n_sol(sollIdx)] = gbs_CreateCode([’satellite_pole’
int2str(solldx) ], eq, current_known, current_unknown, groups, cfg );
solIdx = solIdx + 1;
end

Fig. 3. Input Matlab script for the automatic generator of Grobner basis solvers

and mean motion of ISS. Parameters of the circular motion are radius of the circle ro = 6794209 km, angular velocity
wp = 0.001127 rad/s and mass of the satellite v = 450000 kg.

State space representation of the satellite dynamic system is numerically unsuitable when we use ISS parameters in
SI units. Therefore we have used the transformation of time from seconds to hours [h] and distance units from meters
to thousands of kilometers [kkm]. Transformed parameters of the satellite motion are radius of the circle o = 6.794209
kkm and angular velocity wy = 4.058687 rad/h. The parameter v combines together the mass of the satellite and input
force gain. We have defined unit input of the system as 100kN. The parameter v is 4.5 hundreds of tons. We have created
the state-space model of the satellite dynamic with the parameters based on equations (9), (10) and (11).

The system performance is documented by response to pulse of input error force in radial direction. The value of the
force has been 500N and the pulse duration has been 60 second. The force impulse has been applied at the time equal
to 0.2 hour (720 s). The response of the system without feedback is shown on Figure 4.

For the created dynamic model, we have designed dynamic output feedback by pole placement method as described



[ Solver T ] g11 [ hu [ mn [ mas |
Dixon resultant [12] -7.80999 | -473.11582 | -11.05439 | -719.88274 | 8.26297
-8.97886 | -503.50636 | -12.04822 | -719.31480 | 7.18729
Grobner basis -7.80999 | -473.11582 | -11.05439 | -719.88274 | 8.26297
-8.97886 | -503.50636 | -12.04822 | -719.31480 | 7.18729

TABLE II
RESULTS OF THE DIXON RESULTANT SOLVER AND THE PROPOSED GROBNER BASIS SOLVER.
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Fig. 4. Response of satellite dynamic system to radial force pulse (60s, SOON): (Left) Orbit radial distortion and (Right) distortion of
position angle (blue line) and angular velocity (red dashed line).

in Section 2. We suggest stable poles with one complex conjugate pole pair:
A = —T44i, \g =—7—4i, \g= -5, \y =T, \s = —3. (18)

The dynamic compensator (12) is underdetermined, i.e. it results in the underdetermined system of polynomial
equations (14). Therefore we have to select free parameters and set their values.

In this experiment we have tested two of our Grobner basis solvers. The first one is the solver 20 from Table I, i.e.
the same solver as in the previous experiment. In this solver we have set

gi2 =1, ho1 =1, k13 =1, koy = 290. (19)

The second one is the solver 19 from Table I. This solver returns only one solution and therefore ensures real solution
for reasonable inputs. In this solver we have set

gi2 =1, hoy =1, k1o =1, koo =70. (20)

For the solver 19 we have tested solutions for different values of the parameter koo (from -100 to 100). As expected, we
have obtained real solutions in all these cases. We have set the value of koo to 70 because this value offers a solution
which minimizes the maximal absolute values of parameters.

We used the two tested solvers with the corresponding values of free parameters to obtain solutions to unknown
parameters of the dynamic compensator (12).

For the solver 20 we have obtained two solutions. The first solution

—1.1320 —1780.6398 1
F=[ —-152963 |, G=[ —4761.7 1 |, H= { 10000 } K= { 200 39 3983 } , (21)
and the second solution
—1.0568 —809.6220 1
F=|[ —137037 |, G=[ —42999 1], H= { 10000 } K= { 290 46,0856 } : (22)
For the solver 19 we have obtained only one solution
—31.0790 —1040.5195 1
F=[06723],G=[2332827 1], H= { 1.0000 ] , K= [ 8315678 70 } (23)
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Fig. 5. Response of dynamic system with compensator designed by the solver 20 to radial force pulse (60s, SOON): (Left) Orbit radial
distortion and (Right) distortion of position angle (blue line) and angular velocity (red dashed line).
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Fig. 6. Response of dynamic system with compensator designed by the solver 19 to radial force pulse (60s, SOON): (Left) Orbit radial
distortion and (Right) distortion of position angle (blue line) and angular velocity (red dashed line).

The response of the system with dynamic compensator (21) and closed feedback obtained from the first solution
returned by the solver 20 is shown on Figure 5. We can see, that after error disturbance, the distortion of radius Figure 5
(Left), distortion of position angle and angular speed system Figure 5 (Right) have nonzero value. Their values are

returning to zero with suggested dynamic.
The response of the system with dynamic compensator (21) and closed feedback obtained using the solver 19 is shown

on Figure 6. We can see, that the characteristics corresponds to the previous example in Figure 5 due to the same required

system poles.
7. CONCLUSION

In this work, we have presented Grobner basis solutions to the important problem of computation of a dynamic
compensator for the satellite.

Since the problem results in an underconstrained system of polynomial equations wh have proposed solutions for
different combinations of free input parameters. We have shown that the Grobner basis method for solving systems
of polynomial equations leads to simple solutions for all combinations of free parameters. These solutions require to
perform only the Gauss-Jordan elimination of a small matrix and computation of roots of a single variable polynomial.
The maximum degree of this polynomial is not greater than six in general but for most combinations of the input
free parameters its degree is even lower. Our approach is particularly useful for testing different parameters of the



compensator and for developing numerically stable compensators, when, e.g., state space needs to be transformed to a
different coordinate system.
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