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ABSTRACT 
 

Recent research has addressed the increasing computational challenge that the current state of the art global gravity 
expansions involve tens of thousands of terms in a theoretically infinite order expansion (some spherical 
harmonic gravity models extend to degree and order 200 with over 30,000 terms).  As global gravity models become 
more detailed and expensive, and since, acceleration must be computed at numerous local points to generate high 
precision orbits), and finally, with the advent of >20,000 objects whose orbits must be propagated for Space 
Situational Awareness, the expense of gravity computation has emerged as a vitally important computational 
challenge. In this paper we consider orthogonal approximation methods to establish an FEM high accuracy 
global gravity field representation. The FEM model replaces the global spherical harmonic series with a family of 
locally precise orthogonal polynomial approximations for efficient computation. Our preliminary results showed that 
CPU time to compute the state of the art (degree and order 200) spherical harmonic gravity is reduced by 4 to 5 
orders of magnitude while maintaining > 9 digits of accuracy. Most of the speedup is due to adopting the orthogonal 
FEM approach, but a radial adaptation method to modify the approximation degree is introduced that results in an 
additional order of magnitude speedup. The Adaptive Orthogonal Finite Element Gravity Model (AOFEGM) has 
wide applicability to establish a new generation of efficient trajectory propagation algorithms. For example, when 
used in conjunction with the orthogonal Finite Element Model (FEM) gravity approximations discussed herein, the 
highly parallelizable Chebyshev-Picard path approximation enables truly revolutionary speedups in orbit 
propagation without accuracy loss.  
  
 

1. INTRODUCTION 
 
There are several treatments of discrete approximation using Chebyshev polynomials [1-10]. Among the more 
comprehensive of these are the texts [5,7]. In [4], orthogonal approximation is placed in a broader context of multi-
resolution approximation via linear and nonlinear input/output maps. Several applications of the orthogonal 
approximation are considered in Astrodynamics. This paper establishes highly efficient local approximation of high 
degree and order geopotential models, replacing the global spherical harmonic series with a family of locally precise 
orthogonal polynomial approximations for efficient computation. We introduce a method that adapts the 
approximation degree radially to ensure that the maximum acceleration error < 10-9 m/s2. This method takes into 
account the fact that the highest degree approximations are required near the Earth's surface, whereas lower degree 
approximations are required as we move further away form the Earth and the radius increases. Specifically, we 
replace the GRACE [11,12] (156, 156) spherical harmonic model with a global family of local orthogonal 
polynomial approximations. We also replace the (200, 200) Earth Gravitational Model EGM 2008 [13], using the 
same FEM orthogonal approximation approach to observe the dependence of the relative computational advantage 
on higher order gravity terms. 
 
The classical solution to Laplace's equation for gravity is adopted using the globally valid spherical harmonic 
gravity potential model, where the spherical harmonic (SH) approach is slow and reveals the three main challenges 
[11,14,15-18]: (1) Choosing a finite upper limit of the series defines the accuracy (the more we know about gravity, 
the more terms are required and the more it costs to compute acceleration), (2) Convergence is very inefficient and 
slow for n > 2, so, for the current state of the art, tens of thousands of terms are required to obtain a sufficiently high 
accuracy global gravity representation, (3) The North and South poles represent non-free singularities of the usual 
spherical coordinates. In view of the slow convergence of global gravity models, we are motivated to truncate the 



classical expansion at n = 2 and introduce a finite element model (FEM) local gravity representation of the higher 
order perturbation in the anticipation that much lower degree locally valid functions can be used to efficiently model 
and compute local gravity perturbations. Applicable to both irregular and near-spherical shaped bodies, methods in 
this class expedite computations by effectively trading computer memory for runtime speed. First proposed by 
Junkins in 1976 [11], geopotential FEM interpolation methods have been bolstered recently by the extraordinary 
memory resources of common computers. A variety of approximation techniques and basis functions have been 
employed for gravity field representation, including weighting functions [3,14,19,20,21], wavelets [22], splines 
[22,23], octrees [24], psuedocenters [25] and 3D digital modeling [26]. Each interpolation method balances accuracy 
with efforts to minimize runtime speed and memory footprint cost while achieving exactness, continuity and 
smoothness as appropriate. 
 

2. ORTHOGONAL APPROXIMATION 
 
We unify and extend classical results from function approximation theory and consider their utility in 
Astrodynamics. Least square approximation, using the classical Chebyshev polynomials as basis functions, is 
reviewed for discrete samples of the to-be-approximated function. We extend the orthogonal approximation ideas to 
n-dimensions in a novel way, through the use of array algebra and Kronecker operations. Approximation of test 
functions illustrates the resulting algorithms and provides insight into the errors of approximation, as well as the 
associated errors arising when the approximations are differentiated or integrated. We first review classical discrete 
polynomial approximation results for one and two dimensions and introduce a convenient array algebra means to 
extend the one dimensional orthogonality results to higher dimensions. This path avoids the curse of dimensionality 
and establishes the results needed for efficient computation. Several simple examples are provided to enable the 
efficacy and utility of the methodology to be appreciated heuristically. 
 
Let us first set the context by considering the approximation of a single-valued function of one independent variable  
 min max( ),  { }g x x x x   (1) 
 
To put the problem in a non-dimensional framework, we first introduce a new independent 
variable  such that { 1 1}    .  It is easy to verify the forward and inverse transformations: 

  ,  and  ( ) 2( ) / ( ) 1 ( ) ( 1) / 2min max min min max minx x x x x x x x x           (2) 
Substituting the second of Eqs (2) into Eq (1), we see that we wish to approximate the function  
     ( ) ( ) ( 1) / 2min max minf g x g x x x        (3) 

In the case of general basis functions, we seek to approximate ( )f   as a linear combination of a prescribed set of 

N+1 linearly independent basis functions 0 1{ ( ), ( ), , ( )}N       as  
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For the case of discrete measurement samples, we introduce a set of sample points (nodes) 
as 0 1 ;{ , , , }M M N    ; the residual approximation error at each measurement node is 
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or in vector-matrix notation  r f a  (6) 
where  
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The method of least squares seeks the coefficient vector (a ) that minimizes the weighted sum square of the 
residuals  

 (positive definite weight matrix)
1 ( ) ( );    
2

T TJ W W W   f a f a
.
 (8) 

It follows [9] that the least square minimization solution for a leads to the normal equations  
 1( )T TW W   a f  (9) 
Restricting W to be diagonal hereinafter, and choosing a special class of orthogonal basis functions, TW  can be 
rendered a diagonal matrix so the matrix inverse in Eq (9) is trivial. The orthogonality conditions depend jointly on 
the set of basis functions, the set of node locations and the weight matrix (more generally, W = WT may be fully 
populated). For the case that the above orthogonality conditions are satisfied, the explicit solution for the 
coefficients of Eq (9) is given by the independent/uncoupled ratios of inner products as 
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An important special case arises when we make a specific choice of orthogonal basis functions, namely 

0 1 0 1{ ( ), ( ),  , ( )} { ( ), ( ),  , ( )}N NT T T         , i.e., we choose the classical Chebyshev polynomials 

0 1{ ( ), ( ), , ( )}NT T T   , as discussed in references [1,2,4,5,20], as the basis functions and also we choose the N+1 
cosine sample points (also known [1,2,4,5,20] as the CGL nodes in honor of Chebyshev-Gauss-Lobatto):  
 ,    0,1, 2, ,cos( / )j M j Mj   

.
 (11) 

If a vector-matrix form is desired for the least squares solution for the coefficients, we can re-arrange Eqs (9) in the 
form shown below, after utilizing the orthogonal condition 
 Aa f  (12) 
where the Chebyshev least square operator matrix is 
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Note that the particular weight matrix 1 1{ ,1,1, ,1,1, }2 2W diag can be shown to be consistent with the 

classical Chebyshev polynomials satisfying the orthogonality conditions of Eq (10).  The choice of an identity 
matrix, for example, together with the Gramm-Schmidt process [1,2], gives rise to a related set of orthogonal 
polynomials. The approximation properties of the Chebyshev polynomials are well-researched and a substantial 
literature exists related to this choice, therefore we adopt the slight modification of the identity weight matrix.  We 
believe the above formulation leads to a logical path to generalize the classical weighted least square formulations to 
the analogous developments for approximating functions of n variables, as we show below. 

 
The Chebyshev polynomial formulation is known to be relatively immune to the so-called Runge Phenomena 
wherein the approximation errors near the end of the data support at 1  can become unacceptably large.  The dense 
sampling near the ends of the approximation interval implicitly reduces errors near the boundary.  Also, the fact that 
no numerical matrix inversion is required for orthogonal polynomials means that approximation can be robustly 
computed at any desired or required order. These advantages were illustrated by performing several test examples, 
and can be found in Bani Younes [1].  The flowcharts explaining the 1-D, 2-D, and n-D approximations are shown 
in Figure 1, Figure 2 and Figure 3 respectively.  



 
Figure 1: 1-D Approximation. 

 
 

 
Figure 2: 2-D Approximation. 

 

 

 
Figure 3: n-D Approximation. 



 
3. ORTHOGONAL FINITE ELEMENT REPRESENTATIONS OF THEGEOPOTENTIAL 

 
We first consider the construction of an orthogonal FEM approximation to the gravity potential field model 
determined from the Gravity Recovery And Climate Experiment (GRACE). The GRACE Gravity Model has been 
publicly released [3,19,10].  Access to the model's coefficients and other descriptive files about GRACE were 
obtained from [19,10]. In view of the slow convergence of global gravity models, we are motivated to introduce 
finite element model (FEM) local gravity representations in the anticipation that much lower degree functions can be 
used to efficiently model and compute local gravity.  The literature on this subject initiated with our classical 
developments [11-13] and has recently been explored by other others [15-17]. In our developments herein, we have 
solved a key historical challenge implicit in this class of methods for geopotential representation:  How do we 
structure the FEM models to render them radially adaptive and efficient, so that the resulting algorithms 
“automatically  know”  about  the  rapid  radial  decay  of  the  high  frequency  terms  and  more  to  the  point,  which  terms  in  
the FEM representation to retain, as a function (mainly) of radial distance from geocenter. We consider the total 
gravity potential model split into reference and disturbance gravity terms, where, for example, the global reference 
gravity term includes the O(1) 2-body and the O(10-3)  J2 oblateness  terms  whereas  “everything  else”  (all  the  higher  
degree and order terms) are considered perturbative gravity disturbance to the reference model.  The potential and 
the acceleration are 
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The preliminary results show that, for routine exo-atmosphere orbit calculations, the FEM gravity model can be 
computed to an accuracy of 9 to 10 digits with a 4 order of magnitude reduction in CPU time, relative to using the 
correspondingly accurate spherical harmonic representation.  Radial adaptation of the FEM computation can be 
readily implemented by a one-time a priori computational process (at the time the FEM model is established) to find 
the maximum degree to maintain a prescribed accuracy tolerance, as a function of radial displacement through each 
FEM element.  A ~4 order of magnitude computational speedup by this approach can be even further enhanced by 
introduction of parallelization in conjunction with the Chebyshev-Picard methods [1,2] discussed below where many 
gravitational acceleration evaluations at judicious nodal points along a known approximate path can be 
simultaneously computed in an iterative path approximation algorithm.  In most cases, these path approximations 
are found to converge over 2 to 3 orbits and therefore allow 2 or more orders magnitude additional speedup.  Using 
a fusion of adaptive orthogonal FEM gravity approximation and the Chebyshev-Picard orbit path approximation 
methods, we can achieve supercomputer orbit computation performance with a desktop computer. 
As a specific example FEM grid, a sphere of radius R is covered by a 2-D  mesh  (4x4)  degree  (λ,  φ)  :  0  ≤  λ  ≤  360;;  -
88   ≤   φ   ≤   88   cellular   grid,   except   for   the   polar   caps   of   angular   radius   2   degrees.   At   arbitrary  

min max{ }r r R r r R     , a large family of spherical shells is sampled using the cosine distribution as 
shown in Figure 4.  



 
Figure 4: Multidimensional Cosine Meshes for Discrete Orthogonality Chebyshev Polynomials. 

 
Let the gravity data ( constant, , )U r    on a given spherical shell be transformed into 

( constant, , )i jU     where 1 , 1i j      with the sample points located according to the cosine 
distribution. The transformed position (r) obeys  smart  “cosine-like" transformation as a function of the transformed 
radial variable :  
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 (15) 

 
where cos( / ), 0,1,2, ,j j M j M    . This transformation is intended, for uniform samples, to 
generate higher density r samples on the left (near rmin) and less dense samples on the right (near rmax) compared 
with the classical cosine sampling, see Figure 5 (a). The dense sampling near rmin ensures that a higher density of 
measurement samples is considered where the gravity perturbations are maximum and have the largest local 
significant differential changes. Since the gravity anomalies “die out" rapidly with increasing radius, less dense 
sampling is anticipated for increasing r, see Figure 5 (b).  
 
It is important to determine the required polynomial order, as a function of radius, to adaptively maintain an 
approximation error tolerance. Radial order adaptation enables enormous speedups in the computation of the state of 
the art gravity models. For this insight, the required acceleration error tolerance is determined as a function of the 
polynomial order N. For instance, a (4x4) degree square area at the Earth's surface is sampled using 2D Chebyshev 
distribution. The convergence error is defined by the maximum absolute error between the truth model and the 
approximation acceleration. We selected a conservative maximum approximation error of 10-9 m/s2 as the tolerance 
for errors in replacing the high degree and order gravity model by FEM approximation. Figure 6 below shows 
maximum absolute error of the approximated   “disturbance" acceleration (x, y, and z components) as function of 
Chebyshev polynomial order N. In this case, the reference gravity potential is simply the point mass term and the J2 
perturbation, everything else approximated and plotted in Figure 7 and Figure 8. The (156x156) GRACE model is 
adopted as the truth, and the approximation errors are reduced by adjusting the degree of the Chebyshev 
polynomials to achieve convergence once the error falls below the desired tolerance.  



 
(a) 

 
(b) 

 

Figure 5: (a) Cosine-like Sampling for the Radial Distance, Note the Density of the Nodes is Highest Near rmin.(b) 
Radial Gravity (EGM2008 200x200) Contoured on Three Spherical Shells. 

 
Figure 6: Maximum Error of Chebyshev FEM Gravity FEM gravity Approximation (m/s2) as a function of 

Polynomial Order N, for Various Radial Distances, GRACE 156x156. 



At the Earth's surface, with the (4x4) degree FEM cell size, this is achievable at N = 10, whereas at rmax, the 
maximum allowable error is achieved with only a first degree (N = 1) model for the gravity disturbance acceleration 
(as an additive local correction to the reference global model). This indicates that the local gravity perturbation 
potential at the Earth's surface is approximated by 121 orthogonal polynomial terms, whereas only a linear 
approximation of local disturbance acceleration is required at rmax. It is to be expected that the required polynomial 
order decreases monotonically as we move away from the Earth's surface rmin = R   out to rmax = 7 R , outside of 
the GEO radius; we found that only first degree polynomials are required at rmax, and thus only 4 polynomial terms 
are needed for all three components of acceleration. Since, the gravity field within the range of interest [ R up to 

7 R ] has significant variation as r varies; it becomes useful to divide the model into two concentric spherical shell 
regions for the sake of FEM representation:  
Region I: Atmospheric region [ ,1.02 ]r R R  , 

Region II: The mostly exo-atmospheric region [1.02 ,7 ]r R R  .  
On a serial machine, the FEM approach is 2 orders of magnitude more computationally efficient at the Earth's 
surface than the (156x156) spherical harmonic expansion, and due to the radial adaptation feature of this approach, 
the FEM computational cost is, remarkably, reduced an additional ~2 orders of magnitude for 1.02 R  < r < 7 R . 
This implies that for routine exo-atmosphere orbit calculations, the FEM gravity model is computed with a 9 to 10 
digit accuracy and a 4 order of magnitude reduction in CPU time, relative to using the correspondingly accurate 
spherical harmonic representation. Radial adaptation of the FEM computation is readily implemented by a one-time 
a priori computational process 
 

Figure 7 : Radial Perturbative 
FEM Gravity Approximation at 
the Earth's Surface (m/s2). 

 

Figure 8: Global FEM Gravity 
Potential Approximation at the 
Earth’s  Surface  (m2/s2). 

 



Figure 9 shows the polynomial order required to achieve the maximum approximation error (m2/s2) as a function of 
spherical shell radius r, over each of the two regions. For Region I, the maximum polynomial order required 
corresponds to the shell closest to the Earth's surface, and similarly in Region II the maximum polynomial order N = 
Nmax = 7 also matches the shell nearest to the Earth. However, a much smaller N is required at large r. To compute 
acceleration from the FEM model, we use the maximum polynomial order that ensures consistency with the full 
polynomial model, but retain for orbit computation only the Nrqrd(r) < Nmax terms that contribute at that particular r. 
So for larger r, an additional order of magnitude computational speedup is achieved by including only the 
significantly non-zero terms. The inherent cosine sampling of the radial position allows us to use the standard 
equations for orthogonal least square Chebyshev approximation to obtain the polynomial coefficients.  
 
The computational speed of the FEM compared with that of the GRACE (156, 156) [11,12] model favors the highly 
accurate FEM approximation by about four orders of magnitude. Figure 10 displays a more detailed computational 
comparison between the two gravity representations. It is clear that the computation time for the FEM decreases as 
the required polynomial order decreases. 

  
Figure 9: Polynomial Order N versus r, GRACE 156x156. 

  
Figure 10: Computation Speed of the FEM versus the Spherical Harmonic, GRACE 156x156. 

 
4. CONCLUSION 

 
The classical spherical harmonic expansion and analogous global models require > 105 terms in a series to compute 
> 9 digit converged local acceleration with a single global expansion. This is a challenge and it is therefore not 
attractive to utilize these high order global models to compute local gravity for the purpose of efficient and accurate 
trajectory computation. In this paper we have introduced our method of adaptive finite element gravitational 
approximation. This automatically determines the minimum number of terms required for the approximation as a 
function of radial distance from the Earth, but still maintaining the prescribed accuracy. In addition, we have 

Orthogonal FEM Advantage over  
Spherical Harmonic Series 

Radial Adaptation 



demonstrated that a four order of magnitude speedup in the computation time is achievable with the FEM compared 
with spherical harmonic series computation. These significant results have a strongly positive impact on the field of 
orbital trajectory propagation and we look to seeing the benefits of this implementation on actual flights.   
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