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ABSTRACT 
 

Modified Chebyshev Picard Iteration (MCPI) is an iterative numerical method for approximating solutions of linear 
or non-linear Ordinary Differential Equations (ODEs) to obtain time histories of system state trajectories.  Unlike 
other step-by-step differential equation solvers, like the Runge-Kutta family of numerical integrators, MCPI 
approximates long arcs of the state trajectory with an iterative path approximation approach, and is ideally suited to 
parallel computation.  Orthogonal Chebyshev Polynomials are used as basis functions during each path iteration, 
and the integrations of the Picard iteration are then done analytically.  The orthogonality of the Chebyshev basis 
functions mean that the least square approximations can be computed without a matrix inversion; the coefficients are 
conveniently computed robustly from discrete inner products.  As a consequence of discrete sampling and weighting 
adopted for the inner product definition, the Runge phenomena errors that usually occur near the ends of the 
approximation intervals are significantly minimized.  The MCPI algorithm utilizes a vector-matrix framework for 
computational efficiency.  Additionally, all Chebyshev coefficients and integrand function evaluations are 
independent, meaning they can be simultaneously computed in parallel for further decreased computational cost.  
Over an order of magnitude speedup from traditional methods is achieved in serial processing, and an additional 
order of magnitude is achievable in parallel architectures. 
 
This paper presents a new MCPI library, a modular toolset designed to allow MCPI to be easily applied to a wide 
variety of ODE systems.  Library users will not have to concern themselves with the underlying mathematics behind 
the MCPI method.  Inputs are the boundary conditions of the dynamical system, the integrand function governing 
system behavior, and the desired time interval of integration, and the output is a time history of the system states 
over the interval of interest.   
 
Examples from the field of astrodynamics are presented to compare the output from the MCPI library to current 
state-of-practice numerical integration methods.  It is shown that MCPI is capable of out-performing the state-of-
practice in terms of computational cost and accuracy.   
!
 

1. INTRODUCTION 
 

Modified Chebyshev Picard Iteration (MCPI) is an iterative numerical method for solving linear or non-linear 
ordinary differential equations. It combines the discoveries of two great mathematicians: Émile Picard (Picard 
Iteration) and Rafnuty Chebyshev (Chebyshev Polynomials). The decision to make use of these techniques in a 
simultaneous manner was first proposed by Clenshaw and Norton in 1963 [1].  
 
Picard stated that any first order differential equation 
 

€ 

˙ x (t) = f (t,x(t)), x(t0),              (1.1) 
 



with an initial condition x(t0) = x0, may be rearranged without approximation to obtain the integral equation shown 
in Eq. (1.2). 
 

€ 

x(t) = x(t0) + f (τ,x(τ))dτ .
t0

t

∫        (1.2) 

 
A sequence of approximate solutions, xi(t), (i = 1, 2, 3, …, ∞), to this differential equation may be obtained through 
Picard iteration using the following formula: 
 

€ 

x i(t) = x(t0) + f (τ,x i−1(τ))dτ,
t0

t

∫ i =1,2,...     (1.3) 

 
In the MCPI method, orthogonal Chebyshev polynomials are used as basis functions to approximate the integrand in 
the Picard integral. Chebyshev polynomials reside in the domain τ = [-1,1], and can be defined recursively as: 
 

€ 

T0(τ) =1,     (1.4) 
 

€ 

T1(τ) = τ,  (1.5) 
 

€ 

Tk+1(τ) = 2τTk (τ) −Tk−1(τ ).   (1.6) 
 
Unlike traditional step-by-step integrators, for example the Runge-Kutta methods, MCPI is unique in that long state 
trajectory arcs are approximated during the Picard iteration.  The system dynamics are normalized such that the 
timespan of integration is projected onto the domain of the Chebyshev polynomials, thus the system states can be 
approximated using the Chebyshev polynomial basis functions.  The orthogonal nature of the basis functions means 
that the coefficients that linearly scale the basis functions can be computed independently as simple ratios of inner 
products with no matrix inversion.  
 
As a consequence of the independence of the basis functions, the coefficients multiplying the Chebyshev basis 
functions may be computed in parallel by separate processor threads.  This is the first of two available layers of 
parallelization in the MCPI method.  The second layer of parallelization is enabled by the fact that the entire state 
trajectory over the time interval of interest is estimated at once.  Thus the calculation of the integrand function 
(which is a function of the system states) can be performed all at once on parallel processor threads.  Using MCPI, 
over an order of magnitude speedup from traditional methods is achieved in serial processing, and an additional 
order of magnitude is achieved in parallel architectures. 
 
A key feature of MCPI is a non-uniform cosine density sampling of the domain of the Chebyshev basis functions 
called Chebyshev-Gauss-Lobatto (CGL) nodes, defined in Eq. (1.7). 
 

τ j = cos( jπ / N ), j = 0,1, 2...,N      (1.7) 
 
This sampling scheme has much higher density towards the edges, which enables a higher accuracy solution near the 
boundaries of the state trajectory.  This scheme eliminates the Runge phenomena, a common issue in function 
approximation whereby noisy estimates are returned near the edges due to lack of knowledge of the states on the 
other sides of the boundaries.  The coefficients multiplying the Chebyshev basis functions are approximated by the 
method of least squares, which generally requires a matrix inversion.  A wonderful side effect of the cosine 
sampling scheme is that the matrix required to be inverted in the Normal Equations of least squares is diagonal, thus 
the inverse is trivial. 
  
In 2010, Bai’s dissertation [2] laid the groundwork of MCPI and proved the capability of the method to outperform 
the state of the practice for numerical integration of ODEs.  Bai and Junkins applied MCPI to non-linear IVPs and 
orbit propagation in [3], and showed that MCPI can outperform other higher order integrators such as Runge-Kutta-



Nystrom 12(10).  In [4] Bai and Junkins applied MCPI to efficiently solving Lambert’s transfer problem, and to 
solving an optimal control trajectory design problem more accurately and efficiently than the Chebyshev 
pseudospectral method.  In [5] Bai and Junkins use MCPI in a complex three-body station-keeping control problem 
formulated as a BVP.  Subsequent publications by Junkins et al. [6], [7], and [8] further clarify the concept and 
derivation of MPCI and orthogonal approximation in general, and apply the method to problems in the field of 
astrodynamics.   
 
A full derivation of MCPI is beyond the scope of this short paper.  Instead we present a flow chart in Fig. 1 briefly 
summarizing the mathematics underlying the MCPI method for solution of an Initial Value Problem (IVP).  Fig. 2 is 
the same mathematics represented in the more elegant vector/matrix formulation, which is computationally the most 
efficient way to implement the method.  Any of the above references provide more detailed derivations, as well as 
examples and results that demonstrate the power of the MCPI algorithm with regard to speed and accuracy.  
Additionally, those references contain comparisons to other well-known integrators including high-order Runge-
Kutta methods and the Gauss-Jackson method. 
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Fig. 1. Flow diagram of MCPI Initial Value Problem implementation. 
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Fig. 2. Flow diagram of MCPI algorithm in vector-matrix form.



2. TAMU MCPI LIBRARY 
 

This paper introduces the Texas A&M University MCPI libraries (TAMU MCPI), which have been created to 
encourage widespread use of the MCPI method for solution of Ordinary Differential Equations.  The goal of the 
project is to create an easy to use toolset that effectively eliminates the learning curve of using MCPI methods, but at 
the same time is versatile and powerful enough for application to a variety of projects.  The user is not required to 
have a thorough understanding of the inner-workings of MCPI in order to implement it in their own projects.  
TAMU MCPI is a set of efficient and lightweight classes for solution of Initial Value Problems (IVPs) and 
Boundary Value Problems (BVPs).  Solvable ODEs can be linear or non-linear, autonomous or non-autonomous, 
and first-order or second-order.  Higher order systems are solvable by decomposition to a first-order or second-order 
system by the inclusion of additional states that are the time derivatives of lower order states.  
 
Fig. 3 shows a high-level overview of the TAMU MCPI structure from an implementation point of view. The user 
provides a handle to an integrand function for the problem at hand, that is, the update function that describes how 
the time derivatives of the system states behave.  Additionally, the user provides the relevant boundary conditions 
for the system states, defined at the initial time, the final time, or both, depending upon the problem to be solved.  If 
the system has time-varying parameters, or other numerical data is required in the integrand function, these may be 
inputted as well.  Given these inputs, TAMU MCPI will iteratively attempt to numerically solve the state-space 
trajectories of the system over the desired time interval.  If a solution is found, the time history of the system states 
over the interval of interest is returned.   

MCPI%Library%
IVPs%
BVPs%

Lambert%

Integrand%Func8on%

Boundary%
Condi8ons%

(Op8onal)%
Parameters%

Time%History%of%
System%States%

User%
Inputs%

TAMU%
MCPI%Class%
Library%

Outputs%

 
Fig. 3. High-level overview of TAMU MCPI library. 

 
The TAMU MCPI library is available in Matlab, C++, and as Matlab wrapper functions to the CUDA parallel 
computation environment.  CUDA stands for Compute Unified Device Architecture, and is a parallel computing 
language developed by NVIDIA for use upon their Graphics Processing Units (GPUs); effectively it allows 
lightweight parallel computation at a desktop workstation.  TAMU MCPI is fully cross-platform, and has been 
tested on Windows, Linux, and Apple computers.  The structure of the libraries is hierarchical, with an abstract 
parent class and derived child classes tailored to the solution of various problem types.  This modular approach is to 
allow for future expansion, or application-specific customization and optimization.  Control parameters can be set 
from a configuration file or interactively by the user. 

 
The C++ libraries can be distributed as source code with minimal external dependencies (the only dependencies are 
headers from the Boost cross-platform library1), or as pre-compiled binaries and header files for many widely used 
operating systems.  Compiling the libraries from source is possible with any reasonable C++ compiler, and include 

                                                             
1 Boost is a set of cross-platform C++ tools to accomplish common tasks.  TAMU MCPI uses header-only Boost 
libraries to avoid inclusion of large binary files.  See http://www.boost.org/ for more information. 



files and linking are managed with CMake2.  The CUDA libraries utilize the Matlab Parallel Computation Toolbox, 
and require Matlab 2010 or newer (2011 or newer recommended), and an NVIDIA GPU with compute capability of 
1.3 or greater.   
 

3. EXAMPLE: ORBITAL PROPAGATION OF DEBRIS CLOUD 
 
In this example, we forward propagate the orbital motion of a cloud of 1000 simulated debris objects in Low Earth 
Orbit.  Initially the cloud is a three-dimensional Gaussian distribution with mean initial position and velocity and 
distribution parameters as shown in Table 1.  The mean particle orbital eccentricity is e = 0.0099, and the mean 
orbital period is P = 5.3905 x 103 seconds.  The motion of each object is propagated forward by one (mean) orbital 
period using a simple inverse square gravity model.  The initial and final distributions are shown in Fig. 4 (note that 
the Earth is shown solely to provide scale, the coordinate system is arbitrary).   
 
This numerical integration is performed using the TAMU MCPI Initial Value Problem library running in Matlab 
2013, and benchmarked against the native Matlab Runge-Kutta 4(5) variable step size numerical solver ODE45.  
The comparison is carried out on a laptop computer with an Intel Core i7 2.3GHz processor, and16GB of RAM.  
The accuracy of the numerical solution is verified against the analytic F and G solution, and both algorithms are 
tuned to have similar accuracy as shown in Fig. 5, in which the motion of a single particle is propagated forward by 
several orbits.  In this arrangement, the Matlab implementation of TAMU MCPI forward propagates the particle 
cloud motion five times faster than ODE45, and with comparable accuracy. 
 

Table 1: Parameters required for the IVP solution. 
Orbit Parameters 

Propagation Time (s) 5.3905 x 103 
Mean Particle Initial Position Vector (km) [-464.856, 6667.880, 574.231] 

Mean Particle Initial Velocity Vector (km/s) [-2.8381,-0.7872,7.0830] 
Standard Deviation Particle Position (km) 0.1 

Standard Deviation Particle Velocity (km/s) 0.1 
 

 
Fig. 4: Simulated debris cloud, initial Gaussian distribution and final distribution after forward propagation by one 

mean orbital period. 
                                                             
2 Cmake is a cross-platform build tool that creates projects such that the native compiler can build applications from 
source code.  See http://www.cmake.org/ for details. 
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Fig. 5. Position errors of the MCPI algorithm (top panel) and the ODE45 (bottom panel) compared with the analytic 

F and G solution. 
 
 

4. EXAMPLE: LAMBERT’S TRANSFER PROBLEM 
 
We solve the orbital motion for a section of a Low Earth Orbit given boundary conditions on the initial and terminal 
position as well as the time taken for the motion, a formulation called Lambert’s Problem.  These input parameters 
are shown in Table 2.  The period of the chosen orbit is P = 5.3905 x 103 seconds, and the eccentricity is e = 0.0099.   
 
This problem is solved with the TAMU MCPI Second Order Boundary Value (Lambert-Style) library running in 
Matlab 2013, and benchmarked against the Shooting Method using fsolve and ODE45.  The comparison is carried 
out on a laptop computer with an Intel Core i7 2.3GHz processor, and16GB of RAM.   The output from the two 
solvers are verified against the analytic F and G solution, and the parameters of both algorithms are tuned until the 
accuracy is comparable, as shown in Fig. 7.  Depending upon the desired arc-length of solution, the Matlab 
implementation of TAMU MCPI is able to solve the Lambert Problem 20-60 times faster than the shooting method 
with fsolve and ODE45, and with comparable accuracy. 
 
For this given orbit, the MCPI BVP algorithm maximum arc length over which convergences occurs is 38% of an 
orbital period. We are currently investigated promising new methods to increase this arc length, and these will 
appear in subsequent publications. 
 
 

Table 2: Parameters required for the BVP solution. 
Orbit Parameters 

Propagation Time (s) 0.38 * 5.3905 x 103 
Initial Position Vector (km) [-464.856, 6667.880, 574.231] 
Final Position Vector (km) [-1386.506,-5174.986,3873.216] 
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Fig. 6: The reference orbit generated from an F and G solution (blue), and the 38% time period arc (red) propagated 

with the BVP algorithm. 
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Fig. 7. Position errors of the MCPI algorithm (top panel) and the shooting method (bottom panel) compared with the 
analytic F and G solution. 

 
 

5. CONCLUSION 
 

Modified Chebyshev Picard Iteration (MCPI) is an iterative numerical method for approximating solutions of linear 
or non-linear Ordinary Differential Equations (ODEs).  Unlike other step-by-step differential equation solvers, like 
the Runge-Kutta family, MCPI approximates long arcs of the state trajectory with an iterative path approximation 
approach, and is ideally suited to parallel computation.  Orthogonal Chebyshev Polynomials are used as basis 
functions during each path iteration, and the integrations of the Picard iteration are then carried out analytically.  The 
orthogonality of the Chebyshev basis functions allows the least square approximations to be computed without 



matrix inversion. Instead the coefficients are computed robustly from discrete inner products. The discrete sampling 
and weighting that is adopted to satisfy the inner product definition creates that added benefit that the approximation 
errors are minimized near the ends of the interval.   
!
The MCPI algorithm utilizes a vector-matrix framework for computational efficiency.  All Chebyshev coefficients 
and integrand function evaluations are independent, meaning they can be simultaneously computed in parallel for 
further decreased computational cost.  Over an order of magnitude speedup from traditional methods is achieved in 
serial processing, and an additional order of magnitude is achievable in parallel architectures. 
 
In this paper we have presented the new TAMU MCPI library that allows the user to easily apply the MCPI method 
to their own ODE systems.  The TAMU MCPI library is available in Matlab, C++, and as Matlab wrappers for 
CUDA parallel computation.  It is fully cross-platform for Windows, Linux, and Apple, and can be compiled from 
source by the user, or distributed as a binary library for many common operating systems.  The idea is that the user 
does not need to concern themselves with the underlying mathematics behind the MCPI algorithm, but simply inputs 
the boundary conditions of the dynamical system, the integrand function governing system behavior, and the desired 
time interval of integration. The algorithm outputs the time history of the system states over the interval of interest.   
 
Two astrodynamic examples are presented to demonstrate the capability of the algorithm for the initial value and 
boundary value problems respectively. For the first example (IVP) we forward propagate a simulated cloud of debris 
particles in a low earth orbit.  Compared to a native Matlab ODE45 integrator, we are able to forward propagate the 
motion five times faster with the same accuracy.  For the second example (BVP) we consider Lambert’s problem 
and present a convergence arc length of 38% of the orbit.  Depending upon the arc-length of the orbit in the 
Lambert’s problem, MCPI is able to obtain a solution 20-60 times faster than the shooting method.  We have 
demonstrated the power of our MCPI algorithm in numerous publications, and we are excited at the prospect of 
sharing this new library to afford other researchers the opportunity to benefit from these tools. 
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