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ABSTRACT

This paper describes statistical models and an efficient Monte-Carlo algorithm for detecting tracks of slowly moving objects in
optical telescope imagery sequences. The algorithm is based on accurate robust image pre-registration with respect to the star
background, hot/warm pixel suppression, extracting dense normalized local image features, pixelwise statistical event detection,
segmentation of event maps to putative image primitives, and finding consistent track sequences composed of the image primitives.

Good performance at low SNR and robustness of detection with respect to fast or slow-moving thin overhead clouds is
achieved by an event detection model which requires collecting at least 10 images of a particular spatial direction. The method
does not degrade due to an accumulation of acquisition artifacts if more images are available.

The track sequence detection method is similar in spirit to LINE [Yanagisawa et al, T JPN SOC AERONAUT S 2012]. The
detection is performed by the RANSAC robust method modified for a concurrent detection of a fixed number of tracks, followed
by an acceptance test based on a maximum posterior probability classifier. The statistical model of an image primitive track is
based on the consistence between the size and the inclination angle of the image primitive, its image motion velocity, and the
sidereal velocity, together with a consistence in relative magnitude.

The method does not presume any particular movements of the object, as long as its motion velocity is constant. It can detect
tracks without any constraints on their angular direction or length. The detection does not require repeated image transformations
(rotations etc.), which makes it computationally efficient. The detection time is linear in the number of input images and, unlike
in the LINE proposal method, the number of RANSAC proposals is (theoretically) independent of the number of putative image
primitives.

The current (unoptimized) experimental implementation run several hours on a standard two-core CPU architecture. Reliable
detection up to the magnitude of 16.5 has been obtained on a test sequence of over 5800 images from the 50 cm TAOS telescope
at Lulin Observatory, Taiwan. A comparison with the FPGA Image Stacking, which was the most successful method tested by
[Yanagisawa et al, AMOS 2012] shows the proposed method is able to detect 62% more objects of magnitudes 11 – 13.5, 38%
more objects of magnitudes 13.5 – 16.5, but only 33% of objects of magnitudes 16.5 – 19. If optimized for speed, the proposed
algorithm would be suitable for online detection, assuming an order of 10 or more running images are buffered. The algorithm
is not suitable for fast object velocities at which the object typically enters/escapes the field of view during exposure.

I. INTRODUCTION

Object detection is a critical component of any space surveillance system. In this paper we are concerned with detection of
orbiting objects in optical images, see Fig. 1a for a typical data example. With methods from the computer vision community
at hand we show how they can be utilized to achieve a good balance between detection performance, run-time and memory
requirements. The present paper focuses on the detection problem for GEO or near-GEO objects observed in a series of images
with not so good signal-to-background ratio. Useful methods must typically collect and process a large amount of data before
a detection can be confirmed.

In the literature there are two main approaches to object detection:
1) Primitive image objects (events) are detected in input images independently and then linked to tracks. A typical example

of this class of methods is the LINE method [8]. It tests all possible track sequences created from all pairs of primitives
in subsequent images. The principal advantage of such method is a huge data compression in the first step. This opens the
possibility to postpone the linking phase until significantly more data is collected, which is useful in pipeline architectures
for on-line data processing. The disadvantage is a lower statistical efficiency of the method, since the primitive object
detection cannot use prior information that is available at the level of the track only (the track must be consistent, more
details are found in Sec. II-C2). In principle, these methods do not have to limit the speeds and motion directions of the
objects to be detected, although they are unsuitable for fast object velocities at which the object typically enters/escapes
the field of view during exposure.

2) Raw image data (after radiometric corrections) are processed directly [8]. A typical example of this class of methods is
the Image Stacking Method [3, 8]. Images are registered in a suitable common image space and the pixelwise activity
along a putative (moving) object track is compared against activity along a random track. All directions and object speeds
must be explored. In principle, detection is based on a statistical test that compares the hypothesis that the activities come
from the same random background process against the alternative hypothesis that they come from different processes.
The principal advantage of this method is a superior performance beyond the limiting magnitudes [8]. On the other hand,



this method requires processing a huge amount of data in a single procedure and an exhaustive search over all object
motions (a search in 3D space: direction and speed). Hard limits on the search space and image processing on FPGA
have to be used to achieve fast processing speeds.

In this paper we attempt to answer the question if prior information on the level of tracks and Bayesian modeling can bring
the performance of the primitive object detection and linking methods close to the image stacking methods, as measured by
false positive and false negative detection rates in low signal to background (or signal to noise) ratio. We employ a dataset
from [8] and our results are directly comparable to those presented in that paper.

II. DETECTION METHOD

A. Image Pre-Processing and Registration

1) Local Image Artifact Suppression: Our detection methods need to detect rather faint phenomena. Before the images are
used for object detection, local image artifacts need to be suppressed. First, hot and warm pixels need to be masked-out. It is
never possible to completely eliminate these artifacts based on local image operations alone but their influence can at least be
diminished. Additional processing is then done at the level of detected tracks, as described in Sec. II-D4.

A warm pixel is a normal pixel with an additive stray current in the CCD cell, resulting in an unknown value τ(x, y) added
to the pixel intensity value at position (x, y). We assume the τ(x, y) is constant over the whole measurement period. The
τ(x, y) is then estimated as a difference of the pixel value at (x, y) from the median of its 5× 5 neighborhood in each image,
then taking median over all images. The resulting image τ(x, y) is subtracted from every input image. After this step, there
are still some defective pixels remaining, especially those that exhibit time-variant behavior.

Next, background ambient light changes are reduced by subtracting the median-filtered image (kernel 41 × 41 px), this
operation is applied to each image independently.

2) Accurate Robust Image Registration: The input images are registered in a common coordinate system so that locations
of stars become fixed. To this end we model the telescope as a projective (pinhole) camera [2]. The camera internal calibration
parameters (focal length, pixel size and optical center) are known, represented as the camera calibration matrix K. When a 3D
rotation matrix R between any two images is known, the images are related by homography whose homogeneous matrix is
H = KRK−1 [2]. When warping the source image using H, one gets the image of the star background as seen in the target
image. The homography H is estimated directly from the input images by the following procedure.

The initial estimate for the rotation matrix R for each image is given by the angular orientation of the telescope, stored
in image meta-data (FITS headers). These rotations are not accurate enough to allow precise image registration, so we refine
them by numeric optimization based on pair-wise image correspondences of stars. Using known camera calibration and the
initial camera rotations, the pairwise overlap of the fields of view is first estimated. The overlap value defines edge weights
of a dense overlap graph. The maximum spanning tree (MST) of the graph is found, giving a set of pairs used in subsequent
optimization. With the help of the MST, the homography between any image pair is later obtained by pairwise concatenation.

Stars are detected in each image by a correlation operator with a short streak kernel, followed by a sub-pixel non-maximum
suppression and thresholding. The streak kernel is constructed from a zero-mean 2D Gaussian kernel motion-blurred according
to the known exposure time and sidereal motion direction. The zero mean guarantees invariance of the detector to dark level
shifts of the image. Typically, 1000 stars are detected. For each star, a pair of 2D vectors connecting the star with its two
nearest neighbors of lower relative magnitude are found. These vectors, including their orientation, are invariant to changes
in intensity caused by changes of atmospheric transmittance, ambient light and sensor gain (exposure). Then for each pair
of images in the MST, the vectors of stars are used as descriptors that are matched by thresholded mutual nearest neighbor
matching in the descriptor space (One star correspondence originates from one or two descriptor vector matches). The resulting
correspondences contain a low percentage of mismatches. These are detected and removed during the subsequent numerical
optimization.

For every pair of images (i, j) in the MST we use the total Sampson registration error [2] over the star locations as the
numerical optimization criterion. MLESAC algorithm [6] is used to find an initial solution together with outlier (mismatch)
identification, then standard gradient minimization of the error is used on the inlier set. The mean correspondence error after
registration is about 0.8 px, as measured on the MST edges.

The final common image coordinate system is defined by a virtual camera with a cylindrical retina, where the cylinder
radius is the same as the focal length of the original images and its axis is oriented so that registered image rows correspond
to the right ascension angle and image columns to the declination angle. In subsequent processing, we work with a 3D stack
of registered images, whose third dimension is time.

B. Primitive Event Detection

1) Dense Normalized Local Image Features: The visual event detection that will be described in Sec. II-B2 does not work
well on raw data, since it is based on finding outliers in long-term temporal pixel activity. We propose a local image feature
that proved very stable and efficient in enhancing local contrast and performing local image normalization (offset and gain
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Fig. 1: Top row: Raw input image, normalized image feature map, and the event score map, all three collapsed by taking the maximal
value over time in the registered image stack. Circled are two locations: One where a high-magnitude event should be detected (green) and
a random one (red). We can see that the contrast of the high-magnitude event is improved in the feature map and that the star background
is effectively suppressed in the event map in which the second track appears in the upper half of the map. Bottom row: Temporal profiles
for the two locations. The blue vertical bar identifies the time of 12 at which the green event should be detected. The event score is not only
maximal at the correct location, it also stands out prominently over the rest of the green profile (and the entire red profile).

elimination). Since we are mostly interested in geostationary objects and want to detect even faint ones, we use an image
model optimized for geostationary objects. The model is the point-spread function of the entire optical path, including the
temporal component. Its good approximation is a 3D Gaussian with spatial variance σ2

P and temporal variance σ2
T (we used

σP = 3.5 px, σT = 0.4 px). The Gaussian is represented by a correlation kernel in the registered image stack. The correlation
response is normalized by local image variance. The resulting normalized image feature map r(x, y, t) has the range of [−1, 1]
and is defined over the domain of the registered image stack. Figs. 1b and 1e show the effect of this step on raw registered
data in Figs. 1a and 1d.

2) Pixelwise Event Detection: The profile along the temporal dimension of the feature map at location (x, y) contains the
temporal activity of that pixel, cf. Fig. 1e. If the pixel (x, y) sees a fixed location on the star background over the entire
observation time, there is constant activity, up to background noise (photon noise, thermal noise, electronic noise, etc). If an
object happens to fly through the pixel, the activity will feature a local peak.

We took the parametric approach to outlier detection. Its advantage is the simplicity of computation and low noisiness in our
sample sizes. Assuming there is at most one event of interest per pixel (x, y), we can detect it as an outlier in the statistical
model of the background temporal activity r(x, y, t). We selected the beta probability distribution for that.

Let C = (r1, r2, . . . , rn) be the activity sample of a given pixel. We are deciding whether the maximal value r̄ = maxi ri
is an outlier in C. We use a modification of Chauvenet’s statistic [5] for beta distribution. Let C̄ be the set C with r̄ excluded.
We use a statistic we call the event score e

e(r̄;α1, α2) = − log
(
n
(
1− I 1+r̄

2
(α1, α2)

))
, (1)

where the parameters α1, α2 are estimated from C̄ by the moment method for beta distribution and Ix(α1, α2) is the regularized
incomplete beta function (distribution function). The argument of the logarithm in (1) is the expected number of measurements



in the sample of size n that have value of at least r̄ assuming the beta distribution model holds for C̄. A high event score
identifies r̄ as an outlying value. The e is fast to compute, unlike in some non-parametric outlier identification methods. An
example of event score map e(r̄;α1, α2) in which the time dimension is collapsed by taking the maximal value per pixel is
shown in Fig. 1c.

The above model bears some resemblance to the statistical model in the FPGA Stacking Method [7], where it is used for
the raw images. The final effect is similar: Enhancing the contrast of image events of interest before the actual detection.

3) Segmentation of Event Maps To Primitives: The event map stack is processed, one temporal layer at a time. In each
layer, the event score is thresholded. Then contiguous segments are found by a standard binary image segmentation method.
The segments are then filtered by several heuristic criteria:

1) the segment must contain a 3D regional maximum of the feature map (18-connected neighborhood),
2) the segment size must be above 2 pixels and below 500 pixels,
3) the maximal feature value r in the segment must be above 0,
4) the maximal event score e in the segment must be above 10.

These parameter settings were selected quite conservatively, they only remove the most obvious outliers. We verified that this
choice does not affect the performance of the subsequent track detector, it only improves its run time.

Each segment receives a set of attributes: the location of its center in space-time (xi, ti), its bounding box, the approximate
relative magnitude Ei (larger is dimmer), the maximal event score r̄ within the segment, and a small raw image within the
segment bounding box. We call the resulting elements primitive image objects or primitives for short. There were approximately
48 primitives per image detected in our data (see Fig. 5). The primitive detection thus results in a large data compression
factor.

C. Bayesian Model for Consistent Track Sequences
Track detection is based on maximum posterior probability. Our model is based on a ratio comparing the probability of the

union of a set of linked tracks and the set of remaining loose primitives against the probability that the input set consist of
loose primitives only. The logarithm of this ratio will be called support. A linked track is an ordered set of mutually similar
primitives whose locations are regular in space-time and whose speed is consistent with the primitive shape. There are no prior
constraints on the loose primitives that will be called outliers.

The support for a collection of tracks (the total support) is given by the sum of individual track supports. Maximization of
the total support will be used as the optimization task for the track detector, as will be detailed in Sec. II-D.

The individual track support s(M,Z) consists of several terms

s(M,Z) = sD(M,Z) + sS(M,Z) + sF (M,Z) + sφ(M,Z), (2)

in which sD is the data support (6), sS is the consistency support for primitive size and track speed (10), sF is the ‘temperature’
support (12), sφ is the directional support for geostationary tracks (13), and the M , Z represent the track, as will be explained
next.

Suppose, for simplicity, we are modeling a single track. Let a fixed line in space-time be given that corresponds to a thought
trajectory of the object. The line intersects the stack of registered images in a fixed discrete set of K space-time locations
Z = (z1, . . . , zK), zi = (xi, ti) ∈ R3, where the K is given by the intersection of each line with the image data planes,
cf. Fig. 2a. In our data the typical value for K is about 300 (the entire registered image stack is spanned). The space-time
locations zj are given by

zj = za + (j − ja)
zb − za
jb − ja

, j = 1, . . . ,K , (3)

where za, zb are the locations of two key primitives representing the line (the line proposal, see later), and ja, jb are their
indices.

1) The Data Model: The data model must have the same number of terms regardless of the number of detected tracks.
Therefore, data is considered as a collection D of all input image primitives, some of which are linked in tracks (inliers), but
most of them remain unlinked (outliers, misdetections). Hence D = T ∪O, where O are outliers and T are inliers.

The important attributes of a primitive di in D include spatial location xi ∈ R2 in the (registered) event map, location t ∈ R
in time, and relative brightness Ei ∈ R1.

Given Z, a track instance is represented by a matching M : Z → D. See Fig. 2b. We use a Bayesian generative data model

p(D,M,Z) = p(D |M,Z) · p(M,Z) = p(T |M,Z) · p(O) · p(M,Z), (4)

where we have chosen uninformed matching prior p(M,Z) ∝ 1, uninformed outlier distribution p(O) = p
|O|
ω with pω = const,

where |O| is the size of the outlier set, and detected track probability

p(T |M,Z) = pK−|M |γ ·
∏

(i,j)∈M

pt(yi, Ei | zj , Ep), (5)
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Fig. 2: Left: A line in space-time intersects image planes in a discrete ordered set of locations (z1, . . . , zk). The index of the plane is
given by its acquisition time ti and the position within the plane is given by xi (in global coordinates). Right: The proposal generating
and primitive matching mechanism (collapsed time). Primitive yi is matched to location zj , j =M(i) (red). The spacing on the generating
line (blue) is defined by the proposal ya, yb that (apriori) matches za, zb. A primitive (such as y3 or y4) may be left unassigned by M . A
position on the generating line (such as z8) may be left unassigned when there is a missing measurement.

where yi = (xi, ti), |M | is the size of matching M , pK−|M |γ is a penalty for unmatched locations in Z, and Ep is the mean
image value for the key primitives a, b, ie. Ep = 1

2 (Ea + Eb).
The decision if the data contain a track (M,Z) or no track (M = ∅, Z = ∅) is based on the log-ratio that compares the

two data interpretations

sD(M,Z) = log
p(D |M,Z)

p(D | ∅, ∅)
=
(
K − |M |

)
log pγ +

∑
(i,j)∈M

log
pt(yi, Ei | zj , Ep)

pω
, (6)

where K − |M | counts locations Z unassigned to primitives.
The pt(yi, Ei | zj , Ep) captures two key properties of a good track: Geometric consistence with the proposed track Z and

consistence in appearance of the set of matched primitives. These are considered independent. For implementation reasons
(the k-d search in Sec. II-D1) we use a Gaussian pt(yi, Ei | zj , Ep) = N

(
(yi, Ei); wj ,S

)
with mean wj = (zj , Ep) and

4-dimensional diagonal covariance matrix S. With Vγ = − log pγ , Vω = − log
(
pω
√

det(2πS)
)

the data support becomes

sD(M,Z) = |M |Vω −
(
K − |M |

)
Vγ −

1

2

∑
(i,j)∈M

(xi −wj)
>S−1(xi −wj) . (7)

The term Vω is a penalty for an outlier primitive, the term Vγ is a penalty for a missing primitive. We have chosen Vω = Vγ > 0
and S = diag(12, 7 · 10−4, 0.25).

In summary, given a hypothetical line in space-time represented by Z and a matching from Z to image primitives M then
sD(M,Z) measures data support for the hypothesis, higher sD(M,Z) is better. For instance, when K = |M | (no missing
measurements) and the average error in the last term is smaller than Vω then the support is positive. If the data support
sD(M,Z) is positive then it is more probable that the data contains the track than it does not. The zero is therefore a decision
threshold for the track detector, assuming there was no other information incorporated in the model. A prior model on the
track regularity and consistence will just shift the decision threshold, as will be seen in the next subsection.

2) The Track Speed Model: The shape of a primitive is either point-like, when it corresponds to a geostationary object or
elongated when it does not, since the object makes an apparent motion during the exposure time (this includes stars). The
major axis length of the primitive and the object speed relative to a geostationary object are therefore consistent. See Fig. 3a.

At time t the image position of a primitive is x(t) and its (major axis) length is de. Next time it is observed, it has moved
to x(t+ ∆t), where the observational interval is ∆t = te + tr, in which te is the exposure time (5.9 s in our data), and tr is
the readout plus the wait time (2.9 s in our data). See Fig. 3b. The relative inter-frame motion vector d(t) is then

d(t) = x(t+ te + tr)− x(t) =
∆t

te
(de + ds), (8)

where de is the oriented length (vector) of the image primitive and ds is the sidereal motion vector (the oriented length of
the star primitive), both in pixels. This gives a prediction on the oriented length as de = te

∆t
d− ds. We construct a Gaussian

distribution with mean µs = te
∆t

d− ds and covariance matrix σ2
sI

p(de | d,ds, o) = N
(
ode; µe, σ

2
sI), µe =

te
∆t

d− ds. (9)

The p.d.f. lives on pairs of adjacent measurements in the track. Note that the d is the property of the track as a whole and ds

is the property of the data acquisition method, hence µe is fixed for the entire track. Note also that the image motion vector de
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Fig. 3: Left: The speed model for a moving/stationary object (telescope w/o sidereal tracking). During exposure the telescope rotates with
the Earth and geostationary objects do not move, everything else does. Geostationary objects leave disk-like primitives (geo, bottom), moving
objects (obj, center) and stars (top) leave short streaks. The green arrows show primitive locations if there was no image registration. After
image registration and collapse of the time dimension the event map contains sequences of dots and streaks. Right: Detail of the primitive
sequence. After exposure interval te, there is a readout and wait interval tr , at the end of which the star registration process corrects the
sidereal motion. Primitives are shown as pink regions.

can be determined up to its orientation sign o. We choose orientation o∗ maximizing o∗ = arg maxo∈{−1,+1} p(d
e | d,ds, o).

Assuming outlier primitive length distribution po(de) = N(de; 0, σ2
oI) with σ0 � σs, the speed-consistent track support is

sS(M,Z) = log
∏

i : (i,j)∈M

p(dei | d,ds, o)
po(dei )

≈ |M | log
σo
σs
−

∑
i : (i,j)∈M

‖dei − oiµe‖
2

2σ2
s

, (10)

and the sum is over all matched primitives in a track. The approximation by term simplification is sufficient in practice.
We found sS quite discriminating between correct and incorrect tracks.
3) A Model for Tracks of Hot Pixels: Hot pixels behave like exactly geostationary objects. We found our method quite

sensitive to them. We have therefore added a prior that lowers the support for tracks of hot pixels. Tracks of hot pixels that
lead to false detections have two prominent properties: (1) their “images” are formed by isolated high-value pixels (or small
groups of thereof) on a dark background, and (2) the tracks are exactly parallel to sidereal motion direction (direction in which
stars move when the telescope is in the passive acquisition mode).

The first component of the hot pixel track model is based on an image feature F . Let v be the vector of pixel values in the
image segment supporting a primitive detection. The image values are first normalized with respect to an offset by subtracting
the median, v̂ = v−med(v). Let s(v̂) be the sample deviation computed from all values in v̂ with the maximal value max v̂
excluded. The temperature feature F is then

F =
max v̂

1 + s(v̂)
, F > 0. (11)

The value of F is high for single-pixel local maxima in relatively dark neighborhood (precisely when the hot pixels lead to
artifacts). In true geostationary objects, the PSF of the optical system and the atmospheric turbulence smear the point-like
response, which results in a low value of F .

We need a step-like low-pass distribution for identifying the hot pixels. We have chosen p(F ; θ, λ) as the complementary
error function with a turn-off temperature θ and scaling constant λ. For the ordinary pixels we have chosen an improper
uniform distribution po(F ) ∝ 1. The ‘temperature’ support for a track is then

sF (M,Z) = −
∑

i : (i,j)∈M

log erfc

(
Fi − θ√

2λ

)
. (12)

Hot pixel tracks have low sF .
The second component of the hot pixel track model is based on sidereal motion direction angle φ. For the sidereal direction

tracks we use a heavy-tailed angular distribution p(φ; φs, γ) derived from Cauchy distribution and for tracks of proper objects
we use po(φ) = 1

π in which φs is the known sidereal direction (typically φs = 0) and γ is the shape parameter (greater γ
results in a distribution more focused around φs). This gives the angular support of

sφ(M,Z) = − log
po(φ)

p(φ;φs, γ)
= − log

(
(4γ4φ2 + π2) tan−1(γ2)

π2γ2

)
. (13)



The orientation of a track is given by a line fit to the track. Tracks of almost sidereal orientation have low sφ. Although this
support term helps, we did not find it particularly discriminative in identifying tracks of hot pixels.

D. Track Detection

Given the segmented event map the goal is to find all tracks. More precisely, the goal is to explain the set of primitives D as
1) a collection of independent tracks T and 2) a set of isolated primitives (outliers) O. Each primitive is therefore ‘explained’
by exactly one final entity. Since the number of tracks is unknown, this is a model selection problem. We avoid the difficulties
with Bayesian model selection for discrete problems by adopting a two-phase procedure. In the first phase, the number of
tracks k is fixed to a large value (eg. 100). In the second phase the set of k tracks is pruned by a classifier that performs the
final track acceptance/rejection decision.

We used a variant of Random Sample and Consensus (RANSAC) sampling, which is a Metropolis Hastings sampler for
geometric maximization problems [1]. We modified the sampler so that it finds a set of k best tracks. To this end we added
an outlier pool bookkeeping mechanism. We use a priority queue Q, whose length must not exceed k, and a modification of
the acceptance mechanism. The operation minQ returns the lowest priority in Q. If Q is empty, then minQ = −∞. The
operation lengthQ returns the number of elements in Q. Given the set of image primitives D, the sampler works as follows:

1) Initialize: The pool of all outliers O :=D, an empty priority queue Q := ∅, an unsuccessful proposal counter c := 0.
2) Propose a random space-time line and compute the track sequence Z as in Fig. 2a.
3) Find the best matching M from Z to the outlier pool O.
4) Compute support s(M,Z) using (2).
5) Increment the counter c := c+ 1.
6) if s(M,Z) > minQ then

a) if lengthQ = k then remove the lowest-priority element from Q and return its set of matched primitives to O,
b) admit (M,Z) to Q with priority s(M,Z),
c) remove the set of matched primitives M from O,
d) reset the counter c := 0.

7) Repeat Steps 2–7 until the number of unsuccessful proposals c does not exceed a limit c > cstop.
8) Return the queue Q.
The key components of this sampler are the proposal generator from Step 2, the matching procedure from Step 3, and the

formula for determining cstop. Subsequent subsections describe these procedures in more detail. The other steps are trivial,
except for Step 4, which has been explained in Sec. II-C.

1) Proposal Generator: The elementary proposal mechanism takes the pool of open primitives (outliers) O and returns a
sequence of space-time locations Z where observable events are expected in the input data. We use two proposals that use
different pools. The proposal type is chosen randomly at each iteration.

The first proposal procedure works as follows:
1) Select a single primitive da ∈ O by a uniformly distributed random index. Let the da have the location-time-energy

triple of (xa, ta, Ea).
2) Find primitive db ∈ O whose location-time-energy triple (xb, tb, Eb) is closest to (xa, ta + ∆t, Ea), using Mahalanobis

distance with covariance matrix S (see eq. (7)), where ∆t is the observational interval as in (8) (∆t = 8.8 s in our data).
3) Find the intersection of the space-time line given by ya = (xa, ta) and yb = (xb, tb) with all image data planes (cf. Fig. 2)

Z =

{
ya + j · yb − ya

ta − ta
·∆t

}jmax

j=jmin

, jmin =

⌊
tmin − ta

∆t

⌋
, jmax =

⌈
tmax − ta

∆t

⌉
. (14)

in which tmin is the minimal intersection time and tmax is the maximal intersection time.
The minimization in Step 2 of the proposal procedure provides a somewhat restricted set of proposals. The full proposal

would involve a random choice among all primitives close to (xa, ta+∆t, E0), based on Gibbs sampling using the full support
model from Sec. II-C.

With the help of k-d tree search in a 4D space scaled by the diagonal scaling matrix S, finding the closest primitive to a
given location is performed in log |D| time. This makes the proposal a very cheap operation. On a single core of an i7 PC
processor, the RANSAC procedure generates about 30 proposals per second on our dataset (data from Day 3, ca. 2200 images,
105 primitives in D, see Sec. III-A for data description).

The second proposal is a track re-assembly. This proposal is necessary for the RANSAC sampler not to get trapped in a
local optimum. It also helps improve track’s support (priority in the queue) and speeds the search up significantly. The proposal
proceeds as follows:

1) Select a track in the queue by random uniformly-distributed index. Let the set of matched primitives in the track be M .
2) Return the set M to the outlier set O.



3) Randomly select primitive ya ∈M . Let yb ∈M be its adjacent primitive in the direction of increasing time.
4) Given the key primitives ya, yb, compute the line sequence Z as in (14).
2) Matching: The second key component of the sampler is the matching from the set of observable event locations Z to

(a subset of) the detected image primitive pool O. This is illustrated in Fig. 2b. The matching proceeds in two phases. In
the first phase, the nearest primitive from O is found by the k-d tree search for each location-time-energy triple (zj , Ep),
j = jmin, . . . , jmax, where Ep = 1

2 (Ea + Eb), see also (6). The result is a perfect matching M from Z to O. In the second
phase outliers are identified in the matching and removed from it.

The matching problem is the best assignment M∗ of primitives to observable locations M∗ = maxM∈M sD(D,M), where
M is the set of all matchings M : Z → D and sD is the data support from (6). Ideally, matching should maximize the full
support (2) but that would not be practical. Note that a RANSAC sampler does not require the proposals to be optimal. The
simplification only limits the set of all possible tracks that can be found by the algorithm. The solution to the optimization
problem is

Mi =

{
zj if i ∈ {a, b} or if pω pγ < pt(yi, Ei | zj , Ep),
∅ otherwise.

(15)

The resulting assignment of primitives is not necessarily monotonic in time, but we want to avoid the overheads imposed by
dynamic programming that would have to be used. We observed that when the pt does not allow big deviations the matched
sequence is rarely non-monotonic.

3) Stopping Criterion: Step 7 uses a modified RANSAC stopping criterion based on

cstop =
log(1− P )

log(1− wa · wb)
, (16)

where P is the probability that the last track added to Q is correct (this is our wish on the algorithm’s performance), wa is the
prior probability that a randomly selected primitive in da ∈ D is an inlier (belongs to a track), and wb is the probability that
the second primitive db is an inlier assuming the da is an inlier too. We used P = 0.99, w1 = 30

|D| , w2 = 1
5 . For |D| = 105

(typical value in our data), we get cstop ≈ 7.7 · 104.
We assumed that at least one of the restricted proposals for any given track consists of track inliers (correct primitives).

We found this restriction work very well in practice. The choice brings a significant speedup of the overall runtime over the
standard RANSAC proposals in which both primitives in the initial pair are drawn randomly from O (for this case wb = wa
in (16), which would result in a 1000-fold slowdown).

4) Final Detection Decision: The output from the RANSAC optimization procedure is a list of k best track hypotheses.
Some of them are false tracks of hot pixels. To obtain the final detection, we filter all tracks by a classifier. It is based on two
criteria:

1) temperature support sF must be above zero,
2) tracks shorter than 10 matched primitives must have the total support s(M,Z) > 25.

The second rule was learned manually on Day 1 data (one third of input data, see Sec. III-A for data description).

III. EXPERIMENT

A. Data

Images were obtained from 50cm TAOS sensor from Lulin observatory, Taiwan. This is the same data set used for the
performance study in [8]. The field of view of the telescope was 1.3◦ × 1.3◦, the effective image size 2049(V)×2047(H), 16
bit monochromatic. The telescope is pointed at a fixed inertial point near geostationary region. A series of 29 images is taken
with 5.9s exposures in 8.8s observation intervals without sidereal tracking or telescope repositioning. Then the telescope is
repositioned back at the original inertial point. The sequence is repeated for about seven hours and the observation is repeated
for three consecutive nights. Data contains artifacts of varying degree of severity, mostly reflections off clouds and stray light
getting in the optical system and reflecting off the inner optical path components, creating various patterns. These are the key
factors that limit the maximum detectable object magnitude.

B. Results

We learned the parameters of the individual support terms in (2) independently on data from Day 1. This way we avoided
overfitting.

All RANSAC tracks were inspected and obvious false positives were manually labeled. The eight manually identified
misdetections include three hot pixel tracks, one track replicated due to a bug in data preprocessing and four false tracks that
were found in a region of very high density of artifacts due to stray light patterns in the telescope which could have been
eliminated by removing a few images instead of running the method blindly on all the data available.
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Fig. 4: Detection results for Day 1–3. Red: tracks detected by RANSAC (the proposed method), blue: tracks detected by the FPGAS [7],
yellow: RANSAC tracks manually labeled as false positives. In RANSAC the solid dot markers (red, yellow) show locations of primitives
matched to the tracks; gaps are mostly due to missing data (the object flew out of field of view during repositioning of the telescope and
then returned). The abscissa is the right ascension angle α and the ordinate is the declination angle δ.

We compare our results with the FPGA Stacking Method (FPGAS) that was evaluated in [8]. Detailed track detection results
from both methods are shown in Fig. 4. RANSAC detected the red tracks. FPGAS detected the blue tracks. We can see that
RANSAC detects some extra tracks at a greater angle. It is possible that the FPGAS did not search over these angles, since most
of these objects are of relatively low magnitude that were not of interest in the original study. On the other hand, RANSAC was
also able to detect many short tracks. In addition, it detects tracks that continue after a pause (when the telescope was blind
due to repositioning) and tracks that entered the field of view in the middle of the data acquisition sequence. A count-based
(or median-based) method like FPGAS cannot easily detect the latter three types of tracks.

The table in Fig. 5 shows the number of detected tracks that were manually verified as correct in the RANSAC method (4th
column) and the FPGAS method (5th column). The 6th column shows the number of verified tracks that were found by both
methods. We can see that in total, RANSAC detected 177 tracks, and FPGAS 146 tracks. In addition, RANSAC detected 8
more false positive tracks that were removed manually and are not included in column 4.

The histogram in Fig. 5 shows the magnitude distribution of detected tracks for the two methods. We can see that RANSAC
detects a greater number of low-magnitude objects (mostly those with short tracks or of high track angle). In the range of
magnitudes 13.5–16.5, both methods perform similarly. In magnitudes 16.5–18 RANSAC detects about a third of the FPGAS
detections. RANSAC fails to detect any object of magnitude over 18. The histogram bin width was selected as optimal by the
Scott’s rule [4] for the given number of tracks (146), to obtain a statistically relevant distribution.

IV. CONCLUSION

We have tested the proposed RANSAC method on a dataset sufficiently large for obtaining predictive performance figures.
The results were compared with FPGAS, which is the best performing method that was run on the same data. In summary,
the proposed RANSAC method is stronger than FPGAS in detecting short tracks and tracks entering the FoV in the middle
of the sequence. The FPGAS method is stronger in detecting high-magnitude tracks.

The RANSAC method does not presume any particular movements of the object, as long as its motion velocity is constant.
RANSAC can detect tracks without any constraints on their angular direction. The detection does not require repeated image
transformations (rotations etc.), which makes it computationally efficient. These traits are similar to LINE [7]. Unlike in the
LINE method which could be considered a maximum-likelihood type of method, the Bayesian model behind the RANSAC
method allowed us to incorporate additional constraints on the level of the entire track, namely consistency between primitive



data summary verified track counts by method
day images primitives RANSAC FPGAS both FP
1 1 584 78 970 35 37 23 5+2(hot)
2 1 980 91 461 42 51 32 1(hot)
3 2 250 105 894 40 58 33 0

tot 5 814 276 325 117 146 87 5+3(hot)
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Fig. 5: Left: The number of detected tracks per method and data acquisition day. RANSAC: the proposed method, FPGAS: the FPGA Image
Stacking method [7], both: detections common to both methods, FP: false positives by RANSAC that were manually removed (these are not
included in the RANSAC column). Right: The number of detected tracks per apparent object magnitude range. There are no detections
by RANSAC for magnitudes greater than 18.

length and the track speed and weak magnitude consistency of the object forming the track.
The LINE method detected 87 objects where the RANSAC detected 117 objects and FPGAS detected 146 objects. The

RANSAC detection time is linear in the number of input images and, unlike in the LINE proposal method, the number of
RANSAC proposals is (theoretically) independent of the number of detected image primitives. The current (unoptimized)
experimental implementation of RANSAC run about 5.5 hours on a standard CPU architecture which seems comparable to
LINE, according to [7].

Better results could be obtained by a more rigorous learning. Learning is difficult with the current dataset for which there
is no ground truth. Proper learning would probably need simulated data with ground truth.
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